Triangle-free graphs with no six-vertex induced path

Maria Chudnovsky, Paul Seymour, Sophie Spirkl, Mingxian Zhong

BIRS Workshop: Geometric and Structural Graph Theory

August 20-25, 2017

The Clebsch Graph – Properties

- ► The Clebsch graph is triangle-free, *P*₆-free, strongly regular, and vertex-transitive
- ► The edges of K₁₆ can be partitioned into three copies of the Clebsch graph (thus R(3,3,3) ≥ 17)¹
- ▶ May identify its vertices with elements of *GF*(16) such that two vertices are adjacent if and only if the difference between the corresponding elements is a cube
- Removing any vertex and its neighbors yields the Petersen graph

¹Greenwood, Gleason (1955)

Another $\{P_6, triangle\}$ -Free Graph

Take $K_{n,n}$, subdivide a perfect matching

► A graph is scalable if it is an induced subgraph of this for some *n*.

Main Result

Theorem (Chudnovsky, Seymour, S., Zhong)

Let G be a connected $\{P_6, triangle\}$ -free graph without twins. Then either

- ▶ G admits a nontrivial simplicial homogeneous pair;
- G is a V_8 -expansion;
- G is an induced subgraph of the Clebsch graph; or
- ► G is scalable.

Previous results:

- ► Randerath, Schiermeyer, Tewes: Let G be a connected {P₆, triangle}-free graph in which no two vertices dominate each other. Then either G is 3-colorable, or G is an induced subgraph of the Clebsch graph.
- ▶ Brandstädt, Klembt, Mahfud: {*P*₆, triangle}-free graphs have bounded clique-width.

Main Result

Theorem (Chudnovsky, Seymour, S., Zhong)

Let G be a connected $\{P_6, triangle\}$ -free graph without twins. Then either

- ▶ G admits a nontrivial simplicial homogeneous pair;
- ▶ G is a V₈-expansion;
- G is an induced subgraph of the Clebsch graph; or
- G is scalable.

Nontrivial simplicial homogeneous pair: $A, B \subseteq V(G)$, stable, disjoint, with $|A| + |B| \ge 3$, $A \cup B$ not stable, such that no vertex of V(G) has any of the following:

- ▶ a neighbor and a non-neighbor in A;
- a neighbor and a non-neighbor in B;
- ► a neighbor in A and a neighbor in B.

Main Result

Theorem (Chudnovsky, Seymour, S., Zhong)

Let G be a connected $\{P_6, triangle\}$ -free graph without twins. Then either

- G admits a nontrivial simplicial homogeneous pair;
- ▶ *G* is a V₈-expansion;
- ▶ G is an induced subgraph of the Clebsch graph; or
- ► G is scalable.

 V_8 -expansion: Each blue edge is replaced by an antisubmatching, a bipartite graph such that every vertex has at most one non-neighbor on the opposite side. May delete black vertices.

$(K_2 + P_3)$ -Free Graphs

Theorem

Let G be a connected $\{P_6, triangle\}$ -free graph without twins that contains $K_2 + P_3$. Then either

- ► G admits a nontrivial simplicial homogeneous pair; or
- ▶ G is a V₈-expansion.

Theorem

Let G be connected and $\{K_2 + P_3, triangle\}$ -free. Then either:

- G admits a nontrivial submatched simplicial homogeneous pair;
- G may be obtained from an induced subgraph of the Clebsch graph by safely adding twins;
- ► G is scalable, or an extended antisubmatching; or
- ▶ G is a half-graph expansion.

Let G connected, $\{P_6, \text{triangle}\}$ -free, containing $K_2 + P_3$, with no twins.

Let G connected, $\{P_6, \text{triangle}\}$ -free, containing $K_2 + P_3$, with no twins.

Let G connected, $\{P_6, \text{triangle}\}$ -free, containing $K_2 + P_3$, with no twins.

Let G connected, $\{P_6, \text{triangle}\}$ -free, containing $K_2 + P_3$, with no twins.

Let G connected, $\{P_6, \text{triangle}\}$ -free, containing $K_2 + P_3$, with no twins.

Let G connected, $\{P_6, \text{triangle}\}$ -free, containing $K_2 + P_3$, with no twins.

• A_1, A_5 maximal with $G[A_1 \cup A_5]$ connected, A_5 complete to b_6 , no other edges

• Let A_2 be the set of vertices complete to $A_1 \cup \{b_3, b_6\}$

• Let A_4 be the set of vertices complete to $A_5 \cup \{b_3\}$

• Let A_6 be the set of vertices complete to $A_5 \cup \{b_7\}$

• Let A_8 be the set of vertices complete to $A_1 \cup \{b_7\}$

• Every vertex with a neighbor in $A_1 \cup A_5$ is in one of these sets

▶ A_3, A_7 maximal with $b_3 \in A_3, b_7 \in A_7$, $G[A_3 \cup A_7]$ connected, A_7 complete to b_6

▶ A₄ is complete to A₈, and A₂ is complete to A₆

Sophie Spirkl

▶ If the neighbors of A_1 are complete to those of A_5 , win; so WMA $A_8 \neq \emptyset$

• Every remaining vertex with a neighbor in $A_6 \cup A_8$ is complete to $A_6 \cup A_8$

Thank you!