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Motivation

Elliptic equation, − div(a grad u) = f in Ω, u = 0 on ∂Ω.

Mixed formulation: Find (σ, u) ∈ H(div; Ω)× L2(Ω),
σ = a grad u, such that

〈a−1σ, τ〉+ 〈u, div τ〉 = 0, τ ∈ H(div; Ω),
〈div σ, v〉 = 〈f , v〉, v ∈ L2(Ω).

H(div; Ω) = {τ ∈ L2(Ω) : div τ ∈ L2(Ω)}.
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Mixed finite element approximation

Choose finite dimensional spaces Σh × Vh ⊂ H(div; Ω)× L2(Ω).

Find (σh, uh) ∈ Σh × Vh such that

〈a−1σh, τ〉+ 〈uh, div τ〉 = 0, τ ∈ Σh,
〈div σh, v〉 = 〈f , v〉, v ∈ Vh.

If div Σh ⊂ Vh, stability follows from

sup
τ∈Σh

〈v , div τ〉
‖τ‖H(div)

≥ α‖v‖L2 , v ∈ Vh.
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Stability and Fortin operators

To satisfy sup condition, let τ = gradφ, where φ satisfies

∆φ = v , in Ω, φ = 0 on ∂Ω.

Then div τ = ∆φ = v and ‖τ‖H(div) ≤ C‖v‖L2 .

In fact, ∃W ⊂ H(div) such that ‖τ‖W ≤ C‖v‖L2 .
For example, if Ω is a convex polygon, W = H1(Ω).

Assume there exists a (Fortin) operator πh : W → Σh such that

〈v , div πhτ〉 = 〈v , div τ〉, v ∈ Vh, ‖πhτ‖H(div) ≤ C ′‖τ‖W .

Then for v ∈ Vh,

sup
τ∈Σh

〈v , div τ〉
‖τ‖H(div)

≥ 〈v , div πhτ〉
‖πhτ‖H(div)

≥ 〈v , div τ〉
C ′‖τ‖W

≥
‖v‖2

L2

C ′C‖v‖L2

≥ α‖v‖L2 .
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Commuting diagram

Alternatively, if Ph (L2 projection into Vh) and πh satisfy
commuting diagram:

W
div−−−−→ L2(Ω)yπh yPh

Σh
div−−−−→ Vh

,

then for τ ∈W and v ∈ Vh,

〈v , div τ〉 = 〈v ,Ph div τ〉 = 〈v , div πhτ〉.

Commuting projections have been a standard tool of stability
analysis for FEM for a long time.
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The de Rham complex

In finite element exterior calculus, instead of studying
discretizations of structure

H(div; Ω)
div−−−−→ L2(Ω)

gain more insight by studying discretizations of complete de Rham
complex

0→ H1(Ω)
grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)
div−−→ L2(Ω)→ 0,

where

H(curl; Ω) = { u : Ω→ R3 | u ∈ L2, curl u ∈ L2 },
H(div; Ω) = { u : Ω→ R3 | u ∈ L2, div u ∈ L2 }.

2-D de Rham sequences:

H1(Ω)
curl−−→ H(div,Ω)

div−−→ L2(Ω),

H1(Ω)
grad−−→ H(rot,Ω)

rot−→ L2(Ω).
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de Rham complex (continued)

3-D de Rham complex

0→ H1(Ω)
grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)
div−−→ L2(Ω)→ 0

is special case of general L2 de Rham complex.

0→ HΛ0(Ω)
d0−−−−→ HΛ1(Ω)

d1−−−−→ · · · dn−1−−−−→ HΛn(Ω)→ 0,

where HΛk(Ω) = {ω ∈ L2Λk(Ω) : dω ∈ L2Λk+1(Ω)}

and dk : HΛk(Ω)→ HΛk+1(Ω) is exterior derivative.

Structure is called a complex since dk+1 ◦ dk = 0.

Complex called exact if range(dk) = ker(dk+1).

For 3-D de Rham complex, d0 = grad, d1 = curl, d2 = div.
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The Hodge Laplacian

Connected to this complex is operator L = dd∗ + d∗d , called
Hodge Laplacian, where d∗ is adjoint of d . So

〈du, v〉 = 〈u, d∗v〉, u ∈ V k ≡ HΛk(Ω), v ∈ V ∗k+1 ≡ H̊∗Λk+1(Ω).

Domain of L is: DL = {u ∈ V k ∩ V ∗k }. If u solves Lu = f , then

〈du, dv〉+ 〈d∗u, d∗v〉 = 〈f , v〉, v ∈ DL.

Not a good formulation for FEM approximation: hard to construct
useful subspaces of DL.

In general: Harmonic forms Hk = {v ∈ DL : dv = 0, d∗v = 0}.
Ignore for simplicity.
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Mixed formulation of Hodge Laplacian

For f ∈ L2Λk(Ω) given, find (σ, u) ∈ HΛk−1(Ω)× HΛk(Ω)
satisfying

〈σ, τ〉 − 〈dτ, u〉 = 0, τ ∈ HΛk−1(Ω),

〈dσ, v〉+ 〈du, dv〉 = 〈f , v〉, v ∈ HΛk(Ω).

First equation: u belongs to domain of d∗ and d∗u = σ.

Second equation: du belongs to domain of d∗ and d∗du = f − dσ.

Hence, u ∈ DL of L and solves Hodge Laplacian equation Lu = f .
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Applications of the Hodge Laplacian

Let Ω ⊂ R3. Mixed formulation gives:

k = 0: Neumann problem for Poisson’s equation

− div grad u = f in Ω,

∫
Ω
u dx = 0, grad u · n = 0 on ∂Ω.

k = 1: BVP for vector Laplacian

σ = − div u, gradσ + curl curl u = f in Ω,

u · n = 0, curl u × n = 0 on ∂Ω.

f = gradF : − div u = F , curl u = 0.

div f = 0 : curl curl u = f , div u = 0.
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More applications of the Hodge Laplacian

k = 2: Another BVP for vector Laplacian

σ = curl u, curlσ − grad div u = f in Ω,

u × n = 0, div u = 0 on ∂Ω.

f = curlF : curl u = F , div u = 0.

f = gradF : div u = F , curl u = 0.

k = 3: Dirichlet problem for Poisson’s equation

σ = − grad u, div σ = f in Ω, u = 0 on ∂Ω.
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Well-posedness of Mixed BVP for Hodge Laplacian

Let

Bk = dHΛk−1(Ω), Zk = {w ∈ HΛk(Ω) : dω = 0},
Zk⊥ = orthogonal complement of Zk in HΛk(Ω).

Proof of well-posedness uses:

(i) Hodge decomposition of u ∈ HΛk(Ω):

u = PBku ⊕ PZk⊥u.

(ii) Poincaré inequality:

‖v‖L2Λk ≤ cP‖dv‖L2Λk+1 , v ∈ Zk⊥.

to verify inf-sup condition (technical condition guaranteeing
well-posedness).
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Approximation of de Rham complexes

To approximate Hodge Laplacian, begin with approximation of
de Rham complex.

Seek spaces Λk
h ⊂ HΛk(Ω) with dΛk

h ⊂ Λk+1
h , so that (Λh, d) is a

subcomplex of (HΛ, d).

Differential for subcomplex is restriction of d , but d∗h : Λk+1
h → Λk

h ,
defined by

〈d∗hu, v〉 = 〈u, dv〉, u ∈ Λk+1
h , v ∈ Λk

h ,

not restriction of d∗. (Major technical difficulty.)

Then have discrete Hodge decomposition

Λk
h = Bk

h ⊕ Zk⊥
h .
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Approximation of de Rham complex (continued)

Assume infv∈Λk
h
‖u − v‖HΛ → 0 as h→ 0 for some (or all)

u ∈ HΛk(Ω),

where ‖v‖2
HΛ = ‖v‖2

L2 + ‖dv‖2
L2 .

Further assume: there exist bounded cochain projections
πkh : HΛk(Ω) 7→ Λk

h , i.e., πkh leaves subspace invariant and satisfies

dkπkh = πk+1
h dk , ‖πkhv‖HΛ ≤ c‖v‖HΛ, v ∈ HΛk(Ω).

Have following commuting diagram relating complex
(HΛ(Ω), d) to subcomplex (Λh, d):

0→HΛ0(Ω)
d−−−−→ HΛ1(Ω)

d−−−−→ · · · d−−−−→ HΛn(Ω) → 0yπh yπh yπh
0→ Λ0

h
d−−−−→ Λ1

h
d−−−−→ · · · d−−−−→ Λn

h → 0.
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Galerkin approximation of Mixed Hodge Laplacian

Find σh ∈ Λk−1
h , uh ∈ Λk

h , such that

〈σh, τ〉 − 〈dτ, uh〉 = 0, τ ∈ Λk−1
h ,

〈dσh, v〉+ 〈duh, dv〉 = 〈f , v〉, v ∈ Λk
h .

Under previous assumptions, (πkh a bounded cochain projection),
get discrete Poincaré inequality

‖v‖L2Λk ≤ cP‖πkh‖L(HΛ,HΛ)‖dv‖L2Λk , v ∈ Zk⊥
h .

Use to satisfy discrete version of inf-sup condition, so get stability
with constant depending only on cP and ‖πkh‖L(V k ,V k ). Also get

quasi-optimal error estimate (V k = HΛk(Ω)):

‖σ − σh‖V k−1 + ‖u − uh‖V k

≤ C

(
inf

τ∈Λk−1
h

‖σ − τ‖V k−1 + inf
v∈Λk

h

‖u − v‖V k

)
.
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Finite element approximation of de Rham complex

To apply abstract approximation results for Hodge Laplacian,
construct finite dimensional subspaces Λk

h of HΛk(Ω) satisfying:

(i) dΛk
h ⊂ Λk+1

h so they form subcomplex (Λh, d) of de Rham
complex.

(ii) There exist uniformly bounded cochain projections πh from
HΛk to Λk

h .

(iii) Λk
h have good approximation properties.

Get two families of spaces of finite element differential forms.

PrΛk(Th) = {ω ∈ HΛk(Ω) : ω|T ∈ PrΛk(T ),∀T ∈ Th},
P−r Λk(Th) = {ω ∈ HΛk(Ω) : ω|T ∈ P−r Λk(T ),∀T ∈ Th}.

Generalize Raviart-Thomas and Brezzi-Douglas-Marini H(div)
elements in 2-D and Nédélec 1st and 2nd kind H(div) and H(curl)
elements in 3-D.
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Simplest approximation of de Rham complex in 3-D

0→H1(Ω)
grad−−−−→ H(curl; Ω)

curl−−−−→ H(div; Ω)
div−−−−→ L2(Ω) → 0yπh yπh yπh yπh

0→ H1
h

grad−−−−→ Hh(curl)
curl−−−−→ Hh(div)

div−−−−→ L2
h → 0.

Simplest choice of finite element spaces:

I H1
h = piecewise linear scalar fields

I Hh(curl) = Nédélec edge element

I Hh(div) = Nédélec face element (or 3d Raviart–Thomas)

I L2
h = piecewise constants

all with respect to same simplicial mesh Th.
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Degrees of freedom and canonical projections

For these spaces, commuting projections Ih can be constructed
from degrees of freedom as follows:

I H1
h = piecewise linears, I1

hu(x) = u(x) at each vertex

I Hh(curl) = edge element,
∫
e I

c
hu · t =

∫
e u · t at each edge

I Hh(div) = face element,
∫
f I

d
h u · n =

∫
f u · n for each face

I L2
h = piecewise constants,

∫
T I

0
hu =

∫
T u for each tetrahedron

These projections commute with differential operators:

grad ◦I1
h = Ich ◦ grad, curl ◦Ich = Idh curl, div ◦Idh = I0

h ◦ div .

However, I1
h , Ich , Idh are not bounded on spaces H1, H(curl) and

H(div), respectively.

Example: u(x , y) = log log(2/r), r2 = x2 + y2 ∈ H1(Ω), Ω = unit
disk, but is unbounded at origin, so I1

h not defined if origin is a
vertex of triangulation.
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Examples of DOF

C 0 piecewise P1 on triangulation Th of Ω ∈ R2. Shape fcns are P1

on each T ∈ Th. DOF are ω 7→ ω(vi ), vi vertices of Th.
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@
@
@

◦

◦

◦ ◦

Shape fcns for P−1 Λ1(T ) =

(
a− by
c + bx

)
. DOF: ω 7→

∫
e ω · te .

P−1 Λ1(T ) P1Λ1(T ) P−2 Λ1(T )
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DOF and canonical projections for more general subspaces

For a d-dimensional subsimplex f of T , DOF have form

PrΛk(T ) : ω 7→
∫
f

trT ,f ω ∧ η, η ∈ P−r+k−dΛd−k(f )

P−r Λk(T ) : ω 7→
∫
f

trT ,f ω ∧ η, η ∈ Pr+k−d−1Λd−k(f ).

Key idea: if subsimplex shared by more than one simplex in
triangulation, DOF associated with subsimplex are single-valued.

Determines interelement continuity of finite element space –
resulting finite element spaces are subspaces of HΛk(Ω).

Implicitly defines canonical projections: not bounded in HΛk(Ω),∫
f

trT ,f Ihω ∧ η =

∫
f

trT ,f ω ∧ η, η as above

since all traces not defined for ω ∈ HΛk(Ω).
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Construction of bounded cochain projections

Consider operators of form

Qk
ε,h = Ikh ◦ Rk

ε,h,

where Rk
h = Rk

ε,h is a smoothing operator which commutes with

exterior derivative d and Ikh are canonical projections.

Operator of form Qk
h can be made bounded on L2Λk(Ω) and will

commute with d . However, in general it is not a projection onto
finite element space Λk

h .

So called smoothed projections are of form:

πkh = (Qk
ε,h|Λh

)−1 ◦ Qk
ε,h,

for ε sufficiently small, but not too small. (cf. Schöberl 2007,
Christiansen 2007, A–F–W 2006).

This construction gives bounded, but nonlocal cochain projections.
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Why do we care about having local projections?

A posteriori error estimation and adaptive FEM.

Goal: Estimate local errors using only quantities known from the
computation and use this information to modify mesh to introduce
smaller elements where local error is big.

Need: localized a posteriori error estimates

L. Chen and Y. Wu, Convergence of adaptive mixed finite element
methods for Hodge Laplacian equation: without harmonic forms

A. Demlow, Convergence and quasi-optimality of adaptive finite
element methods for harmonic forms
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Macroelements and the Clément interpolant

Problem of defining interpolants on non-smooth functions (only in
L2(Ω)) solved by Clément.

Consider subspaces PrΛ0(Th) of H1. To define Clément interpolant
for each f ∈ ∆(Th), introduce associated macroelement Ωf by

Ωf =
⋃
{T |T ∈ Th, f ∈ ∆(T ) }.

Vertex macroelement, n = 2. Edge macroelement, n = 2.
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The Clément interpolant

Let µi : C (Ω̄)→ R be usual DOfs for space P rΛ0(Th) and φi
corresponding basis functions. Example: P3(T ).

�
�
�
�@
@
@
@• •

•

◦
◦
◦ ◦
◦

◦ ◦

vertex vi DOF: u(vi )

edge ei DOF:
∫
ei
u ds,

∫
ei
u s ds

triangle T DOF:
∫
T u dx

Standard interpolant is Ihu =
∑

i µi (u)φi .

Let Si denote support of φi , i.e., macroelement where φi 6= 0. Let
Pi : L2(Si )→ P r (Si ) be L2 projection on Si .

Clément operator Ĩh : L2 → PrΛ0(Th) defined by

Ĩhu =
∑
i

µi (Piu)φi .

Ĩhu bounded in L2, but not a projection.
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Degrees of freedom and geometric decompositions

Consequence of DOF that space PrΛ0(Th) admits decomposition
of form

PrΛ0(Th) =
⊕

f ∈∆(Th)

Ef (P̊r (f )),

where Ef is local extension operator mapping P̊rΛ0(f ) into
subspace of PrΛ0(Th) with support in Ωf .

Choose Ef to be discrete harmonic extension given by trf Ef φ = φ,∫
Ωf

gradEf φ · grad v = 0,

for all v ∈ PrΛ0(Th), supp v ⊂ Ωf , and trf v = 0.
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Geometric decomposition example: p = 3

Write u ∈ P3Λ0(Th) = u2, where

u0 =
∑

f0∈∆0(Th)

Ef0 trf0 u,

um = um−1 +
∑

fm∈∆m(Th)

Efm trfm(u − um−1), m = 1, 2.

Show u and u2 agree at degrees of freedom. Then u = u2.

Since trgi∈∆i
Efi trfi = 0 unless gi = fi , trg0 u0 = trg0 u and

trg1∈∆1 u1 = trg1 u0 + trg1(u − u0) = trg1 u. Similarly,
trg2∈∆2 u2 = trg2∈∆2 u.

Since for j < i , trgj∈∆j
Efi trfi = 0 if gj /∈ fi

and = trgj∈∆j
otherwise, also get:

trg0∈∆0 u2 = trg0 u1 = trg0 u0 = trg0 u,

trg1∈∆1 u2 = trg1 u1 = trg1 u.
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The modified Clement operator π0 onto PrΛ
0(Th)

Projection operator π0 constructed by recursion wrt dimension of
subsimplices f ∈ Th. Define Tf ,h = restriction of Th to Ωf .

If dim f = 0, i.e., f a vertex, first define P0
f u ∈ PrΛ0(Tf ,h) as H1

projection of u, i.e., P0
f u satisfies:

∫
Ωf

P0
f u =

∫
Ωf

u and∫
Ωf

gradP0
f u · grad v =

∫
Ωf

grad u · grad v , v ∈ PrΛ0(Tf ,h).

Define π0
0u =

∑
f ∈∆0(Th)

E0
f (trf P

0
f u),

where E0
f (z) = piecewise linear function with value z at vertex f

and zero at all other vertices.
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The modified Clement operator π0 continued

Use recursive approach based on geometric decomposition:

For 1 ≤ m ≤ n, define π0
m by

π0
mu = π0

m−1u +
∑

f ∈∆m(Th)

E 0
f trf P

0
f (u − π0

m−1u).

For dim f ≥ 1, operators Pf are local H1 projections onto space:

P̆rΛ0(Tf ,h) = {u ∈ PrΛ0(Tf ,h) | trf u ∈ P̊r (f ) }.

Gives local projection π0 = π0
n, bounded in H1.
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Generalization to πk : HΛk(Ω)→ PΛk(Th)

Construction of π0 based on local projections P0
f defined with

respect to associated macroelement Ωf .

Let f = [x0, x1]. To get commuting projections (π1du = dπ0u),
need∫

f
trf π

1du =

∫
f

trf dπ
0u =

∫
f

gradπ0u · tf ds

=

∫ x1

x0

d

ds
π0u ds = (π0u)(x1)− (π0u)(x0).

But RHS depends on u restricted to union of macroelements
associated to vertices x0 and x1. So can’t just take local
projections on macroelement Ωf to define π1.
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Extended macroelements

Ωe
f =

⋃
g∈∆0(f )

Ωg , f ∈ ∆(Th).

If g ∈ ∆(f ) then Ωf ⊂ Ωg and Ωe
f ⊃ Ωe

g .
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Extended macroelement Ωe
f corresponding to union of two

macroelements Ωg0 (outlined by thick lines) and Ωg1 , n = 2.
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Construction of π1 in simplest case

Consider (modified) Clement projection onto piecewise linear space
P1Λ0(Th). Operator π0 has form:

(π0u)(x) =
∑

f ∈∆0(Th)

(P0
f u)(f )λf (x)

Projections Pf are local H1 projections wrt to macroelement Ωf

and λf (x) is barycentric coordinate associated to vertex f .

Define volΩf
to be volume form on Ωf , scaled so that∫

Ωf
volΩf

= 1. Rewrite Pf u in form:

Pf u =

∫
Ω
u · volΩf

dx + Qf u,

where Qf u ∈ P1Λ0(Tf ,h) has mean value zero on Ωf , and satisfies∫
Ωf

gradQf u · grad v =

∫
Ωf

grad u · grad v

for all v ∈ P1Λ0(Tf ,h) with mean value zero.
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Commuting projections

To obtain commuting projections, need to define π1
h into space

P−1 Λ1(Th) such that

gradπ0u = π1 grad u.

In particular, have to express

gradπ0u = grad
[ ∑
f ∈∆0(Th)

(∫
Ω
u · volΩf

dx + (Qf u)(f )
)
λf

]
in terms of grad u.

Since Qf u only depends on grad u, need to express:

gradM0
hu ≡

∑
f ∈∆0(Th)

[ ∫
Ω
u · volΩf

dx
]

gradλf

in terms of grad u.
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The δ operator

If f = [x0, . . . , xm+1] ∈ ∆m+1(Th), define

(δu)f =
m+1∑
j=0

(−1)jufj ,

where fj = [x0, . . . , xj−1, xj+1, . . . , xm+1]. So if f = [x0, x1],
f0 = x1, f1 = x0 and

(δu)f = uf0 − uf1 = ux1 − ux0 .

Key properties:

d ◦ δ = δ ◦ d , δ ◦ δ = 0.

If we let z0
f ∈ P0Λn(Tf ,h) be defined by z0

f = volΩf
, then

(δz0
f )f = volΩx1

− volΩx0
.

.
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The M0
h operator

As above, if M0
h : L2(Ω)→ continuous, piecewise linear functions

given by: (replaced f by g in sum)

(M0
hu)(x) =

∑
g∈∆0(Th)

(∫
Ω
u · volΩg dx

)
λg (x),

need to express gradM0
hu in terms of grad u.

If f = [x0, x1], gradλg · (x1 − x0) = [λg (x1)− λg (x0)]. Then

trf gradM0
h(u) · (x1 − x0) =

∫
Ω
u(volΩx1

− volΩx0
) dx

=

∫
Ω
u(δz0

f )f dx = −
∫

Ω
u(div z1

f ) dx =

∫
Ω

grad u · z1
f dx .

where z1
f ∈ P̊

−
1 Λn−1(T e

f ,h) satisfies div z1
f = −(δz0)f and has zero

normal components on the boundary of Ωe
f . Note:∫

Ω(volΩx1
− volΩx0

) dx = 0.
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The Mh operator (continued)

Let f = [x0, x1], λi = λxi , and

φf = λ0(gradλ1)− λ1(gradλ0).

Then trf [φf · (x1 − x0)] = trf [λ0 + λ1] = 1. Can conclude:

gradM0
hu =

∑
f ∈∆1(Th)

(

∫
Ω

grad u · z1
f dx)φf .

Combining results, get

gradπ0u = grad
∑

f ∈∆0(Th)

(∫
Ω
u · volΩf

dx + (Qf u)(f )
)
λf

= gradM0
hu +

∑
f ∈∆0(Th)

(Qf u)(f ) gradλf

=
∑

f ∈∆1(Th)

(

∫
Ω

grad u · z1
f dx)φf +

∑
f ∈∆0(Th)

(Qf u)(f ) gradλf .
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The general case: First define zkf

For each f ∈ ∆0(Th), z0
f ∈ P̊Λn(Ωe

f ) defined by z0
f = volΩf

.

For f ∈ ∆k(Th), define zkf ∈ P̊
−
1 Λn−k(T e

f ) inductively by

dzkf = (−1)k(δzk−1)f∫
Ωe

f

zkf ∧ dτ = 0, τ ∈ P̊−1 Λn−k−1(T e
f ).

Construction justified (inductively) by

d(δzk−1
f ) = δ(dzk−1

f ) = (−1)k−1(δ ◦ δ)zk−2
f = 0.
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The general case: Next define Mk
h

Let PΛk(Th) denote family of spaces of form P−r Λk(Th) or
PrΛk(Th), such that corresponding polynomial sequence (PΛk , d)
is an exact complex.

Using functions zkf ∈ P̊
−
1 Λn−k(T e

f ), define Mk
h : L2 → P−1 Λk(Th)

by

Mk
h u =

∑
f ∈∆k (Th)

(∫
Ωe

f

u ∧ zkf

)
k!φkf ,

where φkf is Whitney form associated to f , i.e,

φkf =
k∑

i=0

(−1)iλidλ0 ∧ · · · ∧ d̂λi ∧ · · · ∧ dλk .

Key result: For any v ∈ HΛk−1(Ω), dMk−1
h v = Mkdv .
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Local bounded cochain projections

Projection πk = πkn defined by recursion

πkmu = πkm−1u +
∑

f ∈∆m(Th)

E k
f ◦ trf ◦Pk

f (u − πkm−1u), k ≤ m ≤ n,

where Pk
f : HΛk(Ωf )→ P̆Λk(Tf ,h) defined by:

〈Pk
f u, dτ〉Ωf

= 〈u, dτ〉Ωf
, τ ∈ P̆Λk−1(Tf ,h),

〈dPk
f u, dv〉Ωf

= 〈du, dv〉Ωf
, v ∈ P̆Λk(Tf ,h).

Here
P̆Λk(Tf ,h) = {u ∈ PΛk(Tf ,h) : trf ∈ P̆Λk(f )},

where P̆Λk(f ) = P̊Λk(f ) if dim f > k , while if dim f = k ,

P̆Λk(f ) = {u ∈ PΛk(f ) :

∫
f
u = 0}.
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Local bounded cochain projections (continued)

To start iteration:

πkmu = πkm−1u+
∑

f ∈∆m(Th)

E k
f ◦ trf ◦Pk

f (u−πkm−1u), k ≤ m ≤ n,

need πkk−1 : HΛk → P−1 Λk(Th).

Two requirements: operators πkk−1 commute with d , and∫
f

trf π
k
k−1u =

∫
f

trf u, f ∈ ∆k(Th), u ∈ PΛk(Th).

Operators Mk
h essential for construction of πkk−1, but need further

technical results, since Mk
h not a projection (not an identity on

Whitney forms).
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A double complex (A. Weil, 1952)

Let T e
f denote Th restricted to Ωe

f . For 0 ≤ m ≤ n, consider
complexes⊕

f ∈∆m(T )

P̊−1 Λ0(T e
f )

d→
⊕

f ∈∆m(T )

P̊−1 Λ1(T e
f )

d→ · · ·

· · · d→
⊕

f ∈∆m(T )

P̊−1 Λn(T e
f )→

⊕
f ∈∆m(T )

P0(Ωe
f )

where d = dk is exterior derivative restricted to each Ωe
f .

For f = [x0, x1, . . . xm+1] ∈ ∆m+1(Th), let δ be defined by

(δu)f =
m+1∑
j=0

(−1)jufj ,

where fj = [x0, . . . , xj−1, x̂j , xj+1, . . . xm+1].
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Commuting diagram:

Then
δ :

⊕
f ∈∆m(T )

P̊−1 Λk(T e
f )→

⊕
f ∈∆m+1(T )

P̊−1 Λk(T e
f )

and satisfies δ ◦ d = d ◦ δ and δ ◦ δ = 0.

Get ⊕
f ∈∆m(T )

P̊−1 Λk(T e
f )

d−−−−→
⊕

f ∈∆m(T )

P̊−1 Λk+1(T e
f )yδ yδ⊕

f ∈∆m+1(T )

P̊−1 Λk(T e
f )

d−−−−→
⊕

f ∈∆m+1(T )

P̊−1 Λk+1(T e
f )
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Summary:

To construct local bounded cochain projections:

I I. Need to define for each k , operators πkh that are projections,
i.e., are the identity on the subspace (so Clément interpolants
don’t work).

I II. Need to have πkh bounded on HΛk , so can’t just use
canonical degrees of freedom.

I III. Need to get πkh to commute with exterior derivative; i.e.,
dπkh = πk+1

h d ; not so easy.

I IV. Need to have πkh locally defined.

Key ideas: Use of geometric decompositions of finite element
spaces and a double complex involving d and δ.
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