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Daniela Kühn Tree packing conjecture for bounded degree trees



General theme

Decomposition of large/dense object into small/sparse objects.

Graph decompositions

G has a decomposition into H1, . . . ,Hs if there exist pairwise
edge-disjoint copies of H1, . . . ,Hs in G which cover all edges of G .
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General theme

Decomposition of large/dense object into small/sparse objects.

Graph decompositions

G has a decomposition into H1, . . . ,Hs if there exist pairwise
edge-disjoint copies of H1, . . . ,Hs in G which cover all edges of G .

Graph packings

H1, . . . ,Hs pack into G if there exist pairwise edge-disjoint copies
of H1, . . . ,Hs in G .
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Tree packing conjecture

Conjecture (Gyárfás & Lehel, 1976)

Given trees T1, . . . ,Tn such that Ti has i vertices, Kn has a
decomposition into T1, . . . ,Tn.

⇒
Note that

∑n
i=1 e(Ti ) =

(n
2

)
.
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Tree packing conjecture

Conjecture (Gyárfás & Lehel, 1976)

Given trees T1, . . . ,Tn such that Ti has i vertices, Kn has a
decomposition into T1, . . . ,Tn.

Results on packing the smallest trees or the largest trees or very
special families of trees

Gyárfás & Lehel: T1, . . . ,Tn pack into Kn if each Ti is
either a path or star

Bollobás: T1, . . . ,T n√
2

pack into Kn

Balogh & Palmer: Tn−n1/4/10, . . . ,Tn pack into Kn+1

Zak: Tn−4, . . . ,Tn pack into Kn

...
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Tree packing conjecture

Conjecture (Gyárfás & Lehel, 1976)

Given trees T1, . . . ,Tn such that Ti has i vertices, Kn has a
decomposition into T1, . . . ,Tn.

approximate version for bounded degree trees:

Theorem (Böttcher, Hladkỳ, Piguet & Taraz, 2016)

If 1/n� α, 1/∆ and T1, . . . ,Tt are trees such that

∆(Ti ) ≤ ∆ and |Ti | ≤ (1− α)n,∑t
i=1 e(Ti ) ≤ (1− α)

(n
2

)
,

then T1, . . . ,Tt pack into Kn.
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Tree packing conjecture

Conjecture (Gyárfás & Lehel, 1976)

Given trees T1, . . . ,Tn such that Ti has i vertices, Kn has a
decomposition into T1, . . . ,Tn.

approximate version for bounded degree trees:

Theorem (Böttcher, Hladkỳ, Piguet & Taraz, 2016)

If 1/n� α, 1/∆ and T1, . . . ,Tt are trees such that

∆(Ti ) ≤ ∆ and |Ti | ≤ (1− α)n,∑t
i=1 e(Ti ) ≤ (1− α)

(n
2

)
,

then T1, . . . ,Tt pack into Kn.

Messuti, Rödl & Schacht (2016): generalization to embeddings
of H1, . . . ,Ht belonging to minor-closed family H
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Approximate decompositions into spanning trees

next result allows for packing of spanning graphs:

Theorem (Ferber, Lee & Mousset, 2016+)

If H is minor-closed, 1/n� α, 1/∆ and H1, . . . ,Ht ∈ H are s.t.

∆(Hi ) ≤ ∆ and |Hi | ≤ n,∑t
i=1 e(Hi ) ≤ (1− α)

(n
2

)
,

then H1, . . . ,Ht pack into Kn.
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Approx. decompositions into general bdd degree graphs

Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

If 1/n� α, 1/∆ and H1, . . . ,Ht are such that

∆(Hi ) ≤ ∆ and |Hi | ≤ n,∑t
i=1 e(Hi ) ≤ (1− α)

(n
2

)
,

then H1, . . . ,Ht pack into Kn.

in this general setup cannot ask for a decomposition into
H1, . . . ,Ht

can replace host graph Kn by any quasi-random graph:

n-vertex graph G is (ε, d)-quasi-random if

dG (v) = (1± ε)dn for every vertex v and
dG (u, v) = (1± ε)d2n for every pair u 6= v of vertices.

Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

If 1/n� ε� α, d , 1/∆, if G is (ε, d)-quasi-random and if
H1, . . . ,Ht are such that ∆(Hi ) ≤ ∆ and |Hi | ≤ n and∑t

i=1 e(Hi ) ≤ (1− α)e(G ), then H1, . . . ,Ht pack into G .
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Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

If 1/n� ε� α, d , 1/∆, if G is (ε, d)-quasi-random and if
H1, . . . ,Ht are such that ∆(Hi ) ≤ ∆ and |Hi | ≤ n and∑t

i=1 e(Hi ) ≤ (1− α)e(G ), then H1, . . . ,Ht pack into G .
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ε-regularity

Actually, consider setting of ε-regularity:

|A| = |B| = n

X Y

A B

(A,B) is ε-regular if

e(X ,Y )

|X ||Y | = (1± ε)e(A,B)

|A||B|
for not too small X ,Y .

(A,B) is (ε, d)-super-regular if

(A,B) ε-regular,
density d ± ε,
d(a), d(b) = (d ± ε)n.
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Regularity lemma

Theorem (Szemerédi’s regularity lemma, 1976)

We can partition any large dense graph G into a bounded number
of clusters so that almost all pairs are ε-regular.
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Blow-up lemma

Theorem (Komlós, Sárközy & Szemerédi, 1997)

If 1/n� ε� 1/∆, d , then the following embedding exists:

|Xi | = |Vi | = n

X1

X2

X3

⇒
embeds

into V1

V2

V3

H : ∆(H) ≤ ∆ G : (ε, d)-super-regular

Important tool to find spanning structures, e.g.

powers of Hamilton cycles (Komlós, Sárközy & Szemerédi)

H-factors (Komlós, Sárkőzy & Szemerédi, Kühn & Osthus)

. . .
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Main result

can almost decompose G into copies of H:

Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

If 1/n� ε� 1/∆, d , then the following near-optimal packing
exists:

|Xi | = |Vi | = n

X1

X2

X3

⇒
near
optimal
packing V1

V2

V3

H : ∆(H) ≤ ∆ G : (ε, d)-super-regular
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Main result

Theorem (Kim, Kühn, Osthus & Tyomkyn, 2016+)

Suppose 1/n� ε� d , α, 1/∆, 1/r and that

each of H1, . . . ,Hs has vertex classes X1, . . . ,Xr of size n and
∆(Hi ) ≤ ∆,

G has vertex classes V1, . . . ,Vr of size n such that all pairs
(Vi ,Vj) are (ε, d)-super-regular,∑s

`=1 e(H`) ≤ (1− α)e(G ).

Then H1, . . . ,Hs pack into G .

|Xi| = |Vi| = n

X1

X2

X3

⇒
near
optimal
packing V1

V2

V3

Hi : ∆(Hi) ≤ ∆ G: (ε, d)-super-regular

1
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Main result

Actually prove a stronger version with ‘bells and whistles’ added,
e.g.:

allowed to specify ‘target sets’ for some of the vertices,

allowed to have a bounded degree reduced graph with many
clusters (i.e. much more than 1/ε),

super-regular pairs in G allowed to have different densities,

clusters allowed to have slightly different sizes.
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Proof sketch: strategy

Strategy: pack H1, . . . ,Hs into G successively,
i.e. embed Hi into Gi := G − H1 · · · − Hi−1

Naive approach: Choose Hi ‘uniformly at random’ in Gi .

Aim to show:

(a) each edge of Gi equally likely to be chosen.

(b) Gi+1 is εi+1-regular, where εi+1 ∼ ε.

Problems:

(a) is impossible (e.g. if Hi a triangle factor, Gi may have edges
not in any triangle)

(b) seems infeasible, as εi increases too rapidly.
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Proof sketch: using many rounds

To maintain ε-regularity of G : use bounded number of rounds

choose embedding φ(Hi ) of Hi independently for all i within
the same round,

update G only after each round

i.e. allow overlaps within a round

Example: each Hi is a triangle-factor

φ(Hi ) ∪ φ(Hj)

⇒ φ(Hi ) and φ(Hj) are

almost edge-disjoint if embedded in the same round,

edge-disjoint if embedded in different rounds

Aim: repair packing at the end to achieve edge-disjointness
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Proof sketch: repairing the packing

Patching:

set aside patching graph P ⊆ G at the beginning of proof,
(P= thin edge-slice of G )

use P to patch each Hi in turn

φ(Hi ) ∪ φ(Hj)

conflict edges
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Proof sketch: repairing the packing

Patching:

set aside patching graph P ⊆ G at the beginning of proof,
(P= thin edge-slice of G )

use P to patch each Hi in turn

φ(Hi ) ∪ φ(Hj)

X= green set

Add small random vertex set to the vertices incident to conflict
edges and re-embed Hi [X ] using P
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Proof sketch: repairing the packing

φ(Hi ) ∪ φ(Hj)

x

y

X= green set

Problem: if x and y have common neighbours in X , they need to
have many common neighbours in P[X ]

Solution: ensure that φ(Hi ) behave well with respect to patching
graph P already when choosing φ(Hi )
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Proof sketch: repairing the packing

φ(Hi ) ∪ φ(Hj)

x

y

X= green set

Problem: if x and y have common neighbours in X , they need to
have many common neighbours in P[X ]

Solution: ensure that φ(Hi ) behave well with respect to patching
graph P already when choosing φ(Hi )
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Proof sketch: summary of strategy

Step 1: embed the Hi one by one using bounded number of
rounds

embed the Hi independently from each other within the same
round, choosing a ‘uniform’ embedding of each Hi

update G only after each round

i.e. allow overlaps within a round

Step 2: deal with overlaps using patching graph

G will still be super-regular because

choose ‘uniform’ embedding of each Hi

perform only bounded number of updates of G
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Optimal packings

Conjecture (Gyárfás & Lehel, 1978)

Given trees T1, . . . ,Tn such that Ti has i vertices, Kn has a
decomposition into T1, . . . ,Tn.

Tree packing conjecture holds for bounded degree trees:

Theorem (Joos, Kim, Kühn & Osthus, 2016+)

Suppose 1/n� 1/∆. For each i ∈ [n], let Ti be a tree with i
vertices and ∆(Ti ) ≤ ∆. Then Kn decomposes into T1, . . . ,Tn.

can omit condition ∆(Ti ) ≤ ∆ for first εn trees

Proof uses

‘bells and whistles’ version of blow-up lemma for packings

even-regular robust expanders have Hamilton decompositions
(Kühn & Osthus)

iterative absorption method
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Conjecture (Gyárfás & Lehel, 1978)

Given trees T1, . . . ,Tn such that Ti has i vertices, Kn has a
decomposition into T1, . . . ,Tn.
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Optimal packings

in a tree.jpg
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Optimal packings

Theorem (Joos, Kim, Kühn & Osthus, 2016+)

Suppose 1/n� α, 1/∆. Let H be collection of graphs such that

|H| ≤ n and ∆(H) ≤ ∆ for each H ∈ H,

H contains at least (1/2 + α)n trees T with
αn ≤ |T | ≤ (1− α)n,∑

H∈H e(H) =
(n
2

)
.

Then the graphs in H pack into Kn.

also prove a version with Kn replaced by any quasi-random graph
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Optimal packings

Conjecture (Ringel 1963)

Let T be an (n + 1)-vertex tree. Then K2n+1 decomposes into
2n + 1 copies of T .

Joos, Kim, Kühn & Osthus:
conjecture holds for bounded degree trees
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Proof sketch of tree packing conjecture for bdd degree
trees

Theorem (Joos, Kim, Kühn & Osthus, 2016+)

Suppose 1/n� 1/∆. For each i ∈ [n], let Ti be a tree with i
vertices and ∆(Ti ) ≤ ∆. Then Kn decomposes into T1, . . . ,Tn.

Proof approach via absorption:

(1.) Remove sparse absorbing graph A from Kn,

(2.) use Blow-up lemma for approx. decompositions to find almost
optimal packing of trees into of Kn − E (A), call leftover L,

(3.) hope that L ∪ A has decomposition into remaining trees.

Use iterative absorption approach:
Split up the absorbing process into many steps which gradually
make leftover smaller and smaller.
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Daniela Kühn Tree packing conjecture for bounded degree trees



Proof sketch

Let G = Kn and γ be a small constant.
Step 1: consider sequence V (G ) = U0 ⊇ U1 ⊇ . . . ⊇ Uk with

|Ui+1| = γ|Ui | and |Uk | ≈ n1/3

Step 2: split {T1, . . . ,Tn} into sets T1, . . . , Tk such that:
Ti contains ≈ |Ui−1| trees, each of order at most |Ui−1|.

Assume after i iterations we have packed T1 ∪ . . . ∪ Ti such that

all edges not inside Ui are covered,

most edges inside Ui are not covered.

(i + 1)th iteration:
Step a: use approx. decomposition blow-up lemma to pack most
of Ti+1 into G [Ui ]− E (G [Ui+1]), obtain leftover Li+1

Step b: use ‘unpacked’ trees in Ti+1 and some edges of G [Ui+1]
to cover leftover Li+1 greedily
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Proof sketch

1st iteration: (Recall |U1| = γn.)
Step a: use approx. decomposition blow-up lemma to pack most
of T1 into G − E (G [U1])
⇒ obtain leftover L1 of density α

Aim: use ‘unpacked’ trees in T1 and some edges of G [U1] to cover
leftover L1 greedily

set aside quasi-random bipartite graph B of density β � α
between U1 and V (G ) \ U1

use edges edges in B ∪ G [U1] to greedily cover all edges in L1
lying outside U1

use edges edges in G [U1] cover all remaining edges of B ∪ L1

Need: γ � β � α
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Proof sketch

1st iteration: (Recall |U1| = γn.)
Step a: use approx. decomposition blow-up lemma to pack most
of T1 into G − E (G [U1])
⇒ obtain leftover L1 of density α

Aim: use ‘unpacked’ trees in T1 and some edges of G [U1] to cover
leftover L1 greedily

set aside quasi-random bipartite graph B of density β � α
between U1 and V (G ) \ U1

use edges edges in B ∪ G [U1] to greedily cover all edges in L1
lying outside U1

use edges edges in G [U1] cover all remaining edges of B ∪ L1

Need: γ � β � α
Problem: in 2nd iteration will get leftover of density α′ � β
i.e. error terms explode
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Proof sketch

1st iteration: (Recall |U1| = γn.)
Step a: use approx. decomposition blow-up lemma to pack most
of T1 into G − E (G [U1])
⇒ obtain leftover L1 of density α

Aim: use ‘unpacked’ trees in T1 and some edges of G [U1] to cover
leftover L1 greedily

set aside quasi-random bipartite graph B of density β � α
between U1 and V (G ) \ U1

use edges edges in B ∪ G [U1] to greedily cover all edges in L1
lying outside U1

use edges edges in G [U1] cover all remaining edges of B ∪ L1

Need: γ � β � α
Solution: apply Regularity lemma with tiny ε before applying
approx. decomposition blow-up lemma to suitable reduced graph
cycles =⇒ leftover of density α
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Proof sketch

after k iterations:

are left with almost complete graph H on Uk

but are now seeking a decomposition!

⇒ introduce new Step 0:

choose collection T ∗ of m small trees
(where m ≈

(|Uk |
2

)
≈ n2/3)

remove a leaf `T∗ from each T ∗ ∈ T ∗
let zT∗ be neighbour of `T∗ in T ∗

before 1st iteration, embed each T ∗ − `T∗ so that

zT∗ is embedded into Uk

no other vertex of T ∗ is embedded into Uk

each vertex in Uk is image of exactly d vertices zT∗

(where d = m/|Uk |)
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Proof sketch

New situation after k iterations:

are left with almost complete graph H on Uk ,
where e(H) = m = d |Uk |
have embedded everything apart from the leaves `T∗ of
the T ∗

Can now complete decomposition by adding the remaining ‘leaf
edge’ to each ‘incomplete’ tree T ∗:

show that H has an orientation of outdegree d

use this orientation to embed all the `T∗
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Open problems

Problem

Relax condition on maximum degree in tree packing conjecture and
Ringel’s conjecture.

possible for approximate tree packings:

Theorem (Ferber & Samotij, 2016+)

If 1/n� α and T1, . . . ,Tt are trees s.t.

∆(Ti ) ≤ n1/6/(log n)6 and |Ti | = n,∑t
i=1 e(Ti ) ≤ (1− α)

(n
2

)
,

then T1, . . . ,Tt pack into Kn.
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Open problems: Graceful labellings

Graceful labelling φ of n-vertex G :
labelling of V (G ) with [n] so that all resulting edge-labels are
distinct, where edge label of uv is |φ(u)− φ(v)|

Conjecture

Every tree has a graceful labelling.

Implies Ringel’s conjecture

Adamaszek, Allen, Grosu, Hladky (2016+)
proved approximate version of graceful labelling conjecture for
trees T with ∆(T ) = O(n/ log n)
(approximate = needs (1 + ε)n labels)
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Open problems

Problem (Oberwolfach Problem)

Suppose that n is odd and F is a vertex-disjoint union of cycles
with total length n. Then does Kn have an F -decomposition?

Theorem (Bryant & Scharaschkin, 2009)

Answer is yes for infinitely many n.

Our results imply an approximate F -decomposition for every
large n.
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