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Approxima1on		
Approxima1on		
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 Outline 

1. 	Problem	Statement	/	Overview:	Review	of	sampling	
based	approaches	for	SSMs	including	computa1onal	
algorithms.		

	
2. 	Approxima1ng	the	Observa1on	Update:	ensemble	
Kalman	filter,	and	approximate	Bayesian	computa1on		

3. 	Approxima1ng	Dynamical	Model	Predic1on:	Model	
Surrogates	and	Emulators	for	SSMs	/	Data	Assimila1on		

	
….	illustrated	with	applica1ons	in	ocean	data	assimila1on	



 An Acknowledgement to Weather Forecasting 

Numerical	Weather	Predic5on	pioneered	large-scale	
es5ma5on	for	5me	dependent	systems	
based	on	dynamic	/	numerical	models.		

	
1960s:	Op1mal	Interpola1on	(Lev	Gandin):		
-	The	data	assimila1on	cycle,	approximate	Kalman	filter	upda1ng	step	
	
1980s:	Varia1onal	Data	Assimila1on	(Olivier	Talagrand)	
-	Time	dependent	op1miza1on,	adjoints	need	for	gradient,	ini1al	
	
2000s:	Ensemble	Kalman	filter	(Geir	Evensen)	
-	Modular,	sample	based,		incorporates	dynamical	model	uncertainty	

Performance	Metric	for	Data	Assimila1on:	Forecast	Skill	



General Problem Statement 
	DATA	ASSIMILATION				=				(SIMPLIFIED)		SSMS	

	
1. Dynamical	Models:	Ocean,	Atmosphere,	Earth,	Space;	
																																							Physics,	Chemistry,	Biology	
	
2.	Observa1ons:	many	and	varied,	temporal	and/or	spa1al		

3.	Prior	Knowledge:	accumulated	scien1fic	knowledge		
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General Problem Statement 
	DATA	ASSIMILATION				=				(SIMPLIFIED)		SSMS	

	
1. Dynamical	Models:	Ocean,	Atmosphere,	Earth,	Space;	
																																							Physics,	Chemistry,	Biology	
	
2.	Observa1ons:	many	and	varied,	temporal	and/or	spa1al		

3.	Prior	Knowledge:	accumulated	scien1fic	knowledge	

GENERAL	GOAL:	to	improve	scien1fic	understanding		
•  Es1mate	the	system	state	and	its	parameters	
•  Model	selec1on	/	system	iden1fica1on	
•  Sampling	and	observing	array	design	
	



		

•  Dynamics	centric:	Numerical	models	considered	a	
good	representa1on	of	reality.		

•  Data	Paucity	(rela1ve	to	scales	of	varia1on),	
par1ally	observable	system	

	
Science	driven	by	assessing	data/model	discrepancy	
and	using	to	iden1fy	knowledge	gaps	

Engineering	approach	to	methodology	:		Do	what	
“works”	….	

Features 



A Useful Statistical Framework: State Space Model 

or	

t =1,…,T

DYNAMICS	

OBSERVATIONS	

xt = d(xt−1,θ ,et )
yt = h(xt ,φ,vt )

xt ~ p(xt,θ | xt−1)
yt ~ p(yt,φ | xt )



 State Space Model: Dynamics 

or	

t =1,…,T

DYNAMICS	

OBSERVATIONS	

xt = d(xt−1,θ,et )
yt = h(xt,φ,vt )

xt ~ p(xt ,θ | xt−1)
yt ~ p(yt ,φ | xt )

Dynamical	Models	è	



∂Xi

∂t
+ u
!
⋅∇Xi −∇⋅(K∇Xi ) = fi (X1,...,Xm,θ )+ e(x

!
, t)

Tracer equations: biogeochemistry 

DYNAMICAL	MODELS	
(numerical	models/	complex	computer	code)	

•  Integer	1me	index	in	SSMs	=	1me	between	observa1ons	
•  Numerical	integra1on	in	dynamical	models	requires	short	1me	

steps	and	fine	spa1al	resolu1on	(so	computa1onally	costly)	

Dimension	of	xt		is	large	è	
	



•  Horizontal:	130	by	82	grid	cells	
•  Ver1cal:	36	depth	levels	
•  7	prognos1c	variables		
					(P,Z,chl,2Ds,N03)	
=	state	dimension	of	xt:	2,686,320*		

*effec1ve	d.o.f.	a	lot	smaller	–	spa1al	correla1on,	and	variable	inter-dependence	



State Space Model: Observations 

or	

t =1,…,T

DYNAMICS	

OBSERVATIONS	

xt = d(xt−1,θ,et )
yt = h(xt,φ,vt )

xt ~ p(xt ,θ | xt−1)
yt ~ p(yt ,φ | xt )

Observa1ons	è	



OBSERVATIONS	
(a	true	technological	revolu1on	…)	

Tradi5onal	Observa5ons:	point	observa1ons,	1me	series,	or	
spa1al	imagery	
	
New	observa5ons:	complex	spa1o-temporal	mul1variable	
sampling	via	autonomous	robo1c	sampling	plaiorms	(high	
informa1on	content	but	hard	to	visualize/interpret/analyse)	
	
       	



ARGO	Floats	



Ocean	Gliders	



The	Hierarchical	Bayesian	Model:		

p(x1:T ,θ | y1:T )∝ p(y1:T | x1:T ,θ ) ⋅ p(x1:T |θ ) ⋅ p(θ )

Keep in Mind … the General Probabilistic Solution  

 

i p(x1:T ,θ | y1:T ) is our target distribution
i p(y1:T | x1:T ,θ ) is the conditional measurement distribution
i p(x1:T |θ ) is indentified with the numerical ocean model
i p(θ ) is any prior information (from literature)

x1:T = (x1,..., xT ) is the system state 
y1:T = (y1,..., yT ) are the observations
θ  are the dynamical model parameters

where:	

Rely	on	sampling	based	soluKons	in	pracKce	è	



Aside: Common Simplifications*  
(i)	Determinis5c	Numerical	Model:		

•  System	state	is	a	determinis1c	func1on	of	the	parameters.	
•  Yields	op1miza1on	problem	(wrt	likelihood	or	cost	func1on)	
•  Most	common	large-scale	DA	approach:	varia1onal	DA	
•  Parameters	are	ojen	include	ini1al	(or	boundary	condi1ons)	

(ii)	Parameters	are	Fixed	and	Known:		
	
•  State	es1ma1on	via	filtering	(and	smoothing)	
•  Sample	based	solu1ons	for	nonlinear	and	non-Gaussian	

problems	rely	on	sequen1al	Monte	Carlo	methods	(e.g.	
par1cle	filter)	

*You’ll	see	these	later	



General Computational Solution: Particle MCMC 
for	k	=	1	to	m	

end	(for	k)	

Generate candidate θ * = θ (k ) + ε

Run particle filter to determine {xt|t
* } for θ *

Evaluate likelihood L(θ | y1:T )∝∏t=1
T p(yt | xt|t

*

k=1

n

∑ )⎛
⎝⎜

⎞
⎠⎟

Do Metropolis-Hastings accept/reject step
Compute the acceptance probability: α = L(θ * | y1:T )

L(θ k−1 | y1:T )
 Draw u ∼U(0,1)
If min(1,α ) ≥ u  then θ k = θ *,  
else θ k = θ (k−1)

yields sample drawn from target p(x1:T , θ | y1:T )
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else θ k = θ (k−1)



The	par1cle	filter	is	the	“engine”		
for	sample	based	es1ma1on	
	in	1me	dependent	systems	



time 

observation update 

 nowcast    forecast 

time = t-1 time = t 

prediction 

 nowcast 
p(xt−1 | y1:t−1,θ )

xt = d(xt−1,θ ,et )  yt

p(xt | y1:t−1,θ )   p(xt | y1:t ,θ )

 

 

Single stage transition of system from time t-1 to time t  

Particle Filter Schematic: Sequential State Estimation  



Basic Particle Filter:Sequential Importance Resampling  

for	t	=	1	to	T	

(a) Prediction: generate sample {xt|t−1
(i) } following p(xt | y1:t−1,θ )

     xt|t−1
(i) = d(xt−1|t−1

(i) ,θ, et
(i) ) for i = 1,...,n

(b) Observation update: Using newly available observation yt
          Generate sample {xt|t

(i )} from p(xt | y1:t ,θ )
          •  wt

(i ) ∝ p(yt | xt|t−1
(i ) ,θ ) for i = 1,...,n

           •  resample with replacement from {xt|t−1
(i ) } using weights wt

(i )  
   → yields {xt|t

(i )}
end	(for	t)	

Note:	there	are	lots	of	other	(beVer)	par1cle	filtering	algorithms	



Bottleneck for High Dimensional Applications 
NUMERICAL	MODELS	ARE	COMPUTATIONALLY	EXPENSIVE	
	

TWO	STRATEGIES:	
	
1.	Approximate	the	Observa5on	update		
																																																				(so	small	ensembles	work	beler)	

2.	Approximate	the	Predic5on	step		
																																																				(so	we	can	generate	bigger	ensembles)	

Sample	size	required	for	par1cle	filter	to	work	is	exponen1al	
in	effec1ve	dimension	of	problem;	this	which	is	set	by	

dimension	of	state	and	the	observa1ons	(Bickel	et	al.	2008)	

PracKcal	Issue:		
small	ensembles	must	represent	a	large	state	space	



Approxima1ng	the	Observa1on	Update	Step	



(1) An Alternative Observation Update:  
the Ensemble Kalman Filter  

 

!xt|t
(i ) = xt|t−1

(i ) + K(yt
(i ) − Hxt|t−1

(i ) ), i = 1,…,n
where: yt

(i ) = yt + vt
(i ), i = 1,…,n  and  K = PHT (HPHT + R)−1

IDEA:	Instead	of	doing	weighted	resampling	for	observa1on	update	
(like	SIR	based	par1cle	filter),	instead	use	Kalman	filter	upda1ng:	



(1) An Alternative Observation Update:  
the Ensemble Kalman Filter  

•  “Works”	for	large	systems	(with	a	couple	of	fixes:	localiza1on,	
variance	infla1on).		

•  Easy	to	implement.		
•  “Breaks”	under	strong	nonlinear,	non-Gaussianity.		

 

!xt|t
(i ) = xt|t−1

(i ) + K(yt
(i ) − Hxt|t−1

(i ) ), i = 1,…,n
where: yt

(i ) = yt + vt
(i ), i = 1,…,n  and  K = PHT (HPHT + R)−1

IDEA:	Instead	of	doing	weighted	resampling	for	observa1on	update	
(like	par1cle	filter),	instead	approximate	it	with	Kalman	filter	
upda1ng:	

The	most	common	approxima5on	for	inference		
in	large-scale	dynamical	systems		



Results EnKF: Ensemble Mean 

Stochastic Simulation 
(no observations used) 

Ensemble Kalman Filter 
(MV observations assimilated  
using enKF) 

Particulate Organic Nitrogen 

time 

de
pt

h 
de

pt
h 

*	assimilated	state	variables:	par1culate	organic	N,	dissolved	inorganic	N,,	chloropyhll,	oxygen				



Stochastic Simulation 

Ensemble Kalman Filter 

Particulate Organic Nitrogen 

time 

de
pt

h 
de

pt
h 

Results EnKF: Ensemble Std Dev 

*	assimilated	state	variables:	par1culate	organic	N,	dissolved	inorganic	N,,	chloropyhll,	oxygen				



(2) An Alternative Observation Update:  
Approximate Bayesian Computation:  

Problem:	Likelihood	‘hard	to	formulate’.	Measurement	distribu1on	
includes:	instrument	error,	environmental	varia1on,	errors	of	
representa1veness,	etc		
	
Approach:	Replace	likelihood	with	scalar	distance	metric.		
	
Benefit:	Eliminates	sample	impoverishment	in	par1cle	filter.	
Allows	for	use	of	small	sample	sizes.	

	
	

EXAMPLE		
For	image	comparision,	we	used	Adap1ve	Grey	Block	Distance	to	
measure	discrepancy	between	model	predicted	spa1al	field	and	
the	observed	one.	



Image Comparison: Adaptive Grey-Block Distance 
Observa1ons	 Model	Predic1on	

VS	

Issues	addressed:	missing	values,	mis-alignment/registra1on	errors,	
scale	dependence	
	
Applica5on:		
•  State	es1ma1on	using	3-D	ocean	model.	AGBD	replaced	likelihood	

in	par1cle	filter	(used	for	resampling	weights)	
•  Applica1on	proved	successful	(not	shown)	and	with	small	

ensembles	(<100)		



Approxima1ng	the	Predic1on	Step	



Approximating the Dynamical Model : Emulators 

Idea:	Approximate	targeted	aspects	of	a	computa1onally	costly	
numerical	model	(a	simulator)	with	an	efficient	‘sta1s1cal’	
model	(an	emulator*)		
	
Approach:		
(1)  Iden1fy	inputs	and	outputs	of	interest	
(2)  Run	selected	input/output	simula1ons	with	simulator	

(experimental	design	aspect)	
(3)  Build	an	emulator	from	input/output	data	
(4)  Apply	it	to	your	inference	problem!	

Numerical	
Model	Input Output

*	simplest	emulator	is	coarse-resolu1on	numerical	model	with	simplified	dynamics	



(1) An Emulator for Parameter Estimation  
(for	DeterminisKc	Dynamics)	

	
GOAL:	Es1mate	biological	ocean	state	in	mid-Atlan1c	Bight	using:		
(1)	Data:	Satellite	observa1ons,		
(2)	Model:	Determinis1c	3-D	ocean	biogeochemical	model	
	
Input:	two	selected	‘independent’	biological	parameters.		
	
Output:	discrepancy	metric,	i.e.	the	AGB	distance	between	model	
predicted	surface	field	and	satellite	observa1ons.		
	
Applica5on:		
•  build	a	sta1s1cal	emulator	using	specified	input/output	simula1ons	
•  es1mate	seasonal	evolu1on	of	the	two	parameters	by	minimizing	

the	discrepancy	metric.				



Polynomial Chaos Emulator  

f (x,t,θ ) = ak (x,t)φk (θ )+ ε trunc(θ )
k=0

kmax

∑ where:
θ  : inputs
f (x,t,θ ) : outputs 
ak (x,t) : expansion coefficents
φk (θ ) : basis functions
ε trunc(θ ) : truncation error

Note:		
-  Assump1ons	about	p(θ) determine	which	polynomial	basis	to	use	
-  The	polynomial	basis	and	order	determines	the	n	design	points.	
-  Mean	and	Variance	of	output	are	given	by:	

E f (x,t,θ ){ } = a0 (x,t), var f (x,t,θ ){ } = a k
2 (x,t)

k=1

n

∑



Results: Seasonal co-evolution of the 2 parameters 

Parameter	1:	Phytoplankton	Growth	

Pa
ra
m
et
er
	2
:	Z
oo

pl
an
kt
on

	G
ra
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ng
	



(2) An Emulator for Particle Filtering  
																																		(StochasKc		Dynamics)	
	
Ra5onale:	the	one-step-ahead	state	predic1on	(xt-1 to xt ) is	a	key	
quan1ty	for	SSMs		
	
Idea:	Replace	numerical	model	predic1on	with	an	emulator	
   èallow	for	computa1onally	efficient	sample	genera1on	
	
Input:	system	state	at	1me	t-1:	xt-1 
Output:	system	state	at	1me	t:	xt 
	
Approach:	
(1)	Emulate	the	state	transi1on	with	copula-based	MV	distribu1on		
(2)	Use	these	approximate	dynamics	in	par1cle	filter/smoother	
	
	

xt−1 xt



 Building a Transition Density with Copulas  

Idea:	create	mul1variate	distribu1ons	using	copulas	…		

�We	want:		 xt ~ p(xt | xt−1,θ ) 	-	predic1ve/transi1on	density	

�We	have:	 					-	a	numerical	model	to	generate	samples	xt = d(xt−1,θ,et )

p(xt | xt−1) = cK (ν1,...,νK ) p(xt ,k
k=1

K

∏ | xt−1,1:K )

•  Used	ellip1cal	copulas	(normal	and	t)	to	build	the	transi1on	density	
•  Numerical	simula1ons	yield	CORRELATIONS	and	MARGINALS		
																																																	used	to	build	the	desired	distribu1on	è	



6.5. SPECIFICATION OF THE STATE-SPACE MODEL 147

Figure 6.16: Contour plot for the empirical residual correlation.
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Figure 6.17: Plots of copula samples (o) overlaid with standardised pseudo-residual ranks
(+).
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Figure 6.15: kernel density estimates for residuals at -50, -150 and -250 metres deep.

The spread and magnitude of the residuals is quite different at different layers and for

different state variables, requiring all 1, 750 marginal distributions to be parametrised

separately. Also, nearby residuals are highly correlated. Finally, the residuals are not

always symmetrical about zero implying that the h(xt|xt−1) is biased for some states and

depths. For example the residuals imply a negative model bias for deep DET and shallow

DIN states and a positive model bias for deep PHY. It is possible to centre h∗t (xt|xt−1) at

h(xt|xt−1)− b to account for the bias b, but this was not done in this application because

of the imperfection of the data available for estimating b.

The evolution equation is used to define the evolution distribution which is centred at

the state predicted by the deterministic model, h(xt|xt−1), with distributional properties

inherited from the model error, rt. The prediction step of the particle filter requires

drawing a sample from the evolution distribution. The evolution distribution for the 1, 750

dimension non-negative state vector that characterises this ecosystem will be specified

using a copula according to the the new method proposed in Chapter 3.

MARGINALS	

CORRELATION	

P(x1,…, xn ) =
C(P(x1),…,P(xn ))
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model	of	BATS	site	
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Concluding Remark  

Good	approxima1ons	needed	for	es1ma1on	for	
realis1c	(high	dimension,	spa1o-temporal)	
applica1ons	of	State	Space	Models	for	Data	

Assimila1on	
	
							General	guidelines,	but	no	easy	(“one	size	fits	

all”)	answer.	

	
	

QuesKons/Comments/Concerns?	



Challenges/Ideas  
Small:	<10	
Moderate:	10-100	
High:	>	100	
	
Stochas1c	dynamics	
	
Interpre1ng	complex	spa1o-temporal	observa1ons	–	really	hard	with	DA	
	
Use	subject	maler	specific	numerical	models.	Otherwise	no	one	will	care.	If	so,	big	impact	
	
Towards	full	Bayesian	problems	
	
Separate	state	and	parameter	es1ma1on?	Model	calbra1on	vs	online	predic1on?	
	
Characterizing	model	errors	(ensemble	simula1ons).	Characterizing	approxima1on	errors	
	
Characterizing	measurement	distribu1ons:	instrument	error,	errors	of	represena1vess/change	of	
support	(point	observa1on	vs	grid	cell	average)	
	
Alterna1ves	to	sample	based	es1ma1on?	Func1onal,	varia1onal	weak-constraint		
	
Move	beyond	state	and	parameter	es1ma1on.	Mainly	in	online	predic1on,	some	reconstruc1on.	Want	
model	selec1on,	etc.	
	
How	to	make	most	effec1ve	use	of	small	samples?	
	
Cheap	dynamics:		
	
Computa1onal	grid	vs	analysis	grid	
	
Which	parameters	to	es1mate?	Parameter	dependence.		
	
Modifca1ons	
	
	
	
	
	
Research	needs:	
•  iden1fy	approxima1ons	that	allow	for	efficient	and	effect	sample	genera1on,	so	small	ensembles	

can	represent	large	state	spaces.	
		
•  Develop	systema1c	means	to	assess	of	performance.	

•  Flexible	(e.g.	modular)	approaches	needed	since	approaches	are	likely	to	be	case-specific.	



The	Hierarchical	Bayesian	Model	with	an	emulator	‘level’:		

 

p(x1:T , !x1:T ,θ | y1:T )
             ∝ p(y1:T | x1:T , !x1:T ,θ ) ⋅ p(x1:T | !x1:T ,θ ) ⋅ p( !x1:T |θ ) ⋅ p(θ )

Incorporating Emulator in Hierarchy 

Would	alter	par1cle-MCMC	algorithm	as	follows:	
-  par1cle	filter	now	uses	emulator	approxima1on	as	proposal		
  è	alter	weight	calcula1on	
-  M-H	acceptance	probability	now	uses	of	emulator	error,	rather	

than	just	likelihood	ra1o,	in	its	calcula1on	

Computa1onally	more	efficient,	but	would	lose	dynamical	balances	
of	basic	(SIR)	par1cle	filter.		



	
Alter	the	Likelihood	funcKon:	change	its	func1onal	form,	or	inflate	
or	alter	the	measurement	error.	

Error	Subspace:	confine	stochas1city	to	parameters	only.	Dimension	
reduc1on.	

Use	Fixed	lag	smoother,	Batch	processing	incorporate	observa1ons	
from	mul1ple	1mes	into	observa1on	update.	Robustness.	
	
Clever	Proposal	DistribuKons	and	look-ahead	filters:	move	beyond	
using	“prior”	(predic1ve	density)	as	proposal,	e.g.	Use	EnKF	
	

Adaptations of PF for Ocean DA for 3-D BGC 



The	Hierarchical	Bayesian	Model	with	an	emulator	‘level’:		

 

p(x1:T , !x1:T ,θ | y1:T )
             ∝ p(y1:T | x1:T , !x1:T ,θ ) ⋅ p(x1:T | !x1:T ,θ ) ⋅ p( !x1:T |θ ) ⋅ p(θ )

Goal: Incorporating Emulator in Hierarchy 

Would	alter	par1cle-MCMC	algorithm	as	follows:	
-  par1cle	filter	now	uses	emulator	approxima1on	as	proposal		
  è	alter	weight	calcula1on	
-  M-H	acceptance	probability	now	uses	of	emulator	error,	rather	

than	just	likelihood	ra1o,	in	its	calcula1on	

Computa1onally	more	efficient,	BUT	do	lose	dynamical	balances	
between	prognos1c	variables	inherent	in		basic	(SIR)	par1cle	filter.		



The Filtering Problem: State Estimation   

do for t=1, …, T,  given p(x0 ) and  

A single stage transition of the system for time t-1 to t involves: 

Dynamic Model Prediction: 

Observation Update: 

p(xt | y1:t−1,θ ) = p(xt | xt−1,θ ) ⋅ p(xt−1 | y1:t−1,θ ) dxt−1∫

p(xt | y1:t ,θ ) =
p(yt | xt ,θ ) ⋅ p(xt | y1:t−1,θ )

p(y1:t )

y1:T = (y1, y2,.., yT )


