The Kelmans-Seymour Conjecture

Xingxing Yu
Joint Work with Dawei He and Yan Wang
School of Mathematics, Georgia Institute of Technology

August 23, 2017; Banff

1. Kuratowski's Theorem

- Kuratowski (1930): A graph is planar iff it contains no $T K_{5}$ or TK $_{3,3}$.

1. Kuratowski's Theorem

- Kuratowski (1930): A graph is planar iff it contains no $T K_{5}$ or TK $_{3,3}$.
- Every 3-connected nonplanar graph (except K_{5}) contains TK K ${ }_{3,3}$.

1. Kuratowski's Theorem

- Kuratowski (1930): A graph is planar iff it contains no $T K_{5}$ or TK $_{3,3}$.
- Every 3-connected nonplanar graph (except K_{5}) contains TK K,3.
- Graphs containing no $T K_{3,3}$ have good structure.

1. Kuratowski's Theorem

- Kuratowski (1930): A graph is planar iff it contains no $T K_{5}$ or TK $K_{3,3}$.
- Every 3-connected nonplanar graph (except K_{5}) contains TK K,3.
- Graphs containing no $T K_{3,3}$ have good structure.
- Conjecture (Kelmans 1979, Seymour 1977): Every 5-connected nonplanar graph contains $T K_{5}$.

2. Hajós Conjecture for $k=4$

- Conjecture (Hajós, 1961): Any graph containing no $T K_{5}$ is 4-colorable.

2. Hajós Conjecture for $k=4$

- Conjecture (Hajós, 1961): Any graph containing no $T K_{5}$ is 4-colorable.
- Y. and Zickfeld (2006). Any minimum counterexample to Hajós' conjecture must be 4-connected.

2. Hajós Conjecture for $k=4$

- Conjecture (Hajós, 1961): Any graph containing no $T K_{5}$ is 4-colorable.
- Y. and Zickfeld (2006). Any minimum counterexample to Hajós' conjecture must be 4-connected.
- Y. and Sun (2014): Suppose G is a minimum counterexample to Hajós' conjecture and S is a 4 -cut in G. Then $G-S$ has exactly two components.

3. Dirac's Conjecture

- Conjecture (Dirac, 1952): If G is a simple graph with $n \geq 3$ vertices and at least $3 n-5$ edges then G contains a $T K_{5}$.

3. Dirac's Conjecture

- Conjecture (Dirac, 1952): If G is a simple graph with $n \geq 3$ vertices and at least $3 n-5$ edges then G contains a $T K_{5}$.
- Mader (1998): Dirac's conjecture is true.

3. Dirac's Conjecture

- Conjecture (Dirac, 1952): If G is a simple graph with $n \geq 3$ vertices and at least $3 n-5$ edges then G contains a $T K_{5}$.
- Mader (1998): Dirac's conjecture is true.
- Question (Mader 1998): Does every simple graph on $n \geq 4$ vertices with more than $12(n-2) / 5$ edges contain a K_{4}^{-}, a $K_{2,3}$, or a $T K_{5}$?

3. Dirac's Conjecture

- Conjecture (Dirac, 1952): If G is a simple graph with $n \geq 3$ vertices and at least $3 n-5$ edges then G contains a $T K_{5}$.
- Mader (1998): Dirac's conjecture is true.
- Question (Mader 1998): Does every simple graph on $n \geq 4$ vertices with more than $12(n-2) / 5$ edges contain a K_{4}^{-}, a $K_{2,3}$, or a $T K_{5}$?
- Kawarabayashi, Ma and Y. (2012): The Kelmans-Seymour conjecture holds if the answer to Mader's questions is affirmative.

4. Nonseparating path

- Ma and Y. (2013): Kelmans-Seymour conjecture holds for graphs containing K_{4}^{-}.

4. Nonseparating path

- Ma and Y. (2013): Kelmans-Seymour conjecture holds for graphs containing K_{4}^{-}.
- Let G be a 5-connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ induce a K_{4}^{-}with $y_{1} y_{2} \notin E(G)$. Then there is an induced path P in $G-x_{1} x_{2}$ between x_{1} and x_{2} such that
- $\left\{y_{1}, y_{2}\right\} \nsubseteq V(P)$, and
- $G-V(P)$ is 2-connected.

5. Lovász conjecture

- Conjecture (Lovász 1975) For each positive integer k, there exists a (minimum) integer $c(k)>0$ with the following property: For any two vertices u and v in a $c(k)$-connected graph G, there is a path P from u to v in G such that $G-V(P)$ is k-connected.

5. Lovász conjecture

- Conjecture (Lovász 1975) For each positive integer k, there exists a (minimum) integer $c(k)>0$ with the following property: For any two vertices u and v in a $c(k)$-connected graph G, there is a path P from u to v in G such that $G-V(P)$ is k-connected.
- $c(1)=3$ by a result of Tutte (1963).

5. Lovász conjecture

- Conjecture (Lovász 1975) For each positive integer k, there exists a (minimum) integer $c(k)>0$ with the following property: For any two vertices u and v in a $c(k)$-connected graph G, there is a path P from u to v in G such that $G-V(P)$ is k-connected.
- $c(1)=3$ by a result of Tutte (1963).
- $c(2)=5$ by results of Kriesell (2001) and Chen, Gould and Y. (2003).

5. Lovász conjecture

- Conjecture (Lovász 1975) For each positive integer k, there exists a (minimum) integer $c(k)>0$ with the following property: For any two vertices u and v in a $c(k)$-connected graph G, there is a path P from u to v in G such that $G-V(P)$ is k-connected.
- $c(1)=3$ by a result of Tutte (1963).
- $c(2)=5$ by results of Kriesell (2001) and Chen, Gould and Y. (2003).
- Open for $k \geq 3$.

6. Contractible subgraphs

- Let G be 5-connected nonplanar graph. Let M be a maximal connected subgraph of G such that G / M is 5 -connected and nonplanar.

6. Contractible subgraphs

- Let G be 5-connected nonplanar graph. Let M be a maximal connected subgraph of G such that G / M is 5 -connected and nonplanar.
- Let z denote the vertex representing the contraction of M, and let $H=G / M$.

7. Four cases

- H contains a K_{4}^{-}in which z is of degree 2.

7. Four cases

- H contains a K_{4}^{-}in which z is of degree 2.
- H contains a K_{4}^{-}in which z is of degree 3.

7. Four cases

- H contains a K_{4}^{-}in which z is of degree 2.
- H contains a K_{4}^{-}in which z is of degree 3.
- H does not contain K_{4}^{-}, and there exists $T \subseteq H$ such that $z \in V(T), T \cong K_{2}$ or $T \cong K_{3}$, and H / T is 5-connected and planar.

7. Four cases

- H contains a K_{4}^{-}in which z is of degree 2 .
- H contains a K_{4}^{-}in which z is of degree 3 .
- H does not contain K_{4}^{-}, and there exists $T \subseteq H$ such that $z \in V(T), T \cong K_{2}$ or $T \cong K_{3}$, and H / T is 5-connected and planar.
- H does not contain K_{4}^{-}, and for any $T \subseteq H$ with $z \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}, H / T$ is not 5-connected.

Case 1. Degree 2

Let $x_{1}, x_{2}, y_{1}, z \in V(H)$ be distinct such that $H\left[\left\{x_{1}, x_{2}, y_{1}, z\right\}\right] \cong K_{4}^{-}$and $y_{1} z \notin E(H)$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.

Case 1. Degree 2

Let $x_{1}, x_{2}, y_{1}, z \in V(H)$ be distinct such that $H\left[\left\{x_{1}, x_{2}, y_{1}, z\right\}\right] \cong K_{4}^{-}$and $y_{1} z \notin E(H)$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- $H-z$ contains K_{4}^{-}.

Case 1. Degree 2

Let $x_{1}, x_{2}, y_{1}, z \in V(H)$ be distinct such that $H\left[\left\{x_{1}, x_{2}, y_{1}, z\right\}\right] \cong K_{4}^{-}$and $y_{1} z \notin E(H)$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- $H-z$ contains K_{4}^{-}.
- H has a 5 -separation $\left(H_{1}, H_{2}\right)$ such that $V\left(H_{1} \cap H_{2}\right)=\left\{z, a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and H_{2} is the graph obtained from the edge-disjoint union of the 8 -cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding z and the edges $z b_{i}$ for $i \in[4]$.

Case 1. Degree 2

Let $x_{1}, x_{2}, y_{1}, z \in V(H)$ be distinct such that $H\left[\left\{x_{1}, x_{2}, y_{1}, z\right\}\right] \cong K_{4}^{-}$and $y_{1} z \notin E(H)$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- $H-z$ contains K_{4}^{-}.
- H has a 5 -separation $\left(H_{1}, H_{2}\right)$ such that $V\left(H_{1} \cap H_{2}\right)=\left\{z, a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and H_{2} is the graph obtained from the edge-disjoint union of the 8 -cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding z and the edges $z b_{i}$ for $i \in[4]$.
- For any distinct $z_{1}, z_{2}, z_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}$, $H-\left\{y_{2} v: v \notin\left\{z_{1}, z_{2}, z_{3}, x_{1}, x_{2}\right\}\right\}$ contains $T K_{5}$.

Case 2. Degree 3

Let $z, x_{2}, y_{1}, y_{2} \in V(H)$ be distinct such that $H\left[\left\{z, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(H)$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.

Case 2. Degree 3

Let $z, x_{2}, y_{1}, y_{2} \in V(H)$ be distinct such that $H\left[\left\{z, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(H)$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- $H-z$ contains K_{4}^{-}, or H contains K_{4}^{-}in which z is of degree 2.

Case 2. Degree 3

Let $z, x_{2}, y_{1}, y_{2} \in V(H)$ be distinct such that $H\left[\left\{z, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(H)$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- $H-z$ contains K_{4}^{-}, or H contains K_{4}^{-}in which z is of degree 2.
- x_{2}, y_{1}, y_{2} may be chosen so that for any distinct $z_{1}, z_{2} \in N(z)-\left\{x_{2}, y_{1}, y_{2}\right\}, H-\left\{z v: v \notin\left\{z_{1}, z_{2}, x_{2}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

Case 3. Planarity

Suppose H does not contain K_{4}^{-}, and there exists $T \subseteq H$ such that $z \in V(T), T \cong K_{2}$ or $T \cong K_{3}$, and H / T is 5 -connected and planar

Then $H-z$ contains K_{4}^{-}(by a discharging argument).

Case 4. Special separations

Suppose H has a 5-separation $\left(H_{1}, H_{2}\right)$ such that $\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ and there exists $z \in V\left(H_{1} \cap H_{2}\right)$ with ($\left.H-z, V\left(H_{1} \cap H_{2}\right)-\{z\}\right)$ planar. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.

Case 4. Special separations

Suppose H has a 5-separation $\left(H_{1}, H_{2}\right)$ such that $\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ and there exists $z \in V\left(H_{1} \cap H_{2}\right)$ with ($\left.H-z, V\left(H_{1} \cap H_{2}\right)-\{z\}\right)$ planar. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- $H-z$ contains K_{4}^{-}, or H contains K_{4}^{-}in which z is of degree 2.

Case 4. Special separations

H has a 5-separation $\left(H_{1}, H_{2}\right)$ such that $\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ and $G\left[V\left(H_{1} \cap H_{2}\right)\right]$ contains a triangle $z z_{1} z_{2} z$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.

Case 4. Special separations

H has a 5-separation $\left(H_{1}, H_{2}\right)$ such that $\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ and $G\left[V\left(H_{1} \cap H_{2}\right)\right]$ contains a triangle $z z_{1} z_{2} z$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- $H-z$ contains K_{4}^{-}, or H contains K_{4}^{-}in which z is of degree 2.

Case 4. Special separations

H has a 5-separation $\left(H_{1}, H_{2}\right)$ such that $\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ and $G\left[V\left(H_{1} \cap H_{2}\right)\right]$ contains a triangle $z z_{1} z_{2} z$. Then one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- $H-z$ contains K_{4}^{-}, or H contains K_{4}^{-}in which z is of degree 2.
- For any $u_{1}, u_{2}, u_{3} \in N(z)-\left\{z_{1}, z_{2}\right\}$, $H-\left\{z v: v \notin\left\{z_{1}, z_{2}, u_{1}, u_{2}, u_{3}\right\}\right\}$ contains $T K_{5}$.

Case 4. Special separations

H has a 6 -separation in $\left(H_{1}, H_{2}\right)$ such that $z \in V\left(H_{1} \cap H_{2}\right)$, $H\left[V\left(H_{1} \cap H_{2}\right)\right]$ contains a triangle $z z_{1} z_{2} z,\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ (and we then minimize H_{1}). Then $N(x) \cap V\left(H_{1}-H_{2}\right) \neq \emptyset$, or one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.

Case 4. Special separations

H has a 6 -separation in $\left(H_{1}, H_{2}\right)$ such that $z \in V\left(H_{1} \cap H_{2}\right)$, $H\left[V\left(H_{1} \cap H_{2}\right)\right]$ contains a triangle $z z_{1} z_{2} z,\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ (and we then minimize H_{1}). Then $N(x) \cap V\left(H_{1}-H_{2}\right) \neq \emptyset$, or one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- H contains K_{4}^{-}.

Case 4. Special separations

H has a 6-separation in $\left(H_{1}, H_{2}\right)$ such that $z \in V\left(H_{1} \cap H_{2}\right)$, $H\left[V\left(H_{1} \cap H_{2}\right)\right]$ contains a triangle $z z_{1} z_{2} z,\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ (and we then minimize H_{1}). Then $N(x) \cap V\left(H_{1}-H_{2}\right) \neq \emptyset$, or one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- H contains K_{4}^{-}.
- There exists $z_{3} \in N(z)$ such that for any distinct $y_{1}, y_{2} \in N(z)-\left\{z_{1}, z_{2}, z_{3}\right\}, G-\left\{x v: v \notin\left\{z_{1}, z_{2}, z_{3}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

Case 4. Special separations

H has a 6-separation in $\left(H_{1}, H_{2}\right)$ such that $z \in V\left(H_{1} \cap H_{2}\right)$, $H\left[V\left(H_{1} \cap H_{2}\right)\right]$ contains a triangle $z z_{1} z_{2} z,\left|V\left(H_{i}\right)\right| \geq 7$ for $i=1,2$ (and we then minimize H_{1}). Then $N(x) \cap V\left(H_{1}-H_{2}\right) \neq \emptyset$, or one of the following holds:

- H contains a $T K_{5}$ in which z is not a branch vertex.
- H contains K_{4}^{-}.
- There exists $z_{3} \in N(z)$ such that for any distinct $y_{1}, y_{2} \in N(z)-\left\{z_{1}, z_{2}, z_{3}\right\}, G-\left\{x v: v \notin\left\{z_{1}, z_{2}, z_{3}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.
- For some $i \in[2]$ and some $j \in[3]$, $N\left(z_{i}\right) \subseteq V\left(H_{1}-H_{2}\right) \cup\left\{z, z_{3-i}\right\}$, and any three independent paths in $H_{1}-z$ from $\left\{z_{1}, z_{2}\right\}$ to v_{1}, v_{2}, v_{3}, respectively, with two from z_{i} and one from z_{3-i}, must contain a path from z_{3-i} to v_{j}.

Thank You

Thank You

