Triangle-free graphs with no six-vertex induced path

Maria Chudnovsky, Paul Seymour, Sophie Spirkl, Mingxian Zhong

BIRS Workshop: Geometric and Structural Graph Theory
August 20-25, 2017

The Clebsch Graph - Construction

The Clebsch Graph - Another Construction

The Clebsch Graph - Properties

- The Clebsch graph is triangle-free, P_{6}-free, strongly regular, and vertex-transitive
- The edges of K_{16} can be partitioned into three copies of the Clebsch graph (thus $R(3,3,3) \geq 17)^{1}$
- May identify its vertices with elements of $G F(16)$ such that two vertices are adjacent if and only if the difference between the corresponding elements is a cube
- Removing any vertex and its neighbors yields the Petersen graph

Another $\left\{P_{6}\right.$, triangle $\}$-Free Graph

Take $K_{n, n}$, subdivide a perfect matching

- A graph is scalable if it is an induced subgraph of this for some n.

Main Result

Theorem (Chudnovsky, Seymour, S., Zhong)

Let G be a connected $\left\{P_{6}\right.$, triangle $\}$-free graph without twins. Then either

- G admits a nontrivial simplicial homogeneous pair;
- G is a V_{8}-expansion;
- G is an induced subgraph of the Clebsch graph; or
- G is scalable.

Previous results:

- Randerath, Schiermeyer, Tewes: Let G be a connected $\left\{P_{6}\right.$, triangle $\}$-free graph in which no two vertices dominate each other. Then either G is 3 -colorable, or G is an induced subgraph of the Clebsch graph.
- Brandstädt, Klembt, Mahfud: $\left\{P_{6}\right.$, triangle\}-free graphs have bounded clique-width.

Main Result

Theorem (Chudnovsky, Seymour, S., Zhong)

Let G be a connected $\left\{P_{6}\right.$, triangle $\}$-free graph without twins. Then either

- G admits a nontrivial simplicial homogeneous pair;
- G is a V_{8}-expansion;
- G is an induced subgraph of the Clebsch graph; or
- G is scalable.

Nontrivial simplicial homogeneous pair: $A, B \subseteq V(G)$, stable, disjoint, with $|A|+|B| \geq 3, A \cup B$ not stable, such that no vertex of $V(G)$ has any of the following:

- a neighbor and a non-neighbor in A;
- a neighbor and a non-neighbor in B;
- a neighbor in A and a neighbor in B.

Main Result

Theorem (Chudnovsky, Seymour, S., Zhong)

Let G be a connected $\left\{P_{6}\right.$, triangle $\}$-free graph without twins. Then either

- G admits a nontrivial simplicial homogeneous pair;
- G is a V_{8}-expansion;
- G is an induced subgraph of the Clebsch graph; or
- G is scalable.
V_{8}-expansion: Each blue edge is replaced by an antisubmatching, a bipartite graph such that every vertex has at most one non-neighbor on the opposite side. May delete black vertices.

$\left(K_{2}+P_{3}\right)$-Free Graphs

Theorem

Let G be a connected $\left\{P_{6}\right.$, triangle $\}$-free graph without twins that contains $K_{2}+P_{3}$. Then either

- G admits a nontrivial simplicial homogeneous pair; or
- G is a V_{8}-expansion.

Theorem

Let G be connected and $\left\{K_{2}+P_{3}\right.$, triangle $\}$-free. Then either:

- G admits a nontrivial submatched simplicial homogeneous pair;
- G may be obtained from an induced subgraph of the Clebsch graph by safely adding twins;
- G is scalable, or an extended antisubmatching; or
- G is a half-graph expansion.
$\left\{P_{6}\right.$, triangle $\}$-Free Graphs Containing $K_{2}+P_{3}$
Let G connected, $\left\{P_{6}\right.$, triangle $\}$-free, containing $K_{2}+P_{3}$, with no twins.

- If $K_{2}+P_{3}$ is present, we may assume that this graph is present
$\left\{P_{6}\right.$, triangle $\}$-Free Graphs Containing $K_{2}+P_{3}$
Let G connected, $\left\{P_{6}\right.$, triangle $\}$-free, containing $K_{2}+P_{3}$, with no twins.

- If $K_{2}+P_{3}$ is present, we may assume that this graph is present
$\left\{P_{6}\right.$, triangle $\}$-Free Graphs Containing $K_{2}+P_{3}$
Let G connected, $\left\{P_{6}\right.$, triangle $\}$-free, containing $K_{2}+P_{3}$, with no twins.

- If $K_{2}+P_{3}$ is present, we may assume that this graph is present
$\left\{P_{6}\right.$, triangle $\}$-Free Graphs Containing $K_{2}+P_{3}$
Let G connected, $\left\{P_{6}\right.$, triangle $\}$-free, containing $K_{2}+P_{3}$, with no twins.

- If $K_{2}+P_{3}$ is present, we may assume that this graph is present
$\left\{P_{6}\right.$, triangle $\}$-Free Graphs Containing $K_{2}+P_{3}$
Let G connected, $\left\{P_{6}\right.$, triangle $\}$-free, containing $K_{2}+P_{3}$, with no twins.

- If $K_{2}+P_{3}$ is present, we may assume that this graph is present
$\left\{P_{6}\right.$, triangle $\}$-Free Graphs Containing $K_{2}+P_{3}$
Let G connected, $\left\{P_{6}\right.$, triangle $\}$-free, containing $K_{2}+P_{3}$, with no twins.

- If $K_{2}+P_{3}$ is present, we may assume that this graph is present

V_{8}-Expansion

- A_{1}, A_{5} maximal with $G\left[A_{1} \cup A_{5}\right]$ connected, A_{5} complete to b_{6}, no other edges

V_{8}-Expansion

- Let A_{2} be the set of vertices complete to $A_{1} \cup\left\{b_{3}, b_{6}\right\}$

V_{8}-Expansion

- Let A_{4} be the set of vertices complete to $A_{5} \cup\left\{b_{3}\right\}$

V_{8}-Expansion

- Let A_{6} be the set of vertices complete to $A_{5} \cup\left\{b_{7}\right\}$

V_{8}-Expansion

- Let A_{8} be the set of vertices complete to $A_{1} \cup\left\{b_{7}\right\}$

V_{8}-Expansion

- Every vertex with a neighbor in $A_{1} \cup A_{5}$ is in one of these sets

V_{8}-Expansion

- A_{3}, A_{7} maximal with $b_{3} \in A_{3}, b_{7} \in A_{7}, G\left[A_{3} \cup A_{7}\right]$ connected, A_{7} complete to b_{6}

V_{8}-Expansion

- A_{4} is complete to A_{8}

V_{8}-Expansion

- A_{4} is complete to A_{8}, and A_{2} is complete to A_{6}

V_{8}-Expansion

- If the neighbors of A_{1} are complete to those of A_{5}, win; so WMA $A_{8} \neq \emptyset$

V_{8}-Expansion

- Every remaining vertex with a neighbor in $A_{6} \cup A_{8}$ is complete to $A_{6} \cup A_{8}$

Thank you!

