Towards a Structure Theorem for Crossing-critical Graphs

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic
joint work with
Zdeněk Dvořák and Bojan Mohar

1 Drawing Graphs with Crossings

- The crossing minimization problem:

1 Drawing Graphs with Crossings

- The crossing minimization problem:

1 Drawing Graphs with Crossings

- The crossing minimization problem:

1 Drawing Graphs with Crossings

- The crossing minimization problem:

- Crossing number $\operatorname{cr}(G)=$ the min. number of edge crossings in G, over all possible good drawings of G,

1 Drawing Graphs with Crossings

- The crossing minimization problem:

- Crossing number $\operatorname{cr}(\boldsymbol{G})=$ the min. number of edge crossings in G, over all possible good drawings of G, where good means,

1 Drawing Graphs with Crossings

- The crossing minimization problem:

- Crossing number $\operatorname{cr}(G)=$ the min. number of edge crossings in G, over all possible good drawings of G, where good means,

2 Crossing-Critical Graphs

What forces high crossing number?

2 Crossing-Critical Graphs

What forces high crossing number?

- Many edges - cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].

2 Crossing-Critical Graphs

What forces high crossing number?

- Many edges - cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with sparse edges) - but what exactly?

2 Crossing-Critical Graphs

What forces high crossing number?

- Many edges - cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with sparse edges) - but what exactly?

Definition. Graph H is k-crossing-critical if $\operatorname{cr}(H) \geq k$ and $\operatorname{cr}(H-e)<k$ for all edges $e \in E(H)$.

We study crossing-critical graphs to understand what structural properties force the crossing number of a graph to be large.

Some "ancient" examples

- Kuratowski (30): The only 1-crossing-critical graphs K_{5} and $K_{3,3}$.

(Yes, up to subdivisions, but we ignore that. . .)

Some "ancient" examples

- Kuratowski (30): The only 1-crossing-critical graphs K_{5} and $K_{3,3}$.

(Yes, up to subdivisions, but we ignore that. . .)
- Širáň (84), Kochol (87): Infinitely many k-crossing-critical graphs for every $k \geq 2$, even simple 3 -connected.

And some more recent constructions

- Salazar (03):

And some more recent constructions

- Salazar (03):

- PH (02):

3 Properties of Crossing-Critical Graphs

- Richter and Thomassen (93):

A k-crossing-critical graph has $\operatorname{cr}(G) \leq 2.5 k+16$.

3 Properties of Crossing-Critical Graphs

- Richter and Thomassen (93):

A k-crossing-critical graph has $\operatorname{cr}(G) \leq 2.5 k+16$.

- Geelen, Richter, Salazar (04):

A k-crossing-critical graph has tree-width bounded in k.

3 Properties of Crossing-Critical Graphs

- Richter and Thomassen (93):

A k-crossing-critical graph has $\operatorname{cr}(G) \leq 2.5 k+16$.

- Geelen, Richter, Salazar (04):

A k-crossing-critical graph has tree-width bounded in k.

- PH (03): ... and also path-width bounded in k.

3 Properties of Crossing-Critical Graphs

- Richter and Thomassen (93):

A k-crossing-critical graph has $\operatorname{cr}(G) \leq 2.5 k+16$.

- Geelen, Richter, Salazar (04):

A k-crossing-critical graph has tree-width bounded in k.

- PH (03): ... and also path-width bounded in k.
- PH and Salazar (08):

A k-crossing-critical graph has no large $K_{2, n}$-subdivision.

3 Properties of Crossing-Critical Graphs

- Richter and Thomassen (93):

A k-crossing-critical graph has $\operatorname{cr}(G) \leq 2.5 k+16$.

- Geelen, Richter, Salazar (04):

A k-crossing-critical graph has tree-width bounded in k.

- PH (03): ... and also path-width bounded in k.
- PH and Salazar (08):

A k-crossing-critical graph has no large $K_{2, n}$-subdivision.

- Bokal, Oporowski, Richter, Salazar (16):

Fully described 2-crossing-critical graphs up to fin. small exceptions.

3 Properties of Crossing-Critical Graphs

- Richter and Thomassen (93):

A k-crossing-critical graph has $\operatorname{cr}(G) \leq 2.5 k+16$.

- Geelen, Richter, Salazar (04):

A k-crossing-critical graph has tree-width bounded in k.

- PH (03): ... and also path-width bounded in k.
- PH and Salazar (08):

A k-crossing-critical graph has no large $K_{2, n}$-subdivision.

- Bokal, Oporowski, Richter, Salazar (16):

Fully described 2-crossing-critical graphs up to fin. small exceptions.

- Dvořák, PH, Mohar, Postle (11+):

A k-crossing-critical graph cannot contain a deep nest, and so it has bounded dual diameter.

A bit of surprise

Dvořák, Mohar (10): A k-crossing-crit. graph with unb. degree, $k \geq 171$.

What Crossing-Critical Graphs We Have?

- Informally, "thin" bands, and huge faces everywhere arund...

What Crossing-Critical Graphs We Have?

- Informally, "thin" bands, and huge faces everywhere arund...
- A simple scheme capturing the known constructions:

What Crossing-Critical Graphs We Have?

- Informally, "thin" bands, and huge faces everywhere arund...
- A simple scheme capturing the known constructions:

- Plus combinations of (fin. many) pieces like those in one graph.

4 Towards a Structural Description

Our aim:

1. "Nothing else than the preivous" can constitute crossing-criticality.

4 Towards a Structural Description

Our aim:

1. "Nothing else than the preivous" can constitute crossing-criticality.
2. There are well-defined local operations (replacements) that can reduce any large k-crossing-critical graph to a bounded-size k-crossingcritical graph (base graph).

4 Towards a Structural Description

Our aim:

1. "Nothing else than the preivous" can constitute crossing-criticality.
2. There are well-defined local operations (replacements) that can reduce any large k-crossing-critical graph to a bounded-size k-crossingcritical graph (base graph).
3. There are finitely many well-defined building bricks that produce all k-crossing-critical graphs from a finite set of base graphs.

Short Sketch

The tools

1. A k-crossing-critical graph has path-width bounded in k.
2. A k-crossing-critical graph cannot contain a deep 0 -, 1- or 2-nest.

Short Sketch

The tools

1. A k-crossing-critical graph has path-width bounded in k.
2. A k-crossing-critical graph cannot contain a deep 0 -, 1- or 2 -nest.
3. Simon's factorization of finite height:

Short Sketch

The tools

1. A k-crossing-critical graph has path-width bounded in k.
2. A k-crossing-critical graph cannot contain a deep 0 -, 1- or 2-nest.
3. Simon's factorization of finite height:

$$
\text { Let } \quad \Sigma^{*} \rightarrow s \text {-element finite semigroup }
$$

then every word $w \in \Sigma^{*}$ can be factorized with height $\leq 3 s$ using

Short Sketch II

The technical result
In any optimal drawing of a k-crossing-critical graph we find an induced connected crossing-free subgraph (a plane subdrawing) such that

Short Sketch II

The technical result
In any optimal drawing of a k-crossing-critical graph we find an induced connected crossing-free subgraph (a plane subdrawing) such that

1. it is an arbitrarily long band sandwiched between two faces F_{1}, F_{2} (or, in a degen. case, F_{2} is one common vertex of it, not on F_{1}),

Short Sketch II

The technical result
In any optimal drawing of a k-crossing-critical graph we find an induced connected crossing-free subgraph (a plane subdrawing) such that

1. it is an arbitrarily long band sandwiched between two faces F_{1}, F_{2} (or, in a degen. case, F_{2} is one common vertex of it, not on F_{1}),
2. the band consists of arb. many tiles of bounded size each,

Short Sketch II

The technical result
In any optimal drawing of a k-crossing-critical graph we find an induced connected crossing-free subgraph (a plane subdrawing) such that

1. it is an arbitrarily long band sandwiched between two faces F_{1}, F_{2} (or, in a degen. case, F_{2} is one common vertex of it, not on F_{1}),
2. the band consists of arb. many tiles of bounded size each,
3. and each tile has a "vertical path" across it.

Short Sketch II

The technical result

In any optimal drawing of a k-crossing-critical graph we find an induced connected crossing-free subgraph (a plane subdrawing) such that

1. it is an arbitrarily long band sandwiched between two faces F_{1}, F_{2} (or, in a degen. case, F_{2} is one common vertex of it, not on F_{1}),
2. the band consists of arb. many tiles of bounded size each,
3. and each tile has a "vertical path" across it.
face F_{2}

5 Final Remarks

- There is no available draft of this research yet, but we are working hard on writing all of this down.

5 Final Remarks

- There is no available draft of this research yet, but we are working hard on writing all of this down.
- Will our description eventually be "explicit" (wrt. k)?

5 Final Remarks

- There is no available draft of this research yet, but we are working hard on writing all of this down.
- Will our description eventually be "explicit" (wrt. k)?
- Expectedly, not for the "small" base graphs.

5 Final Remarks

- There is no available draft of this research yet, but we are working hard on writing all of this down.
- Will our description eventually be "explicit" (wrt. k)?
- Expectedly, not for the "small" base graphs.
- Unfortunately, very unlikely also for our "building bricks" (not like the 2-critical case);
the crossing number of a twisted planar tile is NP-hard.

5 Final Remarks

- There is no available draft of this research yet, but we are working hard on writing all of this down.
- Will our description eventually be "explicit" (wrt. k)?
- Expectedly, not for the "small" base graphs.
- Unfortunately, very unlikely also for our "building bricks" (not like the 2-critical case); the crossing number of a twisted planar tile is NP-hard.

Thank you for your attention.

