The Kelmans-Seymour Conjecture

Xingxing Yu Joint Work with Dawei He and Yan Wang

School of Mathematics, Georgia Institute of Technology

August 23, 2017; Banff

▲ 同 ▶ | ▲ 臣 ▶

Image: A image: A

æ

► Kuratowski (1930): A graph is planar iff it contains no TK₅ or TK_{3,3}.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

- ► Kuratowski (1930): A graph is planar iff it contains no TK₅ or TK_{3,3}.
- ► Every 3-connected nonplanar graph (except K₅) contains TK_{3,3}.

・回・ ・ヨ・ ・ヨ・

- ► Kuratowski (1930): A graph is planar iff it contains no TK₅ or TK_{3,3}.
- Every 3-connected nonplanar graph (except K₅) contains TK_{3,3}.
- Graphs containing no $TK_{3,3}$ have good structure.

・回・ ・ヨ・ ・ヨ・

► Kuratowski (1930): A graph is planar iff it contains no TK₅ or TK_{3,3}.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Every 3-connected nonplanar graph (except K₅) contains TK_{3,3}.
- Graphs containing no $TK_{3,3}$ have good structure.
- Conjecture (Kelmans 1979, Seymour 1977): Every 5-connected nonplanar graph contains *TK*₅.

2. Hajós Conjecture for k = 4

► Conjecture (Hajós, 1961): Any graph containing no TK₅ is 4-colorable.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

2. Hajós Conjecture for k = 4

- ► Conjecture (Hajós, 1961): Any graph containing no TK₅ is 4-colorable.
- Y. and Zickfeld (2006). Any minimum counterexample to Hajós' conjecture must be 4-connected.

(4回) (4回) (4回)

2. Hajós Conjecture for k = 4

- ► Conjecture (Hajós, 1961): Any graph containing no TK₅ is 4-colorable.
- Y. and Zickfeld (2006). Any minimum counterexample to Hajós' conjecture must be 4-connected.
- ► Y. and Sun (2014): Suppose G is a minimum counterexample to Hajós' conjecture and S is a 4-cut in G. Then G - S has exactly two components.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Dirac, 1952): If G is a simple graph with n ≥ 3 vertices and at least 3n − 5 edges then G contains a TK₅.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Conjecture (Dirac, 1952): If G is a simple graph with n ≥ 3 vertices and at least 3n − 5 edges then G contains a TK₅.
- ▶ Mader (1998): Dirac's conjecture is true.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Conjecture (Dirac, 1952): If G is a simple graph with n ≥ 3 vertices and at least 3n − 5 edges then G contains a TK₅.
- ▶ Mader (1998): Dirac's conjecture is true.
- ► Question (Mader 1998): Does every simple graph on n ≥ 4 vertices with more than 12(n − 2)/5 edges contain a K₄⁻, a K_{2,3}, or a TK₅?

(4月) (4日) (4日)

- Conjecture (Dirac, 1952): If G is a simple graph with n ≥ 3 vertices and at least 3n − 5 edges then G contains a TK₅.
- ▶ Mader (1998): Dirac's conjecture is true.
- ► Question (Mader 1998): Does every simple graph on n ≥ 4 vertices with more than 12(n − 2)/5 edges contain a K₄⁻, a K_{2,3}, or a TK₅?
- Kawarabayashi, Ma and Y. (2012): The Kelmans-Seymour conjecture holds if the answer to Mader's questions is affirmative.

4. Nonseparating path

► Ma and Y. (2013): Kelmans-Seymour conjecture holds for graphs containing K⁻₄.

・ 回 と ・ ヨ と ・ モ と …

æ

4. Nonseparating path

- ► Ma and Y. (2013): Kelmans-Seymour conjecture holds for graphs containing K⁻₄.
- ▶ Let G be a 5-connected nonplanar graph and let $x_1, x_2, y_1, y_2 \in V(G)$ induce a K_4^- with $y_1y_2 \notin E(G)$. Then there is an induced path P in $G x_1x_2$ between x_1 and x_2 such that

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\{y_1, y_2\} \not\subseteq V(P)$, and
- G V(P) is 2-connected.

► Conjecture (Lovász 1975) For each positive integer k, there exists a (minimum) integer c(k) > 0 with the following property: For any two vertices u and v in a c(k)-connected graph G, there is a path P from u to v in G such that G - V(P) is k-connected.

伺い イヨト イヨト

- Conjecture (Lovász 1975) For each positive integer k, there exists a (minimum) integer c(k) > 0 with the following property: For any two vertices u and v in a c(k)-connected graph G, there is a path P from u to v in G such that G − V(P) is k-connected.
- c(1) = 3 by a result of Tutte (1963).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Conjecture (Lovász 1975) For each positive integer k, there exists a (minimum) integer c(k) > 0 with the following property: For any two vertices u and v in a c(k)-connected graph G, there is a path P from u to v in G such that G − V(P) is k-connected.
- c(1) = 3 by a result of Tutte (1963).
- c(2) = 5 by results of Kriesell (2001) and Chen, Gould and Y. (2003).

- 4 周 ト 4 日 ト 4 日 ト - 日

- ► Conjecture (Lovász 1975) For each positive integer k, there exists a (minimum) integer c(k) > 0 with the following property: For any two vertices u and v in a c(k)-connected graph G, there is a path P from u to v in G such that G V(P) is k-connected.
- c(1) = 3 by a result of Tutte (1963).
- c(2) = 5 by results of Kriesell (2001) and Chen, Gould and Y. (2003).

- 4 周 ト 4 日 ト 4 日 ト - 日

• Open for
$$k \geq 3$$
.

Introduction Related problems Proof Outline

6. Contractible subgraphs

▶ Let *G* be 5-connected nonplanar graph. Let *M* be a maximal connected subgraph of *G* such that *G*/*M* is 5-connected and nonplanar.

Image: A image: A

6. Contractible subgraphs

- ▶ Let *G* be 5-connected nonplanar graph. Let *M* be a maximal connected subgraph of *G* such that *G*/*M* is 5-connected and nonplanar.
- Let z denote the vertex representing the contraction of M, and let H = G/M.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• *H* contains a K_4^- in which *z* is of degree 2.

<ロ> (四) (四) (三) (三) (三)

- *H* contains a K_4^- in which *z* is of degree 2.
- *H* contains a K_4^- in which *z* is of degree 3.

イロン イ部ン イヨン イヨン 三日

- *H* contains a K_4^- in which *z* is of degree 2.
- *H* contains a K_4^- in which *z* is of degree 3.
- ▶ *H* does not contain K_4^- , and there exists $T \subseteq H$ such that $z \in V(T)$, $T \cong K_2$ or $T \cong K_3$, and H/T is 5-connected and planar.

(《圖》 《문》 《문》 - 문

- *H* contains a K_4^- in which *z* is of degree 2.
- *H* contains a K_4^- in which *z* is of degree 3.
- ▶ *H* does not contain K_4^- , and there exists $T \subseteq H$ such that $z \in V(T)$, $T \cong K_2$ or $T \cong K_3$, and H/T is 5-connected and planar.
- H does not contain K₄⁻, and for any T ⊆ H with z ∈ V(T) and T ≅ K₂ or T ≅ K₃, H/T is not 5-connected.

(日) (同) (E) (E) (E)

Let $x_1, x_2, y_1, z \in V(H)$ be distinct such that $H[\{x_1, x_2, y_1, z\}] \cong K_4^-$ and $y_1z \notin E(H)$. Then one of the following holds:

• H contains a TK_5 in which z is not a branch vertex.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Let $x_1, x_2, y_1, z \in V(H)$ be distinct such that $H[\{x_1, x_2, y_1, z\}] \cong K_4^-$ and $y_1z \notin E(H)$. Then one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H z contains K_4^- .

米部 シネヨシネヨシ 三日

Let $x_1, x_2, y_1, z \in V(H)$ be distinct such that $H[\{x_1, x_2, y_1, z\}] \cong K_4^-$ and $y_1z \notin E(H)$. Then one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H z contains K_4^- .
- *H* has a 5-separation (*H*₁, *H*₂) such that
 V(*H*₁ ∩ *H*₂) = {*z*, *a*₁, *a*₂, *a*₃, *a*₄}, and *H*₂ is the graph obtained from the edge-disjoint union of the 8-cycle
 *a*₁*b*₁*a*₂*b*₂*a*₃*b*₃*a*₄*b*₄*a*₁ and the 4-cycle *b*₁*b*₂*b*₃*b*₄*b*₁ by adding *z* and the edges *zb_i* for *i* ∈ [4].

イロン イ部ン イヨン イヨン 三日

Let $x_1, x_2, y_1, z \in V(H)$ be distinct such that $H[\{x_1, x_2, y_1, z\}] \cong K_4^-$ and $y_1z \notin E(H)$. Then one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H z contains K_4^- .
- ▶ *H* has a 5-separation (H_1, H_2) such that $V(H_1 \cap H_2) = \{z, a_1, a_2, a_3, a_4\}$, and H_2 is the graph obtained from the edge-disjoint union of the 8-cycle $a_1b_1a_2b_2a_3b_3a_4b_4a_1$ and the 4-cycle $b_1b_2b_3b_4b_1$ by adding *z* and the edges *zb_i* for *i* ∈ [4].

イロン イ部ン イヨン イヨン 三日

► For any distinct
$$z_1, z_2, z_3 \in N(y_2) - \{x_1, x_2\}$$
,
 $H - \{y_2v : v \notin \{z_1, z_2, z_3, x_1, x_2\}\}$ contains TK_5 .

Let $z, x_2, y_1, y_2 \in V(H)$ be distinct such that $H[\{z, x_2, y_1, y_2\}] \cong K_4^-$ and $y_1y_2 \notin E(H)$. Then one of the following holds:

• *H* contains a TK_5 in which *z* is not a branch vertex.

(《圖》 《문》 《문》 - 문

Let $z, x_2, y_1, y_2 \in V(H)$ be distinct such that $H[\{z, x_2, y_1, y_2\}] \cong K_4^-$ and $y_1y_2 \notin E(H)$. Then one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H z contains K_4^- , or H contains K_4^- in which z is of degree 2.

★@> ★ E> ★ E> = E

Let $z, x_2, y_1, y_2 \in V(H)$ be distinct such that $H[\{z, x_2, y_1, y_2\}] \cong K_4^-$ and $y_1y_2 \notin E(H)$. Then one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H z contains K_4^- , or H contains K_4^- in which z is of degree 2.
- ▶ x_2, y_1, y_2 may be chosen so that for any distinct $z_1, z_2 \in N(z) \{x_2, y_1, y_2\}, H \{zv : v \notin \{z_1, z_2, x_2, y_1, y_2\}\}$ contains TK_5 .

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Case 3. Planarity

Suppose *H* does not contain K_4^- , and there exists $T \subseteq H$ such that $z \in V(T)$, $T \cong K_2$ or $T \cong K_3$, and H/T is 5-connected and planar

Then H - z contains K_4^- (by a discharging argument).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Suppose *H* has a 5-separation (H_1, H_2) such that $|V(H_i)| \ge 7$ for i = 1, 2 and there exists $z \in V(H_1 \cap H_2)$ with $(H - z, V(H_1 \cap H_2) - \{z\})$ planar. Then one of the following holds:

• *H* contains a TK_5 in which *z* is not a branch vertex.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose *H* has a 5-separation (H_1, H_2) such that $|V(H_i)| \ge 7$ for i = 1, 2 and there exists $z \in V(H_1 \cap H_2)$ with $(H - z, V(H_1 \cap H_2) - \{z\})$ planar. Then one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H z contains K_4^- , or H contains K_4^- in which z is of degree 2.

(4月) (4日) (4日) 日

H has a 5-separation (H_1, H_2) such that $|V(H_i)| \ge 7$ for i = 1, 2 and $G[V(H_1 \cap H_2)]$ contains a triangle zz_1z_2z . Then one of the following holds:

• *H* contains a TK_5 in which *z* is not a branch vertex.

・ 同 ト ・ ヨ ト ・ ヨ ト

H has a 5-separation (H_1, H_2) such that $|V(H_i)| \ge 7$ for i = 1, 2 and $G[V(H_1 \cap H_2)]$ contains a triangle zz_1z_2z . Then one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H z contains K_4^- , or H contains K_4^- in which z is of degree 2.

(本間) (本語) (本語) (語)

H has a 5-separation (H_1, H_2) such that $|V(H_i)| \ge 7$ for i = 1, 2 and $G[V(H_1 \cap H_2)]$ contains a triangle zz_1z_2z . Then one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H z contains K_4^- , or H contains K_4^- in which z is of degree 2.

- 4 周 ト 4 日 ト 4 日 ト - 日

► For any $u_1, u_2, u_3 \in N(z) - \{z_1, z_2\}$, $H - \{zv : v \notin \{z_1, z_2, u_1, u_2, u_3\}\}$ contains TK_5 .

H has a 6-separation in (H_1, H_2) such that $z \in V(H_1 \cap H_2)$, $H[V(H_1 \cap H_2)]$ contains a triangle zz_1z_2z , $|V(H_i)| \ge 7$ for i = 1, 2(and we then minimize H_1). Then $N(x) \cap V(H_1 - H_2) \ne \emptyset$, or one of the following holds:

• *H* contains a TK_5 in which *z* is not a branch vertex.

・ 同 ト ・ ヨ ト ・ ヨ ト …

H has a 6-separation in (H_1, H_2) such that $z \in V(H_1 \cap H_2)$, $H[V(H_1 \cap H_2)]$ contains a triangle zz_1z_2z , $|V(H_i)| \ge 7$ for i = 1, 2(and we then minimize H_1). Then $N(x) \cap V(H_1 - H_2) \neq \emptyset$, or one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- ► H contains K⁻₄.

・ 同 ト ・ ヨ ト ・ ヨ ト

H has a 6-separation in (H_1, H_2) such that $z \in V(H_1 \cap H_2)$, $H[V(H_1 \cap H_2)]$ contains a triangle zz_1z_2z , $|V(H_i)| \ge 7$ for i = 1, 2(and we then minimize H_1). Then $N(x) \cap V(H_1 - H_2) \ne \emptyset$, or one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- *H* contains K_4^- .
- ▶ There exists $z_3 \in N(z)$ such that for any distinct $y_1, y_2 \in N(z) \{z_1, z_2, z_3\}$, $G \{xv : v \notin \{z_1, z_2, z_3, y_1, y_2\}\}$ contains TK_5 .

H has a 6-separation in (H_1, H_2) such that $z \in V(H_1 \cap H_2)$, $H[V(H_1 \cap H_2)]$ contains a triangle zz_1z_2z , $|V(H_i)| \ge 7$ for i = 1, 2(and we then minimize H_1). Then $N(x) \cap V(H_1 - H_2) \ne \emptyset$, or one of the following holds:

- *H* contains a TK_5 in which *z* is not a branch vertex.
- H contains K_4^- .
- ▶ There exists $z_3 \in N(z)$ such that for any distinct $y_1, y_2 \in N(z) \{z_1, z_2, z_3\}$, $G \{xv : v \notin \{z_1, z_2, z_3, y_1, y_2\}\}$ contains TK_5 .
- For some i ∈ [2] and some j ∈ [3], N(z_i) ⊆ V(H₁ − H₂) ∪ {z, z_{3−i}}, and any three independent paths in H₁ − z from {z₁, z₂} to v₁, v₂, v₃, respectively, with two from z_i and one from z_{3−i}, must contain a path from z_{3−i} to v_j.

(日) (同) (E) (E) (E)

Thank You

Thank You

Xingxing Yu Joint Work with Dawei He and Yan Wang On the Kelmans-Seymour Conjecture

・ロン ・回 と ・ ヨン ・ モン

æ