Proof of the tree packing conjecture for bounded degree trees

Daniela Kühn

University of Birmingham

joint work with Felix Joos, Jaehoon Kim, Deryk Osthus and Mykhaylo Tyomkyn

August 2017

Daniela Kühn

Interpretation of the second seco

Decomposition of large/dense object into small/sparse objects.

Graph decompositions

G has a decomposition into H_1, \ldots, H_s if there exist pairwise edge-disjoint copies of H_1, \ldots, H_s in *G* which cover all edges of *G*.

Decomposition of large/dense object into small/sparse objects.

Graph decompositions

G has a decomposition into H_1, \ldots, H_s if there exist pairwise edge-disjoint copies of H_1, \ldots, H_s in *G* which cover all edges of *G*.

General theme

Decomposition of large/dense object into small/sparse objects.

Graph decompositions

G has a decomposition into H_1, \ldots, H_s if there exist pairwise edge-disjoint copies of H_1, \ldots, H_s in *G* which cover all edges of *G*.

Graph packings

 H_1, \ldots, H_s pack into G if there exist pairwise edge-disjoint copies of H_1, \ldots, H_s in G.

(1) マン・ション・

Э

Given trees T_1, \ldots, T_n such that T_i has i vertices, K_n has a decomposition into T_1, \ldots, T_n .

Note that $\sum_{i=1}^{n} e(T_i) = {n \choose 2}$.

白 と く ヨ と く ヨ と

Given trees T_1, \ldots, T_n such that T_i has i vertices, K_n has a decomposition into T_1, \ldots, T_n .

Results on packing the smallest trees or the largest trees or very special families of trees

- Gyárfás & Lehel: T_1, \ldots, T_n pack into K_n if each T_i is either a path or star
- Bollobás: $T_1, \ldots, T_{\frac{n}{\sqrt{2}}}$ pack into K_n
- Balogh & Palmer: $T_{n-n^{1/4}/10}, \ldots, T_n$ pack into K_{n+1}
- **Zak:** T_{n-4}, \ldots, T_n pack into K_n

• ...

Given trees T_1, \ldots, T_n such that T_i has i vertices, K_n has a decomposition into T_1, \ldots, T_n .

approximate version for bounded degree trees:

Theorem (Böttcher, Hladkỳ, Piguet & Taraz, 2016)

If $1/n \ll \alpha, 1/\Delta$ and T_1, \ldots, T_t are trees such that

•
$$\Delta(T_i) \leq \Delta$$
 and $|T_i| \leq (1-lpha)$ n,

•
$$\sum_{i=1}^{t} e(T_i) \leq (1-\alpha)\binom{n}{2}$$
,

then T_1, \ldots, T_t pack into K_n .

Given trees T_1, \ldots, T_n such that T_i has i vertices, K_n has a decomposition into T_1, \ldots, T_n .

approximate version for bounded degree trees:

Theorem (Böttcher, Hladkỳ, Piguet & Taraz, 2016)

If $1/n \ll \alpha, 1/\Delta$ and T_1, \ldots, T_t are trees such that

•
$$\Delta(T_i) \leq \Delta$$
 and $|T_i| \leq (1-lpha)$ n,

• $\sum_{i=1}^{t} e(T_i) \leq (1-\alpha)\binom{n}{2}$,

then T_1, \ldots, T_t pack into K_n .

Messuti, Rödl & Schacht (2016): generalization to embeddings of H_1, \ldots, H_t belonging to minor-closed family \mathcal{H}

(四) (日) (日)

next result allows for packing of spanning graphs:

Theorem (Ferber, Lee & Mousset, 2016+)

If \mathcal{H} is minor-closed, $1/n \ll \alpha, 1/\Delta$ and $H_1, \ldots, H_t \in \mathcal{H}$ are s.t.

- $\Delta(H_i) \leq \Delta$ and $|H_i| \leq n$,
- $\sum_{i=1}^{t} e(H_i) \leq (1-\alpha)\binom{n}{2}$,

then H_1, \ldots, H_t pack into K_n .

Approx. decompositions into general bdd degree graphs

Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

If $1/n \ll \alpha, 1/\Delta$ and H_1, \ldots, H_t are such that

- $\Delta(H_i) \leq \Delta$ and $|H_i| \leq n$,
- $\sum_{i=1}^{t} e(H_i) \leq (1-\alpha)\binom{n}{2}$,

then H_1, \ldots, H_t pack into K_n .

in this general setup cannot ask for a decomposition into H_1,\ldots,H_t

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Approx. decompositions into general bdd degree graphs

Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

If $1/n \ll \alpha, 1/\Delta$ and H_1, \ldots, H_t are such that

- $\Delta(H_i) \leq \Delta$ and $|H_i| \leq n$,
- $\sum_{i=1}^{t} e(H_i) \leq (1-\alpha)\binom{n}{2}$,

then H_1, \ldots, H_t pack into K_n .

can replace host graph K_n by any quasi-random graph:

n-vertex graph G is (ϵ, d) -quasi-random if

- $d_G(v) = (1 \pm \epsilon) dn$ for every vertex v and
- $d_G(u, v) = (1 \pm \epsilon)d^2n$ for every pair $u \neq v$ of vertices.

・ 同 ト ・ ヨ ト ・ ヨ ト

Approx. decompositions into general bdd degree graphs

Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

If $1/n \ll \alpha, 1/\Delta$ and H_1, \ldots, H_t are such that

- $\Delta(H_i) \leq \Delta$ and $|H_i| \leq n$,
- $\sum_{i=1}^{t} e(H_i) \leq (1-\alpha)\binom{n}{2}$,

then H_1, \ldots, H_t pack into K_n .

can replace host graph K_n by any quasi-random graph:

n-vertex graph G is (ϵ, d) -quasi-random if

- $d_G(v) = (1 \pm \epsilon) dn$ for every vertex v and
- $d_G(u,v) = (1 \pm \epsilon)d^2n$ for every pair $u \neq v$ of vertices.

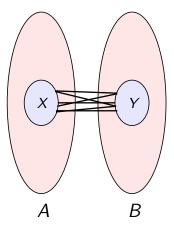
Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

If $1/n \ll \epsilon \ll \alpha$, $d, 1/\Delta$, if G is (ϵ, d) -quasi-random and if H_1, \ldots, H_t are such that $\Delta(H_i) \leq \Delta$ and $|H_i| \leq n$ and $\sum_{i=1}^t e(H_i) \leq (1-\alpha)e(G)$, then H_1, \ldots, H_t pack into G.

ϵ -regularity

Actually, consider setting of *c*-regularity:

|A| = |B| = n



(A, B) is ϵ -regular if $\frac{e(X, Y)}{|X||Y|} = (1 \pm \epsilon) \frac{e(A, B)}{|A||B|}$

for not too small X, Y.

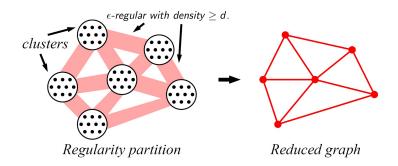
- (A, B) is (ϵ, d) -super-regular if
 - $(A, B) \epsilon$ -regular, density $d \pm \epsilon$,
 - $d(a), d(b) = (d \pm \epsilon)n.$

向下 イヨト イヨト

3

Theorem (Szemerédi's regularity lemma, 1976)

We can partition any large dense graph G into a bounded number of clusters so that almost all pairs are ϵ -regular.

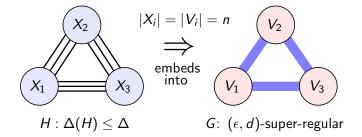


- 4 周 ト - 4 日 ト - 4 日 ト

Blow-up lemma

Theorem (Komlós, Sárközy & Szemerédi, 1997)

If $1/n \ll \epsilon \ll 1/\Delta, d$, then the following embedding exists:



Important tool to find spanning structures, e.g.

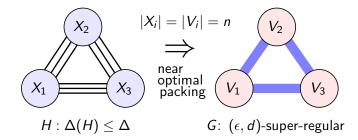
- powers of Hamilton cycles (Komlós, Sárközy & Szemerédi)
- H-factors (Komlós, Sárkőzy & Szemerédi, Kühn & Osthus)

• . . .

イロト イポト イヨト イヨト

can almost decompose G into copies of H:

Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+) If $1/n \ll \epsilon \ll 1/\Delta$, *d*, then the following near-optimal packing exists:



- 4 同 6 4 日 6 4 日 6

Main result

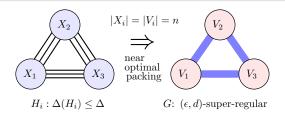
Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

Suppose $1/n \ll \epsilon \ll d, \alpha, 1/\Delta, 1/r$ and that

- each of H_1, \ldots, H_s has vertex classes X_1, \ldots, X_r of size n and $\Delta(H_i) \leq \Delta$,
- G has vertex classes V₁,..., V_r of size n such that all pairs (V_i, V_j) are (ε, d)-super-regular,

•
$$\sum_{\ell=1}^{s} e(H_{\ell}) \leq (1-\alpha)e(G).$$

Then H_1, \ldots, H_s pack into G.



イロト イポト イラト イラト 一日

Actually prove a stronger version with 'bells and whistles' added, e.g.:

- allowed to specify 'target sets' for some of the vertices,
- allowed to have a bounded degree reduced graph with many clusters (i.e. much more than $1/\epsilon$),
- super-regular pairs in G allowed to have different densities,
- clusters allowed to have slightly different sizes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Strategy: pack H_1, \ldots, H_s into G successively, i.e. embed H_i into $G_i := G - H_1 \cdots - H_{i-1}$

Naive approach: Choose H_i 'uniformly at random' in G_i .

Aim to show:

(a) each edge of G_i equally likely to be chosen.

(b) G_{i+1} is ϵ_{i+1} -regular, where $\epsilon_{i+1} \sim \epsilon$.

(4月) (4日) (4日) 日

Strategy: pack H_1, \ldots, H_s into G successively, i.e. embed H_i into $G_i := G - H_1 \cdots - H_{i-1}$

Naive approach: Choose H_i 'uniformly at random' in G_i .

Aim to show:

(a) each edge of G_i equally likely to be chosen.

(b) G_{i+1} is ϵ_{i+1} -regular, where $\epsilon_{i+1} \sim \epsilon$.

Problems:

- (a) is impossible (e.g. if H_i a triangle factor, G_i may have edges not in any triangle)
- (b) seems infeasible, as ϵ_i increases too rapidly.

(4月) (4日) (4日) 日

Proof sketch: using many rounds

To maintain ϵ -regularity of G: use bounded number of rounds

- choose embedding $\phi(H_i)$ of H_i independently for all *i* within the same round,
- update G only after each round
- i.e. allow overlaps within a round

伺下 イヨト イヨト

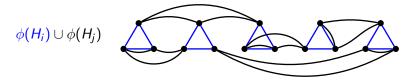
3

Proof sketch: using many rounds

To maintain ϵ -regularity of G: use bounded number of rounds

- choose embedding $\phi(H_i)$ of H_i independently for all *i* within the same round,
- update G only after each round
- i.e. allow overlaps within a round

Example: each H_i is a triangle-factor



 $\Rightarrow \phi(H_i)$ and $\phi(H_j)$ are

- almost edge-disjoint if embedded in the same round,
- edge-disjoint if embedded in different rounds

Proof sketch: using many rounds

To maintain ϵ -regularity of G: use bounded number of rounds

- choose embedding $\phi(H_i)$ of H_i independently for all *i* within the same round,
- update G only after each round
- i.e. allow overlaps within a round

Example: each H_i is a triangle-factor

$$\phi(H_i) \cup \phi(H_j)$$

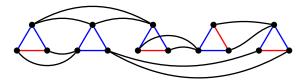
 $\Rightarrow \phi(H_i)$ and $\phi(H_j)$ are

- almost edge-disjoint if embedded in the same round,
- edge-disjoint if embedded in different rounds

Aim: repair packing at the end to achieve edge-disjointness

Patching:

- set aside patching graph P ⊆ G at the beginning of proof, (P= thin edge-slice of G)
- use P to patch each H_i in turn

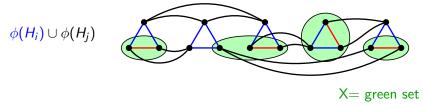


 $\phi(H_i) \cup \phi(H_j)$

conflict edges

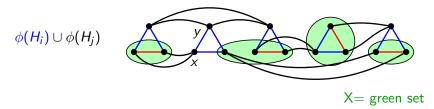
Patching:

- set aside patching graph $P \subseteq G$ at the beginning of proof, (P = thin edge-slice of G)
- use P to patch each H_i in turn

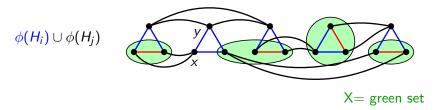


Add small random vertex set to the vertices incident to conflict edges and re-embed $H_i[X]$ using P

伺い イヨト イヨト



Problem: if x and y have common neighbours in X, they need to have many common neighbours in P[X]



Problem: if x and y have common neighbours in X, they need to have many common neighbours in P[X]

Solution: ensure that $\phi(H_i)$ behave well with respect to patching graph *P* already when choosing $\phi(H_i)$

Step 1: embed the H_i one by one using bounded number of rounds

- embed the *H_i* independently from each other within the same round, choosing a 'uniform' embedding of each *H_i*
- update G only after each round
- i.e. allow overlaps within a round
- Step 2: deal with overlaps using patching graph

- G will still be super-regular because
 - choose 'uniform' embedding of each H_i
 - perform only bounded number of updates of G

Given trees T_1, \ldots, T_n such that T_i has i vertices, K_n has a decomposition into T_1, \ldots, T_n .

Tree packing conjecture holds for bounded degree trees:

Theorem (Joos, Kim, Kühn & Osthus, 2016+)

Suppose $1/n \ll 1/\Delta$. For each $i \in [n]$, let T_i be a tree with i vertices and $\Delta(T_i) \leq \Delta$. Then K_n decomposes into T_1, \ldots, T_n .

can omit condition $\Delta(T_i) \leq \Delta$ for first εn trees

- 4 同 6 4 日 6 4 日 6

Given trees T_1, \ldots, T_n such that T_i has i vertices, K_n has a decomposition into T_1, \ldots, T_n .

Tree packing conjecture holds for bounded degree trees:

Theorem (Joos, Kim, Kühn & Osthus, 2016+)

Suppose $1/n \ll 1/\Delta$. For each $i \in [n]$, let T_i be a tree with i vertices and $\Delta(T_i) \leq \Delta$. Then K_n decomposes into T_1, \ldots, T_n .

can omit condition $\Delta(T_i) \leq \Delta$ for first εn trees **Proof uses**

- 'bells and whistles' version of blow-up lemma for packings
- even-regular robust expanders have Hamilton decompositions (Kühn & Osthus)
- iterative absorption method

Optimal packings

Daniela Kühn

Tree packing conjecture for bounded degree trees

Theorem (Joos, Kim, Kühn & Osthus, 2016+)

Suppose $1/n \ll \alpha, 1/\Delta$. Let $\mathcal H$ be collection of graphs such that

- $|H| \leq n$ and $\Delta(H) \leq \Delta$ for each $H \in \mathcal{H}$,
- \mathcal{H} contains at least $(1/2 + \alpha)n$ trees T with $\alpha n \le |T| \le (1 \alpha)n$,

•
$$\sum_{H\in\mathcal{H}} e(H) = \binom{n}{2}$$
.

Then the graphs in \mathcal{H} pack into K_n .

also prove a version with K_n replaced by any quasi-random graph

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Ringel 1963)

Let T be an (n + 1)-vertex tree. Then K_{2n+1} decomposes into 2n + 1 copies of T.

Joos, Kim, Kühn & Osthus: conjecture holds for bounded degree trees

- 4 回 2 - 4 □ 2 - 4 □

Proof sketch of tree packing conjecture for bdd degree trees

Theorem (Joos, Kim, Kühn & Osthus, 2016+)

Suppose $1/n \ll 1/\Delta$. For each $i \in [n]$, let T_i be a tree with i vertices and $\Delta(T_i) \leq \Delta$. Then K_n decomposes into T_1, \ldots, T_n .

Proof approach via absorption:

- (1.) Remove sparse absorbing graph A from K_n ,
- (2.) use Blow-up lemma for approx. decompositions to find almost optimal packing of trees into of $K_n E(A)$, call leftover L,
- (3.) hope that $L \cup A$ has decomposition into remaining trees.

イロト イポト イヨト イヨト

Proof sketch of tree packing conjecture for bdd degree trees

Theorem (Joos, Kim, Kühn & Osthus, 2016+)

Suppose $1/n \ll 1/\Delta$. For each $i \in [n]$, let T_i be a tree with i vertices and $\Delta(T_i) \leq \Delta$. Then K_n decomposes into T_1, \ldots, T_n .

Proof approach via absorption:

- (1.) Remove sparse absorbing graph A from K_n ,
- (2.) use Blow-up lemma for approx. decompositions to find almost optimal packing of trees into of $K_n E(A)$, call leftover L,
- (3.) hope that $L \cup A$ has decomposition into remaining trees.

Use **iterative absorption** approach:

Split up the absorbing process into many steps which gradually make leftover smaller and smaller.

イロト イポト イヨト イヨト

Proof sketch

Let $G = K_n$ and γ be a small constant. **Step 1:** consider sequence $V(G) = U_0 \supseteq U_1 \supseteq \ldots \supseteq U_k$ with

 $|U_{i+1}| = \gamma |U_i|$ and $|U_k| pprox n^{1/3}$

▲□ → ▲ □ → ▲ □ → □ □

Let $G = K_n$ and γ be a small constant. **Step 1:** consider sequence $V(G) = U_0 \supseteq U_1 \supseteq \ldots \supseteq U_k$ with

$$|U_{i+1}| = \gamma |U_i|$$
 and $|U_k| \approx n^{1/3}$

Step 2: split $\{T_1, \ldots, T_n\}$ into sets $\mathcal{T}_1, \ldots, \mathcal{T}_k$ such that: \mathcal{T}_i contains $\approx |U_{i-1}|$ trees, each of order at most $|U_{i-1}|$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $G = K_n$ and γ be a small constant. **Step 1:** consider sequence $V(G) = U_0 \supseteq U_1 \supseteq \ldots \supseteq U_k$ with

$$|U_{i+1}| = \gamma |U_i|$$
 and $|U_k| \approx n^{1/3}$

Step 2: split $\{T_1, \ldots, T_n\}$ into sets $\mathcal{T}_1, \ldots, \mathcal{T}_k$ such that: \mathcal{T}_i contains $\approx |U_{i-1}|$ trees, each of order at most $|U_{i-1}|$.

Assume after *i* iterations we have packed $T_1 \cup \ldots \cup T_i$ such that

- all edges not inside U_i are covered,
- most edges inside U_i are not covered.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $G = K_n$ and γ be a small constant. **Step 1:** consider sequence $V(G) = U_0 \supseteq U_1 \supseteq \ldots \supseteq U_k$ with

$$|U_{i+1}| = \gamma |U_i|$$
 and $|U_k| pprox n^{1/3}$

Step 2: split $\{T_1, \ldots, T_n\}$ into sets $\mathcal{T}_1, \ldots, \mathcal{T}_k$ such that: \mathcal{T}_i contains $\approx |U_{i-1}|$ trees, each of order at most $|U_{i-1}|$.

Assume after *i* iterations we have packed $T_1 \cup \ldots \cup T_i$ such that

- all edges not inside U_i are covered,
- most edges inside U_i are not covered.

(i+1)th iteration:

Step a: use approx. decomposition blow-up lemma to pack most of \mathcal{T}_{i+1} into $G[U_i] - E(G[U_{i+1}])$, obtain leftover L_{i+1}

Step b: use 'unpacked' trees in \mathcal{T}_{i+1} and some edges of $G[U_{i+1}]$ to cover leftover L_{i+1} greedily

1st iteration: (Recall $|U_1| = \gamma n$.)

Step a: use approx. decomposition blow-up lemma to pack most of \mathcal{T}_1 into $G - E(G[U_1])$

 \Rightarrow obtain leftover L_1 of density α

Aim: use 'unpacked' trees in \mathcal{T}_1 and some edges of $G[U_1]$ to cover leftover L_1 greedily

- set aside quasi-random bipartite graph B of density β ≫ α between U₁ and V(G) \ U₁
- use edges edges in $B \cup G[U_1]$ to greedily cover all edges in L_1 lying outside U_1
- use edges edges in $G[U_1]$ cover all remaining edges of $B \cup L_1$

1st iteration: (Recall $|U_1| = \gamma n$.)

Step a: use approx. decomposition blow-up lemma to pack most of \mathcal{T}_1 into $G - E(G[U_1])$

 \Rightarrow obtain leftover L_1 of density α

Aim: use 'unpacked' trees in \mathcal{T}_1 and some edges of $G[U_1]$ to cover leftover L_1 greedily

- set aside quasi-random bipartite graph B of density β ≫ α between U₁ and V(G) \ U₁
- use edges edges in $B \cup G[U_1]$ to greedily cover all edges in L_1 lying outside U_1
- use edges edges in $G[U_1]$ cover all remaining edges of $B \cup L_1$

Need: $\gamma \gg \beta \gg \alpha$

1st iteration: (Recall $|U_1| = \gamma n$.)

Step a: use approx. decomposition blow-up lemma to pack most of \mathcal{T}_1 into $G - E(G[U_1])$ \Rightarrow obtain leftover L_1 of density α

Aim: use 'unpacked' trees in \mathcal{T}_1 and some edges of $G[U_1]$ to cover leftover L_1 greedily

- set aside quasi-random bipartite graph B of density β ≫ α between U₁ and V(G) \ U₁
- use edges edges in $B \cup G[U_1]$ to greedily cover all edges in L_1 lying outside U_1
- use edges edges in $G[U_1]$ cover all remaining edges of $B \cup L_1$

Need: $\gamma \gg \beta \gg \alpha$ **Problem:** in 2nd iteration will get leftover of density $\alpha' \gg \beta$ i.e. error terms explode

1st iteration: (Recall $|U_1| = \gamma n$.) **Step a:** use approx. decomposition blow-up lemma to pack most of \mathcal{T}_1 into $G - E(G[U_1])$ \Rightarrow obtain leftover L_1 of density α

Aim: use 'unpacked' trees in \mathcal{T}_1 and some edges of $G[U_1]$ to cover leftover L_1 greedily

- set aside quasi-random bipartite graph B of density β ≫ α between U₁ and V(G) \ U₁
- use edges edges in $B \cup G[U_1]$ to greedily cover all edges in L_1 lying outside U_1
- use edges edges in $G[U_1]$ cover all remaining edges of $B \cup L_1$

Need: $\gamma \gg \beta \gg \alpha$

Solution: apply Regularity lemma with tiny ε before applying approx. decomposition blow-up lemma to suitable reduced graph cycles \implies leftover of density α

after k iterations:

- are left with almost complete graph H on U_k
- but are now seeking a decomposition!

- 4 回 2 - 4 □ 2 - 4 □

э

after k iterations:

- are left with almost complete graph H on U_k
- but are now seeking a decomposition!

\Rightarrow introduce new Step 0:

- choose collection \mathcal{T}^* of m small trees (where $m \approx \binom{|U_k|}{2} \approx n^{2/3}$)
- remove a leaf $\ell_{\mathcal{T}^*}$ from each $\mathcal{T}^* \in \mathcal{T}^*$
- let z_{T^*} be neighbour of ℓ_{T^*} in T^*
- before 1st iteration, embed each $\mathcal{T}^* \ell_{\mathcal{T}^*}$ so that
 - z_{T^*} is embedded into U_k
 - no other vertex of T^* is embedded into U_k
 - each vertex in U_k is image of exactly d vertices z_{T^*} (where $d = m/|U_k|$)

イロト イポト イヨト イヨト

New situation after *k* iterations:

- are left with almost complete graph H on U_k , where $e(H) = m = d|U_k|$
- have embedded everything apart from the leaves $\ell_{\mathcal{T}^*}$ of the \mathcal{T}^*

Can now complete decomposition by adding the remaining 'leaf edge' to each 'incomplete' tree T^* :

- show that H has an orientation of outdegree d
- use this orientation to embed all the $\ell_{\mathcal{T}^*}$

伺い イヨト イヨト

Problem

Relax condition on maximum degree in tree packing conjecture and Ringel's conjecture.

回 と く ヨ と く ヨ と

Problem

Relax condition on maximum degree in tree packing conjecture and Ringel's conjecture.

possible for approximate tree packings:

Theorem (Ferber & Samotij, 2016+)

If $1/n \ll \alpha$ and T_1, \ldots, T_t are trees s.t.

- $\Delta(T_i) \le n^{1/6}/(\log n)^6$ and $|T_i| = n$,
- $\sum_{i=1}^{t} e(T_i) \leq (1-\alpha)\binom{n}{2}$,

then T_1, \ldots, T_t pack into K_n .

・ 同 ト ・ ヨ ト ・ ヨ ト

Graceful labelling ϕ of *n*-vertex *G*: labelling of V(G) with [n] so that all resulting edge-labels are distinct, where edge label of uv is $|\phi(u) - \phi(v)|$

Conjecture

Every tree has a graceful labelling.

- Implies Ringel's conjecture
- Adamaszek, Allen, Grosu, Hladky (2016⁺) proved approximate version of graceful labelling conjecture for trees T with Δ(T) = O(n/log n) (approximate = needs (1 + ε)n labels)

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem (Oberwolfach Problem)

Suppose that n is odd and F is a vertex-disjoint union of cycles with total length n. Then does K_n have an F-decomposition?

(4回) (4回) (4回)

Problem (Oberwolfach Problem)

Suppose that n is odd and F is a vertex-disjoint union of cycles with total length n. Then does K_n have an F-decomposition?

Theorem (Bryant & Scharaschkin, 2009)

Answer is yes for infinitely many n.

Our results imply an approximate F-decomposition for every large n.

(4月) (4日) (4日)