Hanani-Tutte for approximating maps of graphs

Radoslav Fulek a Jan Kynčl

Weakly simple polygons

Weakly simple polygons

Simple polygon is a PL embedding $\pi: S^{1} \hookrightarrow \mathbb{R}^{2}$.

Weakly simple polygons

Simple polygon is a PL embedding $\pi: S^{1} \hookrightarrow \mathbb{R}^{2}$.

Weakly simple polygons

Simple polygon is a PL embedding $\pi: S^{1} \hookrightarrow \mathbb{R}^{2}$.

Weakly simple polygon is a PL map $\varphi: S^{1} \rightarrow \mathbb{R}^{2}$ such that for every $\varepsilon>0$ there exists $\mathrm{PL} \pi: S^{1} \hookrightarrow \mathbb{R}^{2}$ s.t. $\|\varphi-\pi\| \leq \varepsilon$.

Weakly simple polygons

Simple polygon is a PL embedding $\pi: S^{1} \hookrightarrow \mathbb{R}^{2}$.

Weakly simple polygon is a PL map $\varphi: S^{1} \rightarrow \mathbb{R}^{2}$ such that for every $\varepsilon>0$ there exists $\mathrm{PL} \pi: S^{1} \hookrightarrow \mathbb{R}^{2}$ s.t. $\|\varphi-\pi\| \leq \varepsilon$.

Weakly simple polygons

Simple polygon is a PL embedding $\pi: S^{1} \hookrightarrow \mathbb{R}^{2}$.

Weakly simple polygon is a PL map $\varphi: S^{1} \rightarrow \mathbb{R}^{2}$ such that for every $\varepsilon>0$ there exists $\mathrm{PL} \pi: S^{1} \hookrightarrow \mathbb{R}^{2}$ s.t. $\|\varphi-\pi\| \leq \varepsilon$.

Testing whether a polygon is wekly simple is solvable in $O(n \log n)$ time (Cortese et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

Detecting weakly simple polygonal path

Detecting weakly simple polygonal path

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path

ε-neighborhood of $\sigma(H)$

Detecting weakly simple polygonal path
(G, H, h, σ)

Detecting weakly simple polygonal path (G, H, h, σ)

We turn H into its line graph.

Detecting weakly simple polygonal path (G, H, h, σ)

We turn H into its line graph.

Detecting weakly simple polygonal path
(G, H, h, σ)

Detecting weakly simple polygonal path
(G, H, h, σ)

Detecting weakly simple polygonal path
(G, H, h, σ)

Detecting weakly simple polygonal path
(G, H, h, σ)

Detecting weakly simple polygonal path
(G, H, h, σ)

Detecting weakly simple polygonal path
(G, H, h, σ)
$\left(G^{\prime}, H^{\prime}, h^{\prime}, \sigma^{\prime}\right)$

derivative

Detecting weakly simple polygonal path
(G, H, h, σ)
$\left(G^{\prime}, H^{\prime}, h^{\prime}, \sigma^{\prime}\right)$

Detecting weakly simple polygonal path

Detecting weakly simple polygonal path
(G, H, h, σ)
$\left(G^{\prime}, H^{\prime}, h^{\prime}, \sigma^{\prime}\right)$

Detecting weakly simple polygonal path

Detecting weakly simple polygonal path

Detecting weakly simple polygonal path

Minc (1997) Let G be a path, for (G, H, h, σ) the polygonal path $\sigma \circ h$ is weakly simple if and only if for $\left(G^{\prime}, H^{\prime}, h^{\prime}, \sigma^{\prime}\right)$ the composition $\sigma^{\prime} \circ h^{\prime}$ is weakly simple. Furthermore, by applying the derivative iteratively finitely many times we either obtain $\left((\emptyset, \emptyset),(\emptyset, \emptyset), h^{(i)}, \sigma^{(i)}\right)$ or a crossing in $\sigma^{(i)}$ for some $i \in[n]$, where $n=|V(G)|$.

Detecting weakly simple polygonal path

Minc (1997) Let G be a path, for (G, H, h, σ) the polygonal path $\sigma \circ h$ is weakly simple if and only if for $\left(G^{\prime}, H^{\prime}, h^{\prime}, \sigma^{\prime}\right)$ the composition $\sigma^{\prime} \circ h^{\prime}$ is weakly simple. Furthermore, by applying the derivative iteratively finitely many times we either obtain $\left((\emptyset, \emptyset),(\emptyset, \emptyset), h^{(i)}, \sigma^{(i)}\right)$ or a crossing in $\sigma^{(i)}$ for some $i \in[n]$, where $n=|V(G)|$.

Corollary We can test in a polynomial time if $\sigma \circ h$ is weakly simple.

Problem

Problem

We are given

- a pair of graphs G, H, and a compact 2-dim surface M; and - a graph homomorphism (simplicial map) $h: G \rightarrow H$ and an embedding $\sigma: H \hookrightarrow M$.

Problem

We are given

- a pair of graphs G, H, and a compact 2-dim surface M; and
- a graph homomorphism (simplicial map) $h: G \rightarrow H$ and an embedding $\sigma: H \hookrightarrow M$.

We are to find if there exists $\psi: G \hookrightarrow M$ approximating $\sigma \circ h$, i.e., if for every $\varepsilon>0$ there exists ψ such that $\|\sigma \circ h-\psi\| \leq \varepsilon$.

Problem

We are given

- a pair of graphs G, H, and a compact 2-dim surface M; and
- a graph homomorphism (simplicial map) $h: G \rightarrow H$ and an embedding $\sigma: H \hookrightarrow M$.

We are to find if there exists $\psi: G \hookrightarrow M$ approximating $\sigma \circ h$, i.e., if for every $\varepsilon>0$ there exists ψ such that $\|\sigma \circ h-\psi\| \leq \varepsilon$. In other words, we are to decide if $\sigma \circ h$ is approximable by an embedding.

Problem

We are given

- a pair of graphs G, H, and a compact 2-dim surface M; and
- a graph homomorphism (simplicial map) $h: G \rightarrow H$ and an embedding $\sigma: H \hookrightarrow M$.

We are to find if there exists $\psi: G \hookrightarrow M$ approximating $\sigma \circ h$, i.e., if for every $\varepsilon>0$ there exists ψ such that $\|\sigma \circ h-\psi\| \leq \varepsilon$. In other words, we are to decide if $\sigma \circ h$ is approximable by an embedding.

We would like to do it in a polynomial time.

Hanani-Tutte theorem

Hanani-Tutte theorem

Suppose that H is a graph with a single vertex.

Hanani-Tutte theorem

Suppose that H is a graph with a single vertex. Then $\sigma \circ h: G \rightarrow H \rightarrow M$ is a constant map from G to M.

Hanani-Tutte theorem

Suppose that H is a graph with a single vertex. Then $\sigma \circ h: G \rightarrow H \rightarrow M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani-Tutte theorem

Suppose that H is a graph with a single vertex. Then $\sigma \circ h: G \rightarrow H \rightarrow M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani-Tutte $(1934,1970)$ A graph is planar if it can be drawn in the plane such that every pair of non-adjacent edges cross an even number of times.

Hanani-Tutte theorem

Suppose that H is a graph with a single vertex. Then $\sigma \circ h: G \rightarrow H \rightarrow M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani-Tutte $(1934,1970)$ A graph is planar if it can be drawn in the plane such that every pair of non-adjacent edges cross an even number of times.

A drawing $\psi: G \rightarrow M$ is a \mathbb{Z}_{2}-embedding if $\left|\psi\left(e_{1}\right) \cap \psi\left(e_{2}\right)\right| \bmod 2=0$ whenever $e_{1} \cap e_{2}=\emptyset$.

Hanani-Tutte theorem

Suppose that H is a graph with a single vertex. Then $\sigma \circ h: G \rightarrow H \rightarrow M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani-Tutte $(1934,1970)$ A graph is planar if it can be drawn in the plane such that every pair of non-adjacent edges cross an even number of times.

A drawing $\psi: G \rightarrow M$ is a \mathbb{Z}_{2}-embedding if $\left|\psi\left(e_{1}\right) \cap \psi\left(e_{2}\right)\right| \bmod 2=0$ whenever $e_{1} \cap e_{2}=\emptyset$. We write $\psi: G \hookrightarrow_{\mathbb{Z}_{2}} M$.

Hanani-Tutte theorem

Suppose that H is a graph with a single vertex. Then $\sigma \circ h: G \rightarrow H \rightarrow M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani-Tutte $(1934,1970)$ A graph is planar if it can be drawn in the plane such that every pair of non-adjacent edges cross an even number of times.

A drawing $\psi: G \rightarrow M$ is a \mathbb{Z}_{2}-embedding if $\left|\psi\left(e_{1}\right) \cap \psi\left(e_{2}\right)\right| \bmod 2=0$ whenever $e_{1} \cap e_{2}=\emptyset$. We write $\psi: G \hookrightarrow_{\mathbb{Z}_{2}} M$.

For (G, H, h, σ), the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable if for every $\varepsilon>0$ there exists $\psi: G \hookrightarrow_{\mathbb{Z}_{2}} M$ such that $\|\sigma \circ h-\psi\| \leq \varepsilon$.
\mathbb{Z}_{2}-approximability

\mathbb{Z}_{2}-approximability

Hanani-Tutte $(\mathbf{1 9 3 4}, \mathbf{1 9 7 0})$ If H has a single vertex. For (G, H, h, σ), the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable if and only if it is approximable by an embedding.

\mathbb{Z}_{2}-approximability

Hanani-Tutte $(\mathbf{1 9 3 4}, \mathbf{1 9 7 0})$ If H has a single vertex. For (G, H, h, σ), the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable if and only if it is approximable by an embedding.

FKMP (2014) For (G, H, h, σ), where $|V(H)| \leq 2$, the composition $\sigma \circ h$ is approximable by an embedding if and only if $\sigma \circ h$ is \mathbb{Z}_{2}-approximable.

\mathbb{Z}_{2}-approximability

Hanani-Tutte $(\mathbf{1 9 3 4}, \mathbf{1 9 7 0})$ If H has a single vertex. For (G, H, h, σ), the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable if and only if it is approximable by an embedding.

FKMP (2014) For (G, H, h, σ), where $|V(H)| \leq 2$, the composition $\sigma \circ h$ is approximable by an embedding if and only if $\sigma \circ h$ is \mathbb{Z}_{2}-approximable.

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_{2}-approximable. swe - standard winding example.

\mathbb{Z}_{2}-approximability

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_{2}-approximable. swe - standard winding example.

\mathbb{Z}_{2}-approximability

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_{2}-approximable. swe - standard winding example.

\mathbb{Z}_{2}-approximability

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_{2}-approximable. swe - standard winding example.

\mathbb{Z}_{2}-approximability

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_{2}-approximable. swe - standard winding example.

\mathbb{Z}_{2}-approximability

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_{2}-approximable. swe - standard winding example.

\mathbb{Z}_{2}-approximability

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_{2}-approximable. swe - standard winding example.

\mathbb{Z}_{2}-approximability

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_{2}-approximable. swe - standard winding example.

Conjecture: M. Skopenkov (2003) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Results

Results

We confirm the conjecture of M . Skopenkov.
F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Results

We confirm the conjecture of M . Skopenkov.
F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Conjecture: Repovš a A. Skopenkov (1997) If G is a tree, for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable if and only if it is approximable.

Results

We confirm the conjecture of M . Skopenkov.
F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Conjecture: Repovš a A. Skopenkov (1997) If G is a tree, for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable if and only if it is approximable.
F. a Kynčl (2017+) If G is a forest, for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable if and only if it is approximable.

Corollary

Corollary

F a Kynčl (2017+) For (G, H, h, σ) the approximability of $\sigma \circ h$ can be tested in a polynomial time.

Corollary

F a Kynčl (2017+) For (G, H, h, σ) the approximability of $\sigma \circ h$ can be tested in a polynomial time.

This answers an open problem asked in several papers (Cortese et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

Corollary

F a Kynčl (2017+) For (G, H, h, σ) the approximability of $\sigma \circ h$ can be tested in a polynomial time.

This answers an open problem asked in several papers (Cortese et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

Only an FPT algorithm by Angelini a Da Lozzo (2016) was known prior to our work.

Corollary

F a Kynčl (2017+) For (G, H, h, σ) the approximability of $\sigma \circ h$ can be tested in a polynomial time.

This answers an open problem asked in several papers (Cortese et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

Only an FPT algorithm by Angelini a Da Lozzo (2016) was known prior to our work.
Resolves also the strip planarity problem by Angelini et al. (2013).

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

The Proof

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_{2}-approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the i-th derivative $\left(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)}\right)$ is swe.

Known proofs of the Hanani-Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to come up with an appropriate surgery method.

Derivating a \mathbb{Z}_{2}-approximation

Derivating a \mathbb{Z}_{2}-approximation

Derivating a \mathbb{Z}_{2}-approximation

Derivating a \mathbb{Z}_{2}-approximation

Derivating a \mathbb{Z}_{2}-approximation

Derivating a \mathbb{Z}_{2}-approximation

Derivating a \mathbb{Z}_{2}-approximation

Derivating a \mathbb{Z}_{2}-approximation

Since a crosses c evenly, and b crosses d evenly, the parity of the number of crossings between a and b is the same as between c and d if and only if the blue and black crosses do not alternate along the circle.

Derivating a \mathbb{Z}_{2}-approximation

Open Problems

Open Problems

We are given

- graph G, multi-graph H, and a compact surface M; and
- a graph homomorphism $h: G \rightarrow H$ (simplicial map) specified only on vertices and $\sigma: H \hookrightarrow M$.

Open Problems

We are given

- graph G, multi-graph H, and a compact surface M; and
- a graph homomorphism $h: G \rightarrow H$ (simplicial map) specified only on vertices and $\sigma: H \hookrightarrow M$.

We want to test if h can be extended to the edges of G so that for all $\varepsilon>0$ there exists an embedding $\psi: G \hookrightarrow M$ such that $\|\sigma \circ h-\psi\|_{2} \leq \varepsilon$.

Open Problems

We are given

- graph G, multi-graph H, and a compact surface M; and
- a graph homomorphism $h: G \rightarrow H$ (simplicial map) specified only on vertices and $\sigma: H \hookrightarrow M$.

We want to test if h can be extended to the edges of G so that for all $\varepsilon>0$ there exists an embedding $\psi: G \hookrightarrow M$ such that $\|\sigma \circ h-\psi\|_{2} \leq \varepsilon$.

A variant, where σ is unknown (challenging already for cycles). A variant, where the handle-body is atomium-like.

