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Elliptic equation, —div(agradu) = f in Q, u =0 on 0.

Mixed formulation: Find (o, u) € H(div; Q) x L?(%),
o = agrad u, such that

(a7 to,7) + (u,divr) =0, 7 H(div;Q),
(diva, v) = (f,v), veEL}Q).

H(div; Q) = {7 € L3(Q) : divT € L?(Q)}.
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Mixed finite element approximation

Choose finite dimensional spaces ¥ x Vj, C H(div; Q) x L2(Q).
Find (o, up) € X X V}, such that

<3710h,7'> + <uh, diVT) =0, TEL,,
(divop, v) =(f,v), vEV,
If divX), C Vj, stability follows from
di
sup (v, divr) > allv]z, vE Vh

TEL) ||T||H(div)
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Stability and Fortin operators

To satisfy sup condition, let 7 = grad ¢, where ¢ satisfies
Ap=v, inQ ¢ =0 on 09.
Then divr = A¢ = v and [|7]|(div) < Cllv]| 2.

In fact, 3W C H(div) such that ||7]|w < C||v|| 2.
For example, if Q is a convex polygon, W = H}(Q).

Assume there exists a (Fortin) operator 7j : W — ¥}, such that
(vydivrpT) = (v,divt), v E Vp, 17 AT (| H(div) < 7]l w-
Then for v € V,

sup (v,divt) _ (v,divryr) _ (v,divT)
rexy ITa@iv) — I7maTlH@vy — Cllirllw
> ”VH%z
— v

> allv]|e.
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Commuting diagram

Alternatively, if Py, (L? projection into V},) and m, satisfy
commuting diagram:

w - 12(Q)

oo

Zh div Vh

then for 7 € W and v € V,,

(v,divT) = (v, PpdivT) = (v,divm,T).

Commuting projections have been a standard tool of stability
analysis for FEM for a long time.
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The de Rham complex

In finite element exterior calculus, instead of studying
discretizations of structure

H(div; Q) —2 12(Q)
gain more insight by studying discretizations of complete de Rham
complex

0 — HYQ) £ H(curl; Q) <% H(div; Q) 2% 12(Q) — 0,

where
Hlcurb Q) ={u:Q > R3|ue l? curlue l?},
H(div;Q) ={u: Q= R3|uec >divue ).
2-D de Rham sequences:
HY(Q) <% H(div, Q) L% [2(Q),
HY(Q) 2% H(rot, Q) 5 12(Q).
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de Rham complex (continued)

3-D de Rham complex

0 — HY(Q) £2% H(curl; Q) <% H(div: Q) 2% 12(Q) — 0

is special case of general L? de Rham complex.

0= HAY(Q) —% s HAYQ) —2 ... 1y HAn(Q) — 0,

where  HAK(Q) = {w € [2AX(Q) : dw € L2AFT1(Q)}
and dy : HAK(Q) — HAKL(Q) is exterior derivative.
Structure is called a complex since diy1 0 dx = 0.
Complex called exact if range(dy) = ker(dk+1)-
For 3-D de Rham complex, d® = grad, d! = curl, d? = div.
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The Hodge Laplacian

Connected to this complex is operator L = dd* + d*d, called
Hodge Laplacian, where d* is adjoint of d. So

(du,v) = (u,d*v),u € VK = HN"(Q),v € Vi1 = H*'NL(Q).
Domain of Lis: D, = {u € VKN V}}. If u solves Lu = f, then

(du,dv) + (d*u,d*v) = (f,v), veD.

Not a good formulation for FEM approximation: hard to construct
useful subspaces of D;.

In general: Harmonic forms ¥ = {v € D, : dv = 0,d*v = 0}.

Ignore for simplicity.
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Mixed formulation of Hodge Laplacian

For f € L2AK(Q) given, find (o, u) € HA1(Q) x HAX(Q)
satisfying
(o,7) —{dT,u) =0, T e HANY(Q),
(do,v) + (du, dv) = (f,v), v e HN(Q).
First equation: u belongs to domain of d* and d*u = 0.

Second equation: du belongs to domain of d* and d*du = f — do.

Hence, u € D; of L and solves Hodge Laplacian equation Lu = f.
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Applications of the Hodge Laplacian

Let Q C R3. Mixed formulation gives:

k = 0: Neumann problem for Poisson’s equation

—divgradu =f in Q, /udx:O, gradu-n =20 on 9.
Q

k = 1: BVP for vector Laplacian

o = —divu, grado +curlcurlu=1f  in Q,

u-n=0, curlux n=0 on 0%.

f=grad F: —divu=F, curlu = 0.

divf=0: curlcurlu = f| divu = 0.
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More applications of the Hodge Laplacian

k = 2: Another BVP for vector Laplacian
o=-curlu, curlo —graddivu =f in Q,
uxn=0,divu=0 on 0.
f=curl F: curlu = F, divu = 0.
f=grad F: divu=F, curlu = 0.
k = 3: Dirichlet problem for Poisson’s equation

o=—gradu, dive=1fin €, wu=0ondN.
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Well-posedness of Mixed BVP for Hodge Laplacian

Let
BE = dHA1(Q), 35 ={w e HA*(Q) : dw = 0},

3%k = orthogonal complement of 3% in HAX(Q).

Proof of well-posedness uses:
(i) Hodge decomposition of u € HAK(Q):

u= P%ku@ P‘:SkJ_U.
(ii) Poincaré inequality:
IVl < cplldvlzpess, v e 3

to verify inf-sup condition (technical condition guaranteeing
well-posedness).
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Approximation of de Rham complexes

To approximate Hodge Laplacian, begin with approximation of
de Rham complex.

Seek spaces Ak C HAK(Q) with dAK € AKT, so that (Ap, d) is a
subcomplex of (HA, d).

Differential for subcomplex is restriction of d, but dj : /\ZJF:l — AK,
defined by

(dyu,v) = (u,dv), uce€ /\f“, v e,

not restriction of d*. (Major technical difficulty.)

Then have discrete Hodge decomposition

Af = BK @ 35+
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Approximation of de Rham complex (continued)

Assume i”fveAﬁ |lu— v||ua — 0 as h — 0 for some (or all)
u € HNK(Q),

where  [[v[[fn = IVIIE. + llavi..

Further assume: there exist bounded cochain projections

T HNK(Q) = Af, i.e., mK leaves subspace invariant and satisfies

dinf = mktldk, |7Kv||ga < cl[vlHa, v € HAK(Q).

Have following commuting diagram relating complex
(HA(2), d) to subcomplex (Ap, d):

d d

0 — HA’(Q) —%— HAY(Q) y o » HA"(Q) — 0
R I+
0— A? 4, A} d ., ... 94, AP —0.
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Galerkin approximation of Mixed Hodge Laplacian

Find op € /\ﬁ_l, up € NX, such that
(op, 7y — (dT,up) =0, TE /\,’j_l7
(dop, v) + (dup, dv) = (f,v), v eAF.
Under previous assumptions, (w,’j a bounded cochain projection),
get discrete Poincaré inequality
IVIli2ak < cpllmfllequn mmlldviiza, v e 355

Use to satisfy discrete version of inf-sup condition, so get stability
with constant depending only on ¢p and ||7T,I:H£(\ﬂ<’vk). Also get
quasi-optimal error estimate (V5 = HAK(Q)):

lo = onllvi—s + [lu = unll v

< C| inf |jo—7|lyk—1+ inf [Ju—v|y«].
TE/\Z71 vENK

h
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Finite element approximation of de Rham complex

To apply abstract approximation results for Hodge Laplacian,
construct finite dimensional subspaces Af of HAX(Q) satisfying:

(i) dAk C /\,’;Jrl so they form subcomplex (A, d) of de Rham
complex.

(ii) There exist uniformly bounded cochain projections 7 from
HAK to A

(iii) /\ﬁ have good approximation properties.

Get two families of spaces of finite element differential forms.
PN (Th) = {w € HAK(Q) : w1 € PA(T),VT € Thl,
PrA(Th) = {w € HAY(Q) : w|T € P, AK(T), VT € Th}.

Generalize Raviart-Thomas and Brezzi-Douglas-Marini H(div)

elements in 2-D and Nédélec 1st and 2nd kind H(div) and H(curl)
elements in 3-D.
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Simplest approximation of de Rham complex in 3-D

curl

0= HYQ) 2% H(curl; Q) - H(div; Q) —2 12(Q) -0

N S
0— HY 2% Hy(curl) 0 Hy(div) -2 12 o0

Simplest choice of finite element spaces:

» H} = piecewise linear scalar fields
> Hp(curl) = Nédélec edge element
» Hp(div) = Nédélec face element (or 3d Raviart-Thomas)

» L2 = piecewise constants

all with respect to same simplicial mesh 7.
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Degrees of freedom and canonical projections

For these spaces, commuting projections Z, can be constructed
from degrees of freedom as follows:

» H} = piecewise linears, Z} u(x) = u(x) at each vertex
Hp(curl) = edge element, [ Zfu-t= [ u-t at each edge
Hp(div) = face element, [, Zfu-n= [, u- n for each face

v

v

> L2 = piecewise constants, [;Z0u = [} u for each tetrahedron
These projections commute with differential operators:
1 _ 7c c__ gd ; d _ 70 ;
gradoZ, =7, ograd, curloZ, =Z) curl, divoZ; =7}, odiv.
However, T}, Z¢, Z¢ are not bounded on spaces H!, H(curl) and

H(div), respectively.

Example: u(x,y) = loglog(2/r), r* = x> + y? € HY(Q), Q = unit
disk, but is unbounded at origin, so Ih not defined if origin is a
vertex of triangulation.
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Examples of DOF

CO piecewise P; on triangulation T}, of Q € R2. Shape fcns are P;
on each T € Tp,. DOF are w +— w(v;), v; vertices of Tp,.

Shape fens for P AY(T) = by .DOF: wr [ w-te.
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DOF and canonical projections for more general subspaces

For a d-dimensional subsimplex f of T, DOF have form
77,/\k(T) : w /tl’T’fw A, n e Pr_+k_dAd*k(f)
f

'Pr_/\k(T) : w = /ftrpfw A, ne Pr+k_d_1/\d_k(f).

Key idea: if subsimplex shared by more than one simplex in
triangulation, DOF associated with subsimplex are single-valued.

Determines interelement continuity of finite element space —
resulting finite element spaces are subspaces of HAK(Q).

Implicitly defines canonical projections: not bounded in H/\k(Q),
/trT,fIhW A1 = /trT,fw A1, 7 as above
f f

since all traces not defined for w € HAK(Q).
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Construction of bounded cochain projections

Consider operators of form
Qe h= O Rk

where R,’; = Rekh is a smoothing operator which commutes with
exterior derivative d and I,’; are canonical projections.

Operator of form Qf can be made bounded on L2A*(Q2) and will
commute with d. However, in general it is not a projection onto
finite element space Af.

So called smoothed projections are of form:

mh = (Qek,h’/\h)il ° Qek,ha

for € sufficiently small, but not too small. (cf. Schéberl 2007,
Christiansen 2007, A—F-W 2006).

This construction gives bounded, but nonlocal cochain projections.
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Why do we care about having local projections?

A posteriori error estimation and adaptive FEM.

Goal: Estimate local errors using only quantities known from the
computation and use this information to modify mesh to introduce
smaller elements where local error is big.

Need: localized a posteriori error estimates

L. Chen and Y. Wu, Convergence of adaptive mixed finite element
methods for Hodge Laplacian equation: without harmonic forms

A. Demlow, Convergence and quasi-optimality of adaptive finite
element methods for harmonic forms
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Macroelements and the Clément interpolant

Problem of defining interpolants on non-smooth functions (only in
L?(Q)) solved by Clément.

Consider subspaces P,A%(Tp) of H!. To define Clément interpolant
for each f € A(Tp), introduce associated macroelement Q¢ by

Q= {TITeTh feA(T)}.

Vertex macroelement, n = 2. Edge macroelement, n = 2.
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The Clément interpolant

Let p1; : C() — R be usual DOfs for space P"A°(T}) and ¢;
corresponding basis functions. Example: P3(T).

vertex v; DOF: u(v;)

edge ¢; DOF: fe,- uds, fe; usds
triangle T DOF: [ udx

Standard interpolant is Zyu = ). p1i(u) ;.

Let S; denote support of ¢;, i.e., macroelement where ¢; £ 0. Let
P; : L?(S;) — P"(S;) be L? projection on S;.
Clément operator Zp, : L2 — P,N°(Tp) defined by

Thu ="y ni(Piu)gi.

Zpu bounded in L2, but not a projection.
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Degrees of freedom and geometric decompositions

Consequence of DOF that space 73,/\0(77,) admits decomposition

of form
= P E(Pi
feA(Tr)

where Ef is local extension operator mapping P,/\O(f) into
subspace of P,A%(T}) with support in Q.

Choose Ef to be discrete harmonic extension given by trr Efp = ¢,
/ grad Ef¢ - gradv = 0,
Qf

for all v € P,A°(T), suppv C Q, and trsv = 0.
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Geometric decomposition example: p = 3

Write u € P3A(T,) = uz, where

ug = Z Efo trg U,
fo€Ao(Th)

Um = Up—1+ Z Eg tre (u—um—1), m=12.
fm€Am(Th)

Show v and uy agree at degrees of freedom. Then u = us.
Since trgen; Ef trg = 0 unless g; = f;, trg, ug = trg, u and
trgen, Ul = trg ug + trg (u — ug) = trg, u. Similarly,
trg,en, U2 = trg,en, U.

Since for j < i, trgen,; Eg trr, = 0 if g; & ;

and = trg.ca; otherwise, also get:

trgeeng U2 = trgy U1 = trg, Uug = trg, u,

trgien, U2 =trg up = trg u.
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The modified Clement operator 7° onto P,A%(T})

Projection operator 70 constructed by recursion wrt dimension of

subsimplices f € Tj. Define T¢ = restriction of Tj to Q.

If dimf =0, i.e., f a vertex, first define Pou € P,A%(T7 ) as H!
projection of u, i.e., P2u satisfies: fo Py = fo u and

/ grad PfQu -gradv = / grad u - grad v, v E 77,/\0(7}7,,).
Qf Qf

Define Tou = Z E(trs Pou),
feDo(Th)

where £9(z) = piecewise linear function with value z at vertex f
and zero at all other vertices.
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0 continued

The modified Clement operator 7

Use recursive approach based on geometric decomposition:

For 1 < m < n, define 7r0m by

u=nl ju+ Z E2tre P2(u — 78 _,u).
feEAR(Th)

For dim f > 1, operators Ps are local H! projections onto space:
PN (T p) = {u € PN (Tr) | treu € Po(F) }.

Gives local projection 70 = 70, bounded in H?.
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Generalization to 7% : HAX(

Construction of 70 based on local projections P? defined with
respect to associated macroelement Q.

Let f = [xp,x1]. To get commuting projections (7ldu = dn°u),
need

/tl’fﬂ'ldU: /tr,c dﬂou—/gradwou-tf ds
f

/ =7 Ouds = (7%u)(x1) — (7°u)(x0).

But RHS depends on u restricted to union of macroelements

associated to vertices xg and x;. So can't just take local

projections on macroelement Qy to define 7!.
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Extended macroelements

Q= |J Q. feamm).
g€o(f)

If g € A(f) then Qf C Qg and QF D Q5.

80 81

Extended macroelement Qf corresponding to union of two
macroelements Qg (outlined by thick lines) and Qg,, n = 2.

Richard S. Falk Dept. of Mathematics Rutgers University



Construction of 7! in simplest case

Consider (modified) Clement projection onto piecewise linear space
P1A°(Tp). Operator 70 has form:

(FPu)(x) = > (PPu)(FAr(x)
feo(Th)

Projections Py are local H' projections wrt to macroelement
and Af(x) is barycentric coordinate associated to vertex f.

Define volg, to be volume form on )¢, scaled so that
fo volg, = 1. Rewrite Pru in form:

Pru = / u-volg, dx + Qru,
Q
where Qru € 731/\0(7}7,,) has mean value zero on Qf, and satisfies

/ grad Qru - gradv = / gradu - grad v
Qf Qr

for all v € P1A%(T¢ 4) with mean value zero.
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Commuting projections

To obtain commuting projections, need to define 7r,17 into space
Py AY(Th) such that

grad 7°u = 7t grad u.

In particular, have to express
grad n%u = grad [ Z (/ u - volg, dx + (qu)(f)) )\fi|
Feno(Ti) 7@
in terms of grad u.
Since Qru only depends on grad u, need to express:
grad M,?u = Z [ u-volg, dx} grad Ar
feno(T) 7

in terms of grad u.
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The ¢ operator

If f =[x0,...,Xm+1] € Am+1(Th), define

m—+1 )
(6u)r = > (1Y ug,
=0
where fj = [xo, ..., Xj—1, Xj+1, - - - s Xmt1]. So if f = [x0, x1],

fo = x1, i = xp and

(Ou)f = ug, — U, = Uxy — Usy,-
Key properties:

dod=0o0od, dod=0.

If we let z2 € PoA"(Tr,) be defined by z? = volg,, then

((SZ?)f = VO|QX1 — VOIQXO.
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The M} operator

As above, if I\/I,? : L2(Q) — continuous, piecewise linear functions
given by: (replaced f by g in sum)

(MPu)(x Z /u volg, dX g(x),
8E€0(Th)

need to express grad I\/l,?u in terms of grad u.

If £ =[x0,x1], grad Ag - (x1 — x0) = [Ag(x1) — Ag(x0)]. Then

tre grad I\/l,?(u) (1 —x0) = / u(voIQX1 - VO|QX0) dx
Q

:/ u(5z,9)fdx:—/ u(divz})dx:/gradu-z}dx.
Q Q Q

where z} € Py A"Y(Tg,) satisfies div z} = —(62°)¢ and has zero
normal components on the boundary of Qf. Note:
Ja(volg, —volg, ) dx =0.
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The M), operator (continued)

Let f = [x0, x1], Ai = A, and
or = Mo(grad A1) — A1(grad \p).
Then tre[or - (x1 — x0)] = tre[Ao + A1] = 1. Can conclude:

grad MPu = Z (/ grad u - z} dx)or.

feA(Th)

Combining results, get

grad 7°u = grad Z / u - volg, dx + (qu)(f)>

feDo(Th)
= grad MPu + Z (Qru)(f)grad Ar
fEAo("ﬁ,)
= Z (/ grad u - zf dx)or + Z (Qru)(f) grad Ar.
fen1(Th) 0 feNo(Tr)
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The general case: First define z¥

For each f € Ao(Th), 22 € PA"(QS) defined by z? = volg, .
For f € Ax(Tp), define z;‘ € ﬁfA"‘k(ﬁe) inductively by

dz;‘ = (—1)k(5zk_1)f

/ ZEANdT =0, TP ATF(TA).
Q

f
Construction justified (inductively) by

d((5z;<71) = (5(dz,’§71) = (-1 1o 5)2/572 =0.
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The general case: Next define M

Let PAX(T) denote family of spaces of form P AX(T,) or
P,A(Tp), such that corresponding polynomial sequence (PAX, d)
is an exact complex.

Using functions z& € P A"K(T¢), define Mf : L2 — PN (Tp)
by
Miu= Y (/ quf’-‘)k!¢’;,
Feay(m)

where d)’f‘ is Whitney form associated to f, i.e,

k
¢ =3 (1) AidAo A AdN A A dg
i=0

Key result: For any v € HAK71(Q), dM,’;*lv = M¥dv.
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Local bounded cochain projections

Projection 7% = 7k defined by recursion
mhu=7k_ju+ Z Ef otrroPF(u—7k_qu), k<m<n,

feAm(Th)
where PX 1 HNK(Qf) — PA*(Tr.p) defined by:

(PFu,dr)q, = (u,dT)q,, 7€ PNT(T:p),
(dPku, dv)g, = (du,dv)q,, v e PA(T:p).

Here 5 5
PN (Tr.n) = {u € PN (Tz 1) : tre € PA(F)},

where PAK(f) = PAK() if dim f > k, while if dim f = k,

PNk =Uu k . u = .
PAK(F) = { ePA(f)/f 0}

Richard S. Falk Dept. of Mathematics Rutgers University



Local bounded cochain projections (continued)

To start iteration:

IN
3
AN
E

mhu=nk Ju+ Z EkotrsoPF(u—7k _Lu), k
fEAm(Th)

need mf_, : HAK — P AK(Th).
Two requirements: operators 7r’,§_1 commute with d, and

/”f T U= /trf u, e DK(Th), uePN(Ty).
f F

Operators M,’,‘ essential for construction of 7T;(<_1, but need further
technical results, since I\/I,’; not a projection (not an identity on
Whitney forms).
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A double complex (A. Weil, 1952)

Let 7 denote T} restricted to Qf. For 0 < m < n, consider

complexes
@D PN D PN
feAm(T) feAR(T)
= D PNT) = D Pl
feEAR(T) feEAR(T)

where d = d is exterior derivative restricted to each Qf.

For f = [x0, X1, .- Xm+1] € Am+1(Th), let 6 be defined by

m-+1 )
(6u)r = > (1Y us,
j=0
where fj = [xo, ..., Xj—1, X}, Xj+1, - - - Xm+1]-
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Commuting diagram:

Then
5 @ PiNTH - B PrAT)
fEAM(T) feAm(T)
and satisfies od =dod and 6o = 0.
Get

D PrATE) — D PIANFYTE)
feAm(T) feAm(T)
s |
D PrATE) = D PR
fEAm1(T) feDm(T)
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To construct local bounded cochain projections:

» |. Need to define for each k, operators 7r,’§ that are projections,
i.e., are the identity on the subspace (so Clément interpolants
don't work).

» |l. Need to have 71,’; bounded on HAX, so can't just use
canonical degrees of freedom.

> Ill. Need to get W,’; to commute with exterior derivative; i.e.,
drf = w,’f“d ; not so easy.

> V. Need to have w,’j locally defined.

Key ideas: Use of geometric decompositions of finite element
spaces and a double complex involving d and §.
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