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Weakly simple polygons

Simple polygon is a PL embedding π : S1 ↪→ R2.

Weakly simple polygon is a PL map ϕ : S1 → R2 such that
for every ε > 0 there exists PL π : S1 ↪→ R2 s.t. ‖ϕ− π‖ ≤ ε.

Testing whether a polygon is wekly simple is solvable in
O(n log n) time (Cortese et al. 2009, Chang et al. 2015,
Akitaya et al. 2016).
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Minc (1997) Let G be a path, for (G,H, h, σ) the polygonal
path σ ◦ h is weakly simple if and only if for (G′, H ′, h′, σ′) the
composition σ′ ◦ h′ is weakly simple. Furthermore, by applying
the derivative iteratively finitely many times we either obtain
((∅, ∅), (∅, ∅), h(i), σ(i)) or a crossing in σ(i) for some i ∈ [n],
where n = |V (G)|.
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Minc (1997) Let G be a path, for (G,H, h, σ) the polygonal
path σ ◦ h is weakly simple if and only if for (G′, H ′, h′, σ′) the
composition σ′ ◦ h′ is weakly simple. Furthermore, by applying
the derivative iteratively finitely many times we either obtain
((∅, ∅), (∅, ∅), h(i), σ(i)) or a crossing in σ(i) for some i ∈ [n],
where n = |V (G)|.

Corollary We can test in a polynomial time if σ ◦ h is weakly
simple.
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We are given
• a pair of graphs G,H, and a compact 2-dim surface M ; and
• a graph homomorphism (simplicial map) h : G→ H and an

embedding σ : H ↪→M .

We are to find if there exists ψ : G ↪→M approximating σ ◦ h,
i.e., if for every ε > 0 there exists ψ such that ‖σ ◦ h− ψ‖ ≤ ε.

In other words, we are to decide if σ ◦ h is approximable by an
embedding.

We would like to do it in a polynomial time.
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Suppose that H is a graph with a single vertex.

Hanani–Tutte (1934,1970) A graph is planar if it can be
drawn in the plane such that every pair of non-adjacent edges
cross an even number of times.

Then σ ◦ h : G→ H →M is a constant map from G to M .
Our problem becomes just the planarity testing.

A drawing ψ : G→M is a Z2-embedding if
|ψ(e1) ∩ ψ(e2)| mod 2 = 0 whenever e1 ∩ e2 = ∅.

For (G,H, h, σ), the composition σ ◦ h is Z2-approximable if
for every ε > 0 there exists ψ : G ↪→Z2

M such that
‖σ ◦ h− ψ‖ ≤ ε.

We write ψ : G ↪→Z2
M .
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Z2-approximability

Repovš a A. Skopenkov (1997) There exists (G,H, h, σ)
such that the composition σ ◦ h is not approximable but it is
Z2-approximable. swe - standard winding example.

Conjecture: M. Skopenkov (2003) If for (G,H, h, σ) the
composition σ ◦ h is Z2-approximable then either it is also
approximable by an embedding or G contains a cycle C as a
subgraph such that for some i ∈ N the i-th derivative
(C(i), H(i), h(i), σ(i)) is swe.
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Results

We confirm the conjecture of M. Skopenkov.

F a Kynčl (2017+) If for (G,H, h, σ) the composition σ ◦ h is
Z2-approximable then either it is also approximable by an
embedding or G contains a cycle C as a subgraph such that for
some i ∈ N the i-th derivative (C(i), H(i), h(i), σ(i)) is swe.

Conjecture: Repovš a A. Skopenkov (1997) If G is a tree,
for (G,H, h, σ) the composition σ ◦ h is Z2-approximable if and
only if it is approximable.

F. a Kynčl (2017+) If G is a forest, for (G,H, h, σ) the
composition σ ◦ h is Z2-approximable if and only if it is
approximable.
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Corollary

F a Kynčl (2017+) For (G,H, h, σ) the approximability of
σ ◦ h can be tested in a polynomial time.

This answers an open problem asked in several papers (Cortese
et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

Only an FPT algorithm by Angelini a Da Lozzo (2016) was
known prior to our work.

Resolves also the strip planarity problem by Angelini et al.
(2013).
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F a Kynčl (2017+) If for (G,H, h, σ) the composition σ ◦ h is
Z2-approximable then either it is also approximable by an
embedding or G contains a cycle C as a subgraph such that for
some i ∈ N the i-th derivative (C(i), H(i), h(i), σ(i)) is swe.



The Proof

Known proofs of the Hanani–Tutte theorem and its variants use
Kuratowski theorem or a Whitney trick.

These tools work only locally and the main challenge was to
come up with an appropriate surgery method.
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v ∈ V (H)

a
c
d

b

a
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d
c

Since a crosses c evenly, and b crosses d evenly, the parity of the number of
crossings between a and b is the same as between c and d if and only if the
blue and black crosses do not alternate along the circle.
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Dôkaz

Open Problems

We are given
• graph G, multi-graph H, and a compact surface M ; and
• a graph homomorphism h : G→ H (simplicial map)

specified only on vertices and σ : H ↪→M .

We want to test if h can be extended to the edges of G so that
for all ε > 0 there exists an embedding ψ : G ↪→M such that
‖σ ◦ h− ψ‖2 ≤ ε.

A variant, where σ is unknown (challenging already for cycles).
A variant, where the handle-body is atomium-like.


