Coloring a class of $4 K_{1}$-free graphs

Frédéric Maffray

Laboratoire G-SCOP, University of Grenoble Alpes, France

Joint work with:

Dallas J. Fraser, Angèle M. Hamel, and Chính T. Hoàng Wilfrid Laurier University, Waterloo, Ontario, Canada

Coloring \mathcal{H}-free graphs

Question

What is the complexity of coloring \mathcal{H}-free graphs?
Where \mathcal{H} is any family of graphs.

Coloring \mathcal{H}-free graphs

Question

What is the complexity of coloring \mathcal{H}-free graphs?
Where \mathcal{H} is any finite (small) family of (small) graphs.

One forbidden subgraph

When \mathcal{H} has only one member:
Theorem (Král', Kratochvil, Tuza, Woeginger 2001)
Coloring H-free graphs is:

One forbidden subgraph

When \mathcal{H} has only one member:
Theorem (Král', Kratochvil, Tuza, Woeginger 2001)
Coloring H-free graphs is:

- Polynomially solvable when H is an induced subgraph of either P_{4} or $P_{3}+P_{1}$.

One forbidden subgraph

When \mathcal{H} has only one member:
Theorem (Král', Kratochvil, Tuza, Woeginger 2001)
Coloring H-free graphs is:

- Polynomially solvable when H is an induced subgraph of either P_{4} or $P_{3}+P_{1}$.
- NP-complete in all other cases.

Two forbidden subgraphs

When \mathcal{H} has two members H_{1}, H_{2} :
Theorem (Golovach, Johnson, Paulusma, Song 2016)
Coloring $\left(H_{1}, H_{2}\right)$-free graphs is polynomially solvable when:

Two forbidden subgraphs

When \mathcal{H} has two members H_{1}, H_{2} :

Theorem (Golovach, Johnson, Paulusma, Song 2016)

Coloring $\left(H_{1}, H_{2}\right)$-free graphs is polynomially solvable when:
(1) H_{1} or H_{2} is an induced subgraph of P_{4} or $P_{3}+P_{1}$.
(2) $H_{1} \leq K_{1,3}$, and $H_{2} \leq$ either bull, hammer, or P_{5}.
(3) $H_{1} \leq$ paw, and $H_{2}=K_{1,3}+3 P_{1}$ or H_{2} is a forest on at most 6 vertices $\neq K_{1,5}$.
(4) $H_{1}=K_{t}$ for $t \geq 4$, and $H_{2} \leq$ either $s P_{2}$ or $s P_{1}+P_{5}$ (t, s fixed).
(5) $H_{1} \leq$ paw, and $H_{2} \leq$ either $s P_{2}$ or $s P_{1}+P_{5}$ (s fixed).
(6) $H_{1} \leq$ gem, and $H_{2} \leq$ either $P_{1}+P_{4}$ or P_{5}.
(7) $H_{1} \leq$ house, and $H_{2} \leq$ either $P_{1}+P_{4}$ or P_{5}.
(8) $H_{1} \leq 2 P_{1}+P_{2}$, and $H_{2} \leq$ either 4 -wheel, $\overline{2 P_{1}+P_{3}}, \overline{P_{2}+P_{3}}$.
(9) $H_{1} \leq$ diamond, and $H_{2} \leq$ either $P_{1}+2 P_{2}$ or $2 P_{1}+P_{3}$ or $P_{2}+P_{3}$.
(10) $H_{1} \leq t P_{1}+P_{2}$, and $H_{2} \leq$ either P_{5} or $s P_{1}+P_{2}$ (t, s fixed).
(11) $H_{1} \leq 4 P_{1}$, and $H_{2} \leq \overline{2 P_{1}+P_{3}}$.
(12) $H_{1} \leq P_{5}$, and $H_{2} \leq$ either C_{4} or $\overline{2 P_{1}+P_{3}}$.

Two forbidden subgraphs

Theorem (Golovach, Johnson, Paulusma, Song 2016)
Coloring $\left(H_{1}, H_{2}\right)$-free graphs is NP-complete when:

Two forbidden subgraphs

Theorem (Golovach, Johnson, Paulusma, Song 2016)

Coloring $\left(H_{1}, H_{2}\right)$-free graphs is NP-complete when:
(1) $H_{1} \geq C_{r}(r \geq 3)$ and $H_{2} \geq C_{s}(s \geq 3)$.
(2) $H_{1} \geq$ claw, and $H_{2} \geq$ either claw, or $\overline{2 P_{1}+P_{2}}$ or $C_{r}(r \geq 4)$ or K_{4} or $\Phi_{i, j}$ (i, j even) or Φ_{i}^{\prime} (i odd) or $\Phi_{i}^{\prime \prime}$ (i even).
(3) $H_{1} \geq \overline{\Phi_{i}}(i \geq 1)$, and $H_{2} \geq$ any 4-vertex subgraph of $2 P_{2}$.
(4) H_{1} and $H_{2} \geq$ any 4-vertex subgraph of $2 P_{2}$.
(5) $H_{1} \geq$ bull, and $H_{2} \geq$ either $K_{1,4}$ or $\overline{C_{4}+P_{1}}$.
(6) $H_{1} \geq C_{3}$ and $H_{2} \geq K_{1, r}, r \geq 5$.
(7) $H_{1} \geq C_{3}$ and $H_{2} \geq P_{22}$.
(8) $H_{1} \geq C_{r}(r \geq 5)$, and $H_{2} \geq$ any 4-vertex subgraph of $2 P_{2}$.
(9) $H_{1} \geq C_{3}+P_{1}$ or $C_{4}+P_{1}$ or $\overline{C_{r}}(r \geq 6)$, and $H_{2} \geq$ any 4-vertex subgraph of $2 P_{2}$.
(10) $H_{1} \geq K_{5}$ and $H_{2} \geq P_{7}$.
(1) $H_{1} \geq K_{6}$ and $H_{2} \geq P_{6}$.

Two forbidden subgraphs

Theorem (Golovach, Johnson, Paulusma, Song 2016)

Coloring $\left(H_{1}, H_{2}\right)$-free graphs is NP-complete when:
(1) $H_{1} \geq C_{r}(r \geq 3)$ and $H_{2} \geq C_{s}(s \geq 3)$.
(2) $H_{1} \geq$ claw, and $H_{2} \geq$ either claw, or $\overline{2 P_{1}+P_{2}}$ or $C_{r}(r \geq 4)$ or K_{4} or $\Phi_{i, j}\left(i, j\right.$ even) or Φ_{i}^{\prime} (i odd) or $\Phi_{i}^{\prime \prime}$ (i even).
(3) $H_{1} \geq \overline{\Phi_{i}}(i \geq 1)$, and $H_{2} \geq$ any 4-vertex subgraph of $2 P_{2}$.
(4) H_{1} and $H_{2} \geq$ any 4 -vertex subgraph of $2 P_{2}$.
(5) $H_{1} \geq$ bull, and $H_{2} \geq$ either $K_{1,4}$ or $\overline{C_{4}+P_{1}}$.
(6) $H_{1} \geq C_{3}$ and $H_{2} \geq K_{1, r}, r \geq 5$.
(7) $H_{1} \geq C_{3}$ and $H_{2} \geq P_{22}$.
(8) $H_{1} \geq C_{r}(r \geq 5)$, and $H_{2} \geq$ any 4-vertex subgraph of $2 P_{2}$.
(9) $H_{1} \geq C_{3}+P_{1}$ or $C_{4}+P_{1}$ or $\overline{C_{r}}(r \geq 6)$, and $H_{2} \geq$ any 4-vertex subgraph of $2 P_{2}$.
(10) $H_{1} \geq K_{5}$ and $H_{2} \geq P_{7}$.
(1) $H_{1} \geq K_{6}$ and $H_{2} \geq P_{6}$.

Many open cases remain.

Excluding 4-vertex graphs

Lozin and Malyshev consider \mathcal{H}-free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:

Excluding 4-vertex graphs

Lozin and Malyshev consider \mathcal{H}-free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:
(1) $\left(C_{4}, 4 P_{1}\right)$-free graphs.

Excluding 4-vertex graphs

Lozin and Malyshev consider \mathcal{H}-free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:
(1) $\left(C_{4}, 4 P_{1}\right)$-free graphs.
(2) (claw, $\left.4 P_{1}\right)$-free graphs.

Excluding 4-vertex graphs

Lozin and Malyshev consider \mathcal{H}-free graphs where \mathcal{H} is any collection of 4-vertex graphs. The open cases are:
(1) $\left(C_{4}, 4 P_{1}\right)$-free graphs.
(2) (claw, $\left.4 P_{1}\right)$-free graphs.
(3) (claw, $2 P_{1}+P_{2}$)-free graphs.

Excluding 4-vertex graphs

Lozin and Malyshev consider \mathcal{H}-free graphs where \mathcal{H} is any collection of 4 -vertex graphs. The open cases are:
(1) $\left(C_{4}, 4 P_{1}\right)$-free graphs.
(0) (claw, $4 P_{1}$)-free graphs.

- (claw, $2 P_{1}+P_{2}$)-free graphs.
- (claw, $4 P_{1}, 2 P_{1}+P_{2}$)-free graphs.

Excluding 4-vertex graphs

Lozin and Malyshev consider \mathcal{H}-free graphs where \mathcal{H} is any collection of 4 -vertex graphs. The open cases are:
(0. $\left(C_{4}, 4 P_{1}\right)$-free graphs.
(c) (claw, $4 P_{1}$)-free graphs.

- (claw, $2 P_{1}+P_{2}$)-free graphs.
- (claw, $4 P_{1}, 2 P_{1}+P_{2}$)-free graphs.

Note: (claw, $2 P_{1}+P_{2}, 4 P_{1}$)-free graphs are the "antiprismatic" graphs in Chudnovsky and Seymour's Claw-Free Graphs series.

Excluding 4-vertex graphs

Lozin and Malyshev consider \mathcal{H}-free graphs where \mathcal{H} is any collection of 4 -vertex graphs. The open cases are:
(0. $\left(C_{4}, 4 P_{1}\right)$-free graphs.
(c) (claw, $4 P_{1}$)-free graphs.

- (claw, $2 P_{1}+P_{2}$)-free graphs.
- (claw, $4 P_{1}, 2 P_{1}+P_{2}$)-free graphs.

Note: (claw, $2 P_{1}+P_{2}, 4 P_{1}$)-free graphs are the "antiprismatic" graphs in Chudnovsky and Seymour's Claw-Free Graphs series.

Lozin and Malyshev proved that the last two cases are polynomially equivalent.

Our contribution

Theorem

There is a polynomial-time algorithm for coloring (claw, $4 K_{1}$, $K_{5} \backslash e$)-free graphs.

Our contribution

Theorem

There is a polynomial-time algorithm for coloring (claw, $4 K_{1}$, $\left.K_{5} \backslash e\right)$-free graphs.

Sketch of proof:

Our contribution

Theorem

There is a polynomial-time algorithm for coloring (claw, $4 K_{1}$, $K_{5} \backslash e$)-free graphs.

Sketch of proof:

- We may assume that G is connected and contains a stable set of size 3.
(Otherwise, coloring reduces to matching in \bar{G}.)

Our contribution

Theorem

There is a polynomial-time algorithm for coloring (claw, $4 K_{1}$, $K_{5} \backslash e$)-free graphs.

Sketch of proof:

- We may assume that G is connected and contains a stable set of size 3.
(Otherwise, coloring reduces to matching in \bar{G}.)
- We may assume that G is not perfect.
(Otherwise used Hsu 1981 or M. and Reed 1999.)

Therefore G is connected, not perfect and contains a stable set of size 3 .

By the Strong Perfect Graph Theorem, G contains an odd hole or an odd antihole.

Therefore G is connected, not perfect and contains a stable set of size 3 .

By the Strong Perfect Graph Theorem, G contains an odd hole or an odd antihole.

Lemma (Ben Rebea, see Chvátal and Sbihi 1988)
Let G be a connected claw-free graph that contains a stable set of size 3. If G contains an odd antihole, then G contains a 5-hole.

Therefore G is connected, not perfect and contains a stable set of size 3.

By the Strong Perfect Graph Theorem, G contains an odd hole or an odd antihole.

Lemma (Ben Rebea, see Chvátal and Sbihi 1988)
Let G be a connected claw-free graph that contains a stable set of size 3. If G contains an odd antihole, then G contains a 5-hole.

Therefore we may assume that G contains an odd hole.
Since there is no stable set of size $4, G$ contains a 5 -hole or 7 -hole H.

Therefore G is connected, not perfect and contains a stable set of size 3.

By the Strong Perfect Graph Theorem, G contains an odd hole or an odd antihole.

Lemma (Ben Rebea, see Chvátal and Sbihi 1988)
Let G be a connected claw-free graph that contains a stable set of size 3. If G contains an odd antihole, then G contains a 5-hole.

Therefore we may assume that G contains an odd hole.
Since there is no stable set of size $4, G$ contains a 5 -hole or 7 -hole H.

Lemma

If G contains a 7-hole, then $|V(G)| \leq 28$.

When G contains a 5 -hole

$W=$ vertices that are complete to the 5-hole.
$R=$ vertices that are anticomplete to the 5-hole.

Lemma

Lemma

(1) X_{i} is a clique.

Lemma
(1) X_{i} is a clique.
(2) $|T \cup Y| \leq 5$.

Lemma

(1) X_{i} is a clique.
(1) $|T \cup Y| \leq 5$.

- W is a stable set, $|W| \leq 2$, and W is anticomplete to $X \cup T \cup Y \cup R$.

Lemma

(1) X_{i} is a clique.
(1) $|T \cup Y| \leq 5$.

- W is a stable set, $|W| \leq 2$, and W is anticomplete to $X \cup T \cup Y \cup R$.
- R is a clique, and R is complete to X and anticomplete to $T \cup Y \cup W$.

Lemma

(1) X_{i} is a clique.
(1) $|T \cup Y| \leq 5$.

- W is a stable set, $|W| \leq 2$, and W is anticomplete to $X \cup T \cup Y \cup R$.
- R is a clique, and R is complete to X and anticomplete to $T \cup Y \cup W$.
- If $R \neq \emptyset$, then either $|V(G)| \leq 24$ or G has a clique cutset.

Lemma

(1) X_{i} is a clique.
(2) $|T \cup Y| \leq 5$.

- W is a stable set, $|W| \leq 2$, and W is anticomplete to $X \cup T \cup Y \cup R$.
- R is a clique, and R is complete to X and anticomplete to $T \cup Y \cup W$.
- If $R \neq \emptyset$, then either $|V(G)| \leq 24$ or G has a clique cutset.
- If X_{i} is "large", then either X_{i-1} and X_{i+1} are both "small", or one of X_{i-1} and X_{i+1} is empty. Large $=$ size at least 3 . Small $=$ size at most 2 .

Lemma

Let G be a (claw, $4 K_{1}, K_{5} \backslash e$)-free graph. Then one of the following holds.

Lemma

Let G be a (claw, $4 K_{1}, K_{5} \backslash e$)-free graph. Then one of the following holds.

- G has no stable set of size 3 .

Lemma

Let G be a (claw, $4 K_{1}, K_{5} \backslash e$)-free graph. Then one of the following holds.

- G has no stable set of size 3 .
- G is perfect.

Lemma

Let G be a (claw, $4 K_{1}, K_{5} \backslash e$)-free graph. Then one of the following holds.

- G has no stable set of size 3 .
- G is perfect.
- $|V(G)|$ is bounded by the Ramsey number $R(4,13)(\leq 291)$.

Lemma

Let G be a (claw, $4 K_{1}, K_{5} \backslash e$)-free graph. Then one of the following holds.

- G has no stable set of size 3 .
- G is perfect.
- $|V(G)|$ is bounded by the Ramsey number $R(4,13)(\leq 291)$.
- G has a vertex v with degree $d(v)<12$.

Lemma

Let G be a (claw, $4 K_{1}, K_{5} \backslash e$)-free graph. Then one of the following holds.

- G has no stable set of size 3 .
- G is perfect.
- $|V(G)|$ is bounded by the Ramsey number $R(4,13)(\leq 291)$.
- G has a vertex v with degree $d(v)<12$.
- $\omega(G) \geq 13$, and the sets R, X_{1}, X_{4} are empty, and the sets X_{2}, X_{3}, X_{5} are large.

Lemma

Let G be a (claw, $4 K_{1}, K_{5} \backslash e$)-free graph. Then one of the following holds.

- G has no stable set of size 3 .
- G is perfect.
- $|V(G)|$ is bounded by the Ramsey number $R(4,13)(\leq 291)$.
- G has a vertex v with degree $d(v)<12$.
- $\omega(G) \geq 13$, and the sets R, X_{1}, X_{4} are empty, and the sets X_{2}, X_{3}, X_{5} are large.

Proof: Assume the first four items do not hold. Then:
If any X_{i} is small but not empty, then it contains a vertex of small degree.

Lemma

Let G be a (claw, $4 K_{1}, K_{5} \backslash e$)-free graph. Then one of the following holds.

- G has no stable set of size 3 .
- G is perfect.
- $|V(G)|$ is bounded by the Ramsey number $R(4,13)(\leq 291)$.
- G has a vertex v with degree $d(v)<12$.
- $\omega(G) \geq 13$, and the sets R, X_{1}, X_{4} are empty, and the sets X_{2}, X_{3}, X_{5} are large.

Proof: Assume the first four items do not hold. Then:
If any X_{i} is small but not empty, then it contains a vertex of small degree.

Hence each X_{i} is either large or empty.

Lemma

Suppose that $\omega(G) \geq 6$, and the sets R, X_{1}, X_{4} are empty, and X_{2}, X_{3}, X_{5} have size at least 2.
Then $\chi(G)=\omega(G)$ and an optimal coloring of G can be found in polynomial time.

Proof: By induction on $\omega(G)$.

Lemma

Suppose that $\omega(G) \geq 6$, and the sets R, X_{1}, X_{4} are empty, and X_{2}, X_{3}, X_{5} have size at least 2.
Then $\chi(G)=\omega(G)$ and an optimal coloring of G can be found in polynomial time.

Proof: By induction on $\omega(G)$.

- If $\omega(G)=6$, we can construct a 6 -coloring directly.

Lemma

Suppose that $\omega(G) \geq 6$, and the sets R, X_{1}, X_{4} are empty, and X_{2}, X_{3}, X_{5} have size at least 2.
Then $\chi(G)=\omega(G)$ and an optimal coloring of G can be found in polynomial time.

Proof: By induction on $\omega(G)$.

- If $\omega(G)=6$, we can construct a 6 -coloring directly.
- If $\omega(G) \geq 7$, we can find a stable set S that intersects all cliques of size $\omega(G)$.

Lemma

Suppose that $\omega(G) \geq 6$, and the sets R, X_{1}, X_{4} are empty, and X_{2}, X_{3}, X_{5} have size at least 2.
Then $\chi(G)=\omega(G)$ and an optimal coloring of G can be found in polynomial time.

Proof: By induction on $\omega(G)$.

- If $\omega(G)=6$, we can construct a 6 -coloring directly.
- If $\omega(G) \geq 7$, we can find a stable set S that intersects all cliques of size $\omega(G)$. Then apply the algorithm to $G \backslash S$.

Conclusion and questions

Open cases for two excluded graphs of size 4:

(1) (claw, $4 P_{1}$)-free graphs.
(2) (claw, $4 P_{1}, 2 P_{1}+P_{2}$)-free graphs.
(3) (claw, $2 P_{1}+P_{2}$)-free graphs.
(1) $\left(C_{4}, 4 P_{1}\right)$-free graphs.

Conclusion and questions

Open cases for two excluded graphs of size 4:
(1) (claw, $4 P_{1}$)-free graphs.
(2) (claw, $4 P_{1}, 2 P_{1}+P_{2}$)-free graphs.
(3) (claw, $2 P_{1}+P_{2}$)-free graphs.
(1) $\left(C_{4}, 4 P_{1}\right)$-free graphs.

Another interesting open case:

- $\left(P_{k}\right.$, triangle)-free for $k \leq 21$.

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:
(1) (fork, bull)-free graphs,

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:
(0) (fork, bull)-free graphs,
(2) (P_{5}, bull)-free graphs,

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:
(0) (fork, bull)-free graphs,
(2) (P_{5}, bull)-free graphs,

- (P_{5}, dart)-free graphs,

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:
(0) (fork, bull)-free graphs,
(2) (P_{5}, bull)-free graphs,

- (P_{5}, dart)-free graphs,
- (P_{5}, banner)-free graphs,

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:
((fork, bull)-free graphs,
(2) (P_{5}, bull)-free graphs,

- (P_{5}, dart)-free graphs,
- (P_{5}, banner)-free graphs,
- ($P_{5}, K_{2,3}$)-free graphs,

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:
(1) (fork, bull)-free graphs,
(2) $\left(P_{5}\right.$, bull)-free graphs,
(3) $\left(P_{5}\right.$, dart $)$-free graphs,
(0) $\left(P_{5}\right.$, banner $)$-free graphs,
(0. $\left(P_{5}, K_{2,3}\right)$-free graphs,
(0) $\left(P_{5}, K_{1,1,3}\right)$-free graphs,

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:
(1) (fork, bull)-free graphs,
(2) $\left(P_{5}\right.$, bull)-free graphs,
(3) $\left(P_{5}\right.$, dart $)$-free graphs,
(0. $\left(P_{5}\right.$, banner $)$-free graphs,
(0. $\left(P_{5}, K_{2,3}\right)$-free graphs,
(0) $\left(P_{5}, K_{1,1,3}\right)$-free graphs,

- ($P_{5}, 4$-wheel)-free graphs.

More recent results

Lozin, Malyshev, and Lobanova consider $\left(H_{1}, H_{2}\right)$-free graphs with H_{1}, H_{2} connected and $\left|H_{1}\right|=\left|H_{2}\right|=5$. The cases they left open are:
(0. (fork, bull)-free graphs,
(2) (P_{5}, bull)-free graphs,

- (P_{5}, dart)-free graphs,
- (P_{5}, banner)-free graphs,
- ($P_{5}, K_{2,3}$)-free graphs,
- $\left(P_{5}, K_{1,1,3}\right)$-free graphs,
- ($P_{5}, 4$-wheel) -free graphs.

With T. Karthick and Lucas Pastor, we show that there is a polynomial-time algorithm for the first four classes.

