Coloring a class of $4K_1$ -free graphs

Frédéric Maffray

Laboratoire G-SCOP, University of Grenoble Alpes, France

Joint work with:

Dallas J. Fraser, Angèle M. Hamel, and Chính T. Hoàng Wilfrid Laurier University, Waterloo, Ontario, Canada

イロト イヨト イヨト

Coloring \mathcal{H} -free graphs

Question

What is the complexity of coloring H-free graphs?

Where \mathcal{H} is any family of graphs.

Coloring \mathcal{H} -free graphs

Question

What is the complexity of coloring \mathcal{H} -free graphs?

Where \mathcal{H} is any finite (small) family of (small) graphs.

When ${\mathcal H}$ has only one member:

Theorem (Král', Kratochvil, Tuza, Woeginger 2001)

Coloring H-free graphs is:

・ 一日 ト ・ 日 ト

When $\ensuremath{\mathcal{H}}$ has only one member:

Theorem (Král', Kratochvil, Tuza, Woeginger 2001)

Coloring H-free graphs is:

• Polynomially solvable when H is an induced subgraph of either P_4 or $P_3 + P_1$.

イヨト イヨト

When \mathcal{H} has only one member:

Theorem (Král', Kratochvil, Tuza, Woeginger 2001)

Coloring H-free graphs is:

• Polynomially solvable when H is an induced subgraph of either P_4 or $P_3 + P_1$.

• NP-complete in all other cases.

When \mathcal{H} has two members H_1, H_2 :

Theorem (Golovach, Johnson, Paulusma, Song 2016)

Coloring (H_1, H_2) -free graphs is polynomially solvable when:

When \mathcal{H} has two members H_1, H_2 :

Theorem (Golovach, Johnson, Paulusma, Song 2016)

Coloring (H_1, H_2) -free graphs is polynomially solvable when:

- **(**) H_1 or H_2 is an induced subgraph of P_4 or $P_3 + P_1$.
- 2 $H_1 \leq K_{1,3}$, and $H_2 \leq$ either bull, hammer, or P_5 .
- 3 $H_1 \leq paw$, and $H_2 = K_{1,3} + 3P_1$ or H_2 is a forest on at most 6 vertices $\neq K_{1,5}$.
- ④ $H_1 = K_t$ for $t \ge 4$, and $H_2 \le either sP_2$ or $sP_1 + P_5$ (t, s fixed).
- \bigcirc $H_1 \leq$ paw, and $H_2 \leq$ either sP₂ or sP₁ + P₅ (s fixed).

$$\bigcirc H_1 \leq$$
 gem, and $H_2 \leq$ either $P_1 + P_4$ or P_5

$$\bigcirc$$
 $H_1 \leq$ house, and $H_2 \leq$ either $P_1 + P_4$ or P_5 .

$$\bigcirc$$
 $H_1 \leq 2P_1 + P_2$, and $H_2 \leq$ either 4-wheel, $\overline{2P_1 + P_3}$, $\overline{P_2 + P_3}$.

$$\textcircled{0}$$
 $H_1 \leq$ diamond, and $H_2 \leq$ either $P_1 + 2P_2$ or $2P_1 + P_3$ or $P_2 + P_3$

0 $H_1 \leq tP_1 + P_2$, and $H_2 \leq$ either P_5 or $sP_1 + P_2$ (t, s fixed).

 $@ H_1 \leq P_5, and H_2 \leq either C_4 or \overline{2P_1 + P_3}.$

Theorem (Golovach, Johnson, Paulusma, Song 2016) Coloring (H_1, H_2) -free graphs is NP-complete when:

Theorem (Golovach, Johnson, Paulusma, Song 2016)

Coloring (H_1, H_2) -free graphs is NP-complete when:

- **1** $H_1 \ge C_r \ (r \ge 3) \text{ and } H_2 \ge C_s \ (s \ge 3).$
- 3 $H_1 \ge claw$, and $H_2 \ge either claw$, or $2P_1 + P_2$ or C_r $(r \ge 4)$ or K_4 or $\Phi_{i,j}$ (i, j even) or Φ'_i (i odd) or Φ''_i (i even).
- **(3)** $H_1 \ge \overline{\Phi_i}$ $(i \ge 1)$, and $H_2 \ge any$ 4-vertex subgraph of $2P_2$.
- H₁ and H₂ ≥ any 4-vertex subgraph of 2P₂.
- $I_1 \geq bull, and H_2 \geq either K_{1,4} \text{ or } \overline{C_4 + P_1}.$
- **(**) $H_1 \ge C_3$ and $H_2 \ge K_{1,r}$, $r \ge 5$.
- $\bigcirc H_1 \ge C_3 \text{ and } H_2 \ge P_{22}.$
- **(3)** $H_1 \ge C_r$ $(r \ge 5)$, and $H_2 \ge$ any 4-vertex subgraph of $2P_2$.
- \bigcirc $H_1 \ge C_3 + P_1$ or $C_4 + P_1$ or $\overline{C_r}$ $(r \ge 6)$, and $H_2 \ge any$ 4-vertex subgraph of $2P_2$.
- $0 H_1 \ge K_5$ and $H_2 \ge P_7$.

Theorem (Golovach, Johnson, Paulusma, Song 2016)

Coloring (H_1, H_2) -free graphs is NP-complete when:

- **1** $H_1 \ge C_r \ (r \ge 3)$ and $H_2 \ge C_s \ (s \ge 3)$.
- 3 $H_1 \ge claw, and H_2 \ge either claw, or 2P_1 + P_2 or C_r (r \ge 4) or K_4 or <math>\Phi_{i,j}$ (i, j even) or Φ'_i (i odd) or Φ''_i (i even).
- $0 H_1 \ge \overline{\Phi_i} \ (i \ge 1), \text{ and } H_2 \ge \text{ any } 4\text{-vertex subgraph of } 2P_2.$
- H₁ and H₂ ≥ any 4-vertex subgraph of 2P₂.
- $I_1 \geq bull, and H_2 \geq either K_{1,4} \text{ or } \overline{C_4 + P_1}.$
- **(** $H_1 \ge C_3$ and $H_2 \ge K_{1,r}$, $r \ge 5$.
- $\bigcirc H_1 \ge C_3 \text{ and } H_2 \ge P_{22}.$
- **(3)** $H_1 \ge C_r$ $(r \ge 5)$, and $H_2 \ge$ any 4-vertex subgraph of $2P_2$.
- $\bigcirc H_1 \ge C_3 + P_1 \text{ or } C_4 + P_1 \text{ or } \overline{C_r} \ (r \ge 6), \text{ and } H_2 \ge \text{any } 4\text{-vertex subgraph of } 2P_2.$
- $0 H_1 \ge K_5 \text{ and } H_2 \ge P_7.$

Many open cases remain.

Lozin and Malyshev consider \mathcal{H} -free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:

Lozin and Malyshev consider \mathcal{H} -free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:

• (C_4 , $4P_1$)-free graphs.

Lozin and Malyshev consider \mathcal{H} -free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:

- $(C_4, 4P_1)$ -free graphs.
- (claw, $4P_1$)-free graphs.

Lozin and Malyshev consider \mathcal{H} -free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:

- $(C_4, 4P_1)$ -free graphs.
- (claw, $4P_1$)-free graphs.
- (claw, $2P_1 + P_2$)-free graphs.

・ロン ・聞と ・ほと ・ほと

Lozin and Malyshev consider \mathcal{H} -free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:

- $(C_4, 4P_1)$ -free graphs.
- (claw, $4P_1$)-free graphs.
- (claw, $2P_1 + P_2$)-free graphs.
- (claw, $4P_1$, $2P_1 + P_2$)-free graphs.

Lozin and Malyshev consider \mathcal{H} -free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:

- (C_4 , $4P_1$)-free graphs.
- (claw, $4P_1$)-free graphs.
- (claw, $2P_1 + P_2$)-free graphs.
- (claw, $4P_1$, $2P_1 + P_2$)-free graphs.

Note: (claw, $2P_1 + P_2$, $4P_1$)-free graphs are the "antiprismatic" graphs in Chudnovsky and Seymour's Claw-Free Graphs series.

Lozin and Malyshev consider \mathcal{H} -free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:

- (C_4 , $4P_1$)-free graphs.
- (claw, $4P_1$)-free graphs.
- (claw, $2P_1 + P_2$)-free graphs.
- (claw, $4P_1$, $2P_1 + P_2$)-free graphs.

Note: (claw, $2P_1 + P_2$, $4P_1$)-free graphs are the "antiprismatic" graphs in Chudnovsky and Seymour's Claw-Free Graphs series.

Lozin and Malyshev proved that the last two cases are polynomially equivalent.

イロト 不得下 イヨト イヨト 二日

Theorem

There is a polynomial-time algorithm for coloring (claw, $4K_1$, $K_5 \setminus e$)-free graphs.

Theorem

There is a polynomial-time algorithm for coloring (claw, $4K_1$, $K_5 \setminus e$)-free graphs.

Sketch of proof:

Theorem

There is a polynomial-time algorithm for coloring (claw, $4K_1$, $K_5 \setminus e$)-free graphs.

Sketch of proof:

• We may assume that G is connected and contains a stable set of size 3.

(Otherwise, coloring reduces to matching in \overline{G} .)

Theorem

There is a polynomial-time algorithm for coloring (claw, $4K_1$, $K_5 \setminus e$)-free graphs.

Sketch of proof:

• We may assume that G is connected and contains a stable set of size 3.

(Otherwise, coloring reduces to matching in \overline{G} .)

• We may assume that G is not perfect. (Otherwise used Hsu 1981 or M. and Reed 1999.)

By the Strong Perfect Graph Theorem, G contains an odd hole or an odd antihole.

By the Strong Perfect Graph Theorem, G contains an odd hole or an odd antihole.

Lemma (Ben Rebea, see Chvátal and Sbihi 1988)

Let G be a connected claw-free graph that contains a stable set of size 3. If G contains an odd antihole, then G contains a 5-hole.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

By the Strong Perfect Graph Theorem, G contains an odd hole or an odd antihole.

Lemma (Ben Rebea, see Chvátal and Sbihi 1988)

Let G be a connected claw-free graph that contains a stable set of size 3. If G contains an odd antihole, then G contains a 5-hole.

Therefore we may assume that G contains an odd hole.

Since there is no stable set of size 4, G contains a 5-hole or 7-hole H.

By the Strong Perfect Graph Theorem, G contains an odd hole or an odd antihole.

Lemma (Ben Rebea, see Chvátal and Sbihi 1988)

Let G be a connected claw-free graph that contains a stable set of size 3. If G contains an odd antihole, then G contains a 5-hole.

Therefore we may assume that G contains an odd hole.

Since there is no stable set of size 4, G contains a 5-hole or 7-hole H.

Lemma

If G contains a 7-hole, then $|V(G)| \leq 28$.

When G contains a 5-hole

Image: Image:

W = vertices that are complete to the 5-hole.

R = vertices that are anticomplete to the 5-hole.

• X_i is a clique.

X_i is a clique.
|*T* ∪ *Y*| ≤ 5.

- X_i is a clique.
- $|T \cup Y| \leq 5.$
- W is a stable set, $|W| \le 2$, and W is anticomplete to $X \cup T \cup Y \cup R$.

- X_i is a clique.
- $|T \cup Y| \leq 5.$
- W is a stable set, $|W| \le 2$, and W is anticomplete to $X \cup T \cup Y \cup R$.
- Q R is a clique, and R is complete to X and anticomplete to T ∪ Y ∪ W.

イヨト イヨト

- X_i is a clique.
- $|T \cup Y| \leq 5.$
- W is a stable set, $|W| \le 2$, and W is anticomplete to $X \cup T \cup Y \cup R$.
- Q R is a clique, and R is complete to X and anticomplete to T ∪ Y ∪ W.
- **◎** If $R \neq \emptyset$, then either $|V(G)| \le 24$ or G has a clique cutset.

イヨト イヨト

- X_i is a clique.
- $|T \cup Y| \leq 5.$
- W is a stable set, $|W| \le 2$, and W is anticomplete to $X \cup T \cup Y \cup R$.
- It is a clique, and R is complete to X and anticomplete to T ∪ Y ∪ W.
- **◎** If $R \neq \emptyset$, then either $|V(G)| \le 24$ or G has a clique cutset.
- If X_i is "large", then either X_{i-1} and X_{i+1} are both "small", or one of X_{i-1} and X_{i+1} is empty.
 Large = size at least 3.
 Small = size at most 2.

Let G be a (claw, $4K_1$, $K_5 \setminus e$)-free graph. Then one of the following holds.

Let G be a (claw, $4K_1$, $K_5 \setminus e$)-free graph. Then one of the following holds.

• G has no stable set of size 3.

Let G be a (claw, $4K_1$, $K_5 \setminus e$)-free graph. Then one of the following holds.

- G has no stable set of size 3.
- G is perfect.

Let G be a (claw, $4K_1$, $K_5 \setminus e$)-free graph. Then one of the following holds.

- G has no stable set of size 3.
- G is perfect.
- |V(G)| is bounded by the Ramsey number $R(4, 13) (\leq 291)$.

イヨト イヨト

Let G be a (claw, $4K_1$, $K_5 \setminus e$)-free graph. Then one of the following holds.

- G has no stable set of size 3.
- G is perfect.
- |V(G)| is bounded by the Ramsey number $R(4, 13) (\leq 291)$.
- G has a vertex v with degree d(v) < 12.

イヨト イヨト

Let G be a (claw, $4K_1$, $K_5 \setminus e$)-free graph. Then one of the following holds.

- G has no stable set of size 3.
- G is perfect.
- |V(G)| is bounded by the Ramsey number $R(4, 13) (\leq 291)$.
- G has a vertex v with degree d(v) < 12.
- $\omega(G) \ge 13$, and the sets R, X₁, X₄ are empty, and the sets X₂, X₃, X₅ are large.

(4月) (日) (日)

Let G be a (claw, $4K_1$, $K_5 \setminus e$)-free graph. Then one of the following holds.

- G has no stable set of size 3.
- G is perfect.
- |V(G)| is bounded by the Ramsey number $R(4, 13) (\leq 291)$.
- G has a vertex v with degree d(v) < 12.
- $\omega(G) \ge 13$, and the sets R, X₁, X₄ are empty, and the sets X₂, X₃, X₅ are large.

Proof: Assume the first four items do not hold. Then:

If any X_i is small but not empty, then it contains a vertex of small degree.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Let G be a (claw, $4K_1$, $K_5 \setminus e$)-free graph. Then one of the following holds.

- G has no stable set of size 3.
- G is perfect.
- |V(G)| is bounded by the Ramsey number $R(4, 13) (\leq 291)$.
- G has a vertex v with degree d(v) < 12.
- $\omega(G) \ge 13$, and the sets R, X₁, X₄ are empty, and the sets X₂, X₃, X₅ are large.

Proof: Assume the first four items do not hold. Then:

If any X_i is small but not empty, then it contains a vertex of small degree.

Hence each X_i is either large or empty.

イロト イポト イヨト イヨト

Suppose that $\omega(G) \ge 6$, and the sets R, X_1 , X_4 are empty, and X_2 , X_3 , X_5 have size at least 2. Then $\chi(G) = \omega(G)$ and an optimal coloring of G can be found in polynomial time.

Proof: By induction on $\omega(G)$.

イロト イポト イヨト イヨト

Suppose that $\omega(G) \ge 6$, and the sets R, X_1 , X_4 are empty, and X_2 , X_3 , X_5 have size at least 2. Then $\chi(G) = \omega(G)$ and an optimal coloring of G can be found in polynomial time.

Proof: By induction on $\omega(G)$.

• If $\omega(G) = 6$, we can construct a 6-coloring directly.

Suppose that $\omega(G) \ge 6$, and the sets R, X_1 , X_4 are empty, and X_2 , X_3 , X_5 have size at least 2. Then $\chi(G) = \omega(G)$ and an optimal coloring of G can be found in polynomial time.

Proof: By induction on $\omega(G)$.

- If $\omega(G) = 6$, we can construct a 6-coloring directly.
- If ω(G) ≥ 7, we can find a stable set S that intersects all cliques of size ω(G).

Suppose that $\omega(G) \ge 6$, and the sets R, X_1 , X_4 are empty, and X_2 , X_3 , X_5 have size at least 2. Then $\chi(G) = \omega(G)$ and an optimal coloring of G can be found in polynomial time.

Proof: By induction on $\omega(G)$.

- If $\omega(G) = 6$, we can construct a 6-coloring directly.
- If ω(G) ≥ 7, we can find a stable set S that intersects all cliques of size ω(G). Then apply the algorithm to G \ S.

Conclusion and questions

Open cases for two excluded graphs of size 4:

- (claw, $4P_1$)-free graphs.
- (claw, $4P_1$, $2P_1 + P_2$)-free graphs.
- (claw, $2P_1 + P_2$)-free graphs.
- (C_4 , $4P_1$)-free graphs.

・ 何 ト ・ ヨ ト ・ ヨ ト

Conclusion and questions

Open cases for two excluded graphs of size 4:

- (claw, $4P_1$)-free graphs.
- (claw, $4P_1$, $2P_1 + P_2$)-free graphs.
- (claw, $2P_1 + P_2$)-free graphs.
- (C_4 , $4P_1$)-free graphs.

Another interesting open case:

•
$$(P_k, triangle)$$
-free for $k \leq 21$.

伺下 イヨト イヨト

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

(fork, bull)-free graphs,

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

- (fork, bull)-free graphs,
- \bigcirc (P_5 , bull)-free graphs,

・ロト ・聞ト ・ ヨト

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

- (fork, bull)-free graphs,
- \bigcirc (P_5 , bull)-free graphs,
- \bigcirc (P_5 , dart)-free graphs,

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

- (fork, bull)-free graphs,
- \bigcirc (P_5 , bull)-free graphs,
- \bigcirc (P_5 , dart)-free graphs,
- (P_5 , banner)-free graphs,

(4月) (日) (日)

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

- (fork, bull)-free graphs,
- \bigcirc (P_5 , bull)-free graphs,
- \bigcirc (P_5 , dart)-free graphs,
- (P_5 , banner)-free graphs,
- \bigcirc (P_5 , $K_{2,3}$)-free graphs,

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

- (fork, bull)-free graphs,
- \bigcirc (P_5 , bull)-free graphs,
- \bigcirc (P_5 , dart)-free graphs,
- (P_5 , banner)-free graphs,
- \bigcirc (P_5 , $K_{2,3}$)-free graphs,
- (P_5 , $K_{1,1,3}$)-free graphs,

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

- (fork, bull)-free graphs,
- \bigcirc (P_5 , bull)-free graphs,
- \bigcirc (P_5 , dart)-free graphs,
- (P_5 , banner)-free graphs,
- \bigcirc (P_5 , $K_{2,3}$)-free graphs,
- (P_5 , $K_{1,1,3}$)-free graphs,
- (P_5 , 4-wheel)-free graphs.

Lozin, Malyshev, and Lobanova consider (H_1, H_2) -free graphs with H_1, H_2 connected and $|H_1| = |H_2| = 5$. The cases they left open are:

- (fork, bull)-free graphs,
- \bigcirc (P_5 , bull)-free graphs,
- \bigcirc (P_5 , dart)-free graphs,
- (P_5 , banner)-free graphs,
- \bigcirc (P_5 , $K_{2,3}$)-free graphs,
- (P_5 , $K_{1,1,3}$)-free graphs,
- (P_5 , 4-wheel)-free graphs.

With T. Karthick and Lucas Pastor, we show that there is a polynomial-time algorithm for the first four classes.