Hanani–Tutte for approximating maps of graphs

Radoslav Fulek a Jan Kynčl

Simple polygon is a PL embedding $\pi: S^1 \hookrightarrow \mathbb{R}^2$.

Simple polygon is a PL embedding $\pi: S^1 \hookrightarrow \mathbb{R}^2$.

Simple polygon is a PL embedding $\pi: S^1 \hookrightarrow \mathbb{R}^2$.

Weakly simple polygon is a PL map $\varphi: S^1 \to \mathbb{R}^2$ such that for every $\varepsilon > 0$ there exists PL $\pi: S^1 \hookrightarrow \mathbb{R}^2$ s.t. $\|\varphi - \pi\| \le \varepsilon$.

Simple polygon is a PL embedding $\pi: S^1 \hookrightarrow \mathbb{R}^2$.

Weakly simple polygon is a PL map $\varphi: S^1 \to \mathbb{R}^2$ such that for every $\varepsilon > 0$ there exists PL $\pi: S^1 \hookrightarrow \mathbb{R}^2$ s.t. $\|\varphi - \pi\| \le \varepsilon$.

Simple polygon is a PL embedding $\pi: S^1 \hookrightarrow \mathbb{R}^2$.

Weakly simple polygon is a PL map $\varphi: S^1 \to \mathbb{R}^2$ such that for every $\varepsilon > 0$ there exists PL $\pi: S^1 \hookrightarrow \mathbb{R}^2$ s.t. $\|\varphi - \pi\| \le \varepsilon$.

Testing whether a polygon is welly simple is solvable in $O(n \log n)$ time (Cortese et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

 (G, H, h, σ)

 (G, H, h, σ)

We turn H into its line graph.

 (G, H, h, σ)

We turn H into its line graph.

 (G, H, h, σ)

 (G, H, h, σ)

 (G, H, h, σ)

 (G, H, h, σ)

 (G, H, h, σ)

Minc (1997) Let G be a path, for (G, H, h, σ) the polygonal path $\sigma \circ h$ is weakly simple if and only if for (G', H', h', σ') the composition $\sigma' \circ h'$ is weakly simple. Furthermore, by applying the derivative iteratively finitely many times we either obtain $((\emptyset, \emptyset), (\emptyset, \emptyset), h^{(i)}, \sigma^{(i)})$ or a crossing in $\sigma^{(i)}$ for some $i \in [n]$, where n = |V(G)|.

Minc (1997) Let G be a path, for (G, H, h, σ) the polygonal path $\sigma \circ h$ is weakly simple if and only if for (G', H', h', σ') the composition $\sigma' \circ h'$ is weakly simple. Furthermore, by applying the derivative iteratively finitely many times we either obtain $((\emptyset, \emptyset), (\emptyset, \emptyset), h^{(i)}, \sigma^{(i)})$ or a crossing in $\sigma^{(i)}$ for some $i \in [n]$, where n = |V(G)|.

Corollary We can test in a polynomial time if $\sigma \circ h$ is weakly simple.

We are given

- $\bullet\,$ a pair of graphs G,H, and a compact 2-dim surface M; and
- a graph homomorphism (simplicial map) $h: G \to H$ and an embedding $\sigma: H \hookrightarrow M$.

We are given

- $\bullet\,$ a pair of graphs G,H, and a compact 2-dim surface M; and
- a graph homomorphism (simplicial map) $h: G \to H$ and an embedding $\sigma: H \hookrightarrow M$.

We are to find if there exists $\psi: G \hookrightarrow M$ approximating $\sigma \circ h$, i.e., if for every $\varepsilon > 0$ there exists ψ such that $\|\sigma \circ h - \psi\| \le \varepsilon$.

We are given

- $\bullet\,$ a pair of graphs G,H, and a compact 2-dim surface M; and
- a graph homomorphism (simplicial map) $h: G \to H$ and an embedding $\sigma: H \hookrightarrow M$.

We are to find if there exists $\psi: G \hookrightarrow M$ approximating $\sigma \circ h$, i.e., if for every $\varepsilon > 0$ there exists ψ such that $\|\sigma \circ h - \psi\| \le \varepsilon$.

In other words, we are to decide if $\sigma \circ h$ is approximable by an embedding.

We are given

- $\bullet\,$ a pair of graphs G,H, and a compact 2-dim surface M; and
- a graph homomorphism (simplicial map) $h: G \to H$ and an embedding $\sigma: H \hookrightarrow M$.

We are to find if there exists $\psi: G \hookrightarrow M$ approximating $\sigma \circ h$, i.e., if for every $\varepsilon > 0$ there exists ψ such that $\|\sigma \circ h - \psi\| \le \varepsilon$.

In other words, we are to decide if $\sigma \circ h$ is approximable by an embedding.

We would like to do it in a polynomial time.

Suppose that H is a graph with a single vertex.

Suppose that H is a graph with a single vertex. Then $\sigma \circ h : G \to H \to M$ is a constant map from G to M.

Suppose that H is a graph with a single vertex. Then $\sigma \circ h : G \to H \to M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Suppose that H is a graph with a single vertex. Then $\sigma \circ h : G \to H \to M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani–Tutte (1934,1970) A graph is planar if it can be drawn in the plane such that every pair of non-adjacent edges cross an even number of times.

Suppose that H is a graph with a single vertex. Then $\sigma \circ h : G \to H \to M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani–Tutte (1934,1970) A graph is planar if it can be drawn in the plane such that every pair of non-adjacent edges cross an even number of times.

A drawing $\psi: G \to M$ is a \mathbb{Z}_2 -embedding if $|\psi(e_1) \cap \psi(e_2)| \mod 2 = 0$ whenever $e_1 \cap e_2 = \emptyset$.

Suppose that H is a graph with a single vertex. Then $\sigma \circ h : G \to H \to M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani–Tutte (1934,1970) A graph is planar if it can be drawn in the plane such that every pair of non-adjacent edges cross an even number of times.

A drawing $\psi: G \to M$ is a \mathbb{Z}_2 -embedding if $|\psi(e_1) \cap \psi(e_2)| \mod 2 = 0$ whenever $e_1 \cap e_2 = \emptyset$. We write $\psi: G \hookrightarrow_{\mathbb{Z}_2} M$.

Suppose that H is a graph with a single vertex. Then $\sigma \circ h : G \to H \to M$ is a constant map from G to M. Our problem becomes just the planarity testing.

Hanani–Tutte (1934,1970) A graph is planar if it can be drawn in the plane such that every pair of non-adjacent edges cross an even number of times.

A drawing $\psi: G \to M$ is a \mathbb{Z}_2 -embedding if $|\psi(e_1) \cap \psi(e_2)| \mod 2 = 0$ whenever $e_1 \cap e_2 = \emptyset$. We write $\psi: G \hookrightarrow_{\mathbb{Z}_2} M$.

For (G, H, h, σ) , the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable if for every $\varepsilon > 0$ there exists $\psi : G \hookrightarrow_{\mathbb{Z}_2} M$ such that $\|\sigma \circ h - \psi\| \leq \varepsilon$.

Hanani–Tutte (1934,1970) If H has a single vertex. For (G, H, h, σ) , the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable if and only if it is approximable by an embedding.

Hanani–Tutte (1934,1970) If H has a single vertex. For (G, H, h, σ) , the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable if and only if it is approximable by an embedding.

FKMP (2014) For (G, H, h, σ) , where $|V(H)| \leq 2$, the composition $\sigma \circ h$ is approximable by an embedding if and only if $\sigma \circ h$ is \mathbb{Z}_2 -approximable.

Hanani–Tutte (1934,1970) If H has a single vertex. For (G, H, h, σ) , the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable if and only if it is approximable by an embedding.

FKMP (2014) For (G, H, h, σ) , where $|V(H)| \leq 2$, the composition $\sigma \circ h$ is approximable by an embedding if and only if $\sigma \circ h$ is \mathbb{Z}_2 -approximable.

Repovš a A. Skopenkov (1997) There exists (G, H, h, σ) such that the composition $\sigma \circ h$ is not approximable but it is \mathbb{Z}_2 -approximable. swe - standard winding example.

Conjecture: **M. Skopenkov (2003)** If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

We confirm the conjecture of M. Skopenkov.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

We confirm the conjecture of M. Skopenkov.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Conjecture: Repovš a A. Skopenkov (1997) If G is a tree, for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable if and only if it is approximable.

We confirm the conjecture of M. Skopenkov.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Conjecture: Repovš a A. Skopenkov (1997) If G is a tree, for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable if and only if it is approximable.

F. a Kynčl (2017+) If G is a forest, for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable if and only if it is approximable.

F a Kynčl (2017+) For (G, H, h, σ) the approximability of $\sigma \circ h$ can be tested in a polynomial time.

F a Kynčl (2017+) For (G, H, h, σ) the approximability of $\sigma \circ h$ can be tested in a polynomial time.

This answers an open problem asked in several papers (Cortese et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

F a Kynčl (2017+) For (G, H, h, σ) the approximability of $\sigma \circ h$ can be tested in a polynomial time.

This answers an open problem asked in several papers (Cortese et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

Only an FPT algorithm by Angelini a Da Lozzo (2016) was known prior to our work.

F a Kynčl (2017+) For (G, H, h, σ) the approximability of $\sigma \circ h$ can be tested in a polynomial time.

This answers an open problem asked in several papers (Cortese et al. 2009, Chang et al. 2015, Akitaya et al. 2016).

Only an FPT algorithm by Angelini a Da Lozzo (2016) was known prior to our work.

Resolves also the strip planarity problem by Angelini et al. (2013).

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

F a Kynčl (2017+) If for (G, H, h, σ) the composition $\sigma \circ h$ is \mathbb{Z}_2 -approximable then either it is also approximable by an embedding or G contains a cycle C as a subgraph such that for some $i \in \mathbb{N}$ the *i*-th derivative $(C^{(i)}, H^{(i)}, h^{(i)}, \sigma^{(i)})$ is **swe**.

Known proofs of the Hanani–Tutte theorem and its variants use Kuratowski theorem or a Whitney trick.

Since a crosses c evenly, and b crosses d evenly, the parity of the number of crossings between a and b is the same as between c and d if and only if the blue and black crosses do not alternate along the circle.

We are given

- graph G, multi-graph H, and a compact surface M; and
- a graph homomorphism h : G → H (simplicial map)
 specified only on vertices and σ : H → M.

We are given

- graph G, multi-graph H, and a compact surface M; and
- a graph homomorphism h : G → H (simplicial map)
 specified only on vertices and σ : H → M.

We want to test if h can be extended to the edges of G so that for all $\varepsilon > 0$ there exists an embedding $\psi : G \hookrightarrow M$ such that $\|\sigma \circ h - \psi\|_2 \le \varepsilon$.

We are given

- $\bullet\,$ graph $G,\,$ multi-graph $H,\,$ and a compact surface $M;\,$ and
- a graph homomorphism h : G → H (simplicial map)
 specified only on vertices and σ : H → M.

We want to test if h can be extended to the edges of G so that for all $\varepsilon > 0$ there exists an embedding $\psi : G \hookrightarrow M$ such that $\|\sigma \circ h - \psi\|_2 \le \varepsilon$.

A variant, where σ is unknown (challenging already for cycles). A variant, where the handle-body is atomium-like.