External symmetries of regular maps

Jozef Širáň

OU and STU

Banff 26.09.2017

Jozef Širáň OU and STU External symmetries of regular maps

∃ ⊳ Banff 26.09.2017 1 / 11

- 3

프 에 에 프 어

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Images of a flag z under reflections r_i and rotations r_0r_1 , r_1r_2 and r_0r_2 :

A B M A B M

Images of a flag z under reflections r_i and rotations r_0r_1 , r_1r_2 and r_0r_2 :

Images of a flag z under reflections r_i and rotations r_0r_1 , r_1r_2 and r_0r_2 :

Duality is a result of interchanging the roles of the involutions r_0 and r_2 .

				2.40
Jozef Širáň OU and STU	External symmetries of regular maps	Banff	26.09.2017	2 / 11

The duality operator D assigns to a regular map $M = (G; r_0, r_1, r_2)$ its dual map $D(M) = (G; r_2, r_1, r_0);$

3

3

Checking self-duality: A regular map $(G; r_0, r_1, r_2)$ is self-dual if and only if there is an automorphism of G that fixes r_1 and interchanges r_0 with r_2 .

Checking self-duality: A regular map $(G; r_0, r_1, r_2)$ is self-dual if and only if there is an automorphism of G that fixes r_1 and interchanges r_0 with r_2 .

If $(G; r_0, r_1, r_2)$ is orientably-regular, then so is its dual;

イロト 不得下 イヨト イヨト 二日

Checking self-duality: A regular map $(G; r_0, r_1, r_2)$ is self-dual if and only if there is an automorphism of G that fixes r_1 and interchanges r_0 with r_2 .

If $(G; r_0, r_1, r_2)$ is orientably-regular, then so is its dual; representing it by $(G^+, r, s) = \langle r, s | r^m, s^m, (rs)^2, \ldots \rangle$ with $r = r_0r_1$, $s = r_1r_2$, the swap $r_0 \leftrightarrow r_2$ corresponds to the interchange of $r \leftrightarrow s^{-1}$ and $s \leftrightarrow r^{-1}$.

Checking self-duality: A regular map $(G; r_0, r_1, r_2)$ is self-dual if and only if there is an automorphism of G that fixes r_1 and interchanges r_0 with r_2 .

If $(G; r_0, r_1, r_2)$ is orientably-regular, then so is its dual; representing it by $(G^+, r, s) = \langle r, s | r^m, s^m, (rs)^2, \ldots \rangle$ with $r = r_0 r_1$, $s = r_1 r_2$, the swap $r_0 \leftrightarrow r_2$ corresponds to the interchange of $r \leftrightarrow s^{-1}$ and $s \leftrightarrow r^{-1}$.

This also changes the orientation of the supporting surface; to retain the orientation one may use conjugation by r_1 to invert both r and s.

イロト 不得下 イヨト イヨト 二日

Checking self-duality: A regular map $(G; r_0, r_1, r_2)$ is self-dual if and only if there is an automorphism of G that fixes r_1 and interchanges r_0 with r_2 .

If $(G; r_0, r_1, r_2)$ is orientably-regular, then so is its dual; representing it by $(G^+, r, s) = \langle r, s | r^m, s^m, (rs)^2, \ldots \rangle$ with $r = r_0 r_1$, $s = r_1 r_2$, the swap $r_0 \leftrightarrow r_2$ corresponds to the interchange of $r \leftrightarrow s^{-1}$ and $s \leftrightarrow r^{-1}$.

This also changes the orientation of the supporting surface; to retain the orientation one may use conjugation by r_1 to invert both r and s.

If $(H; r, s) = \langle r, s | r^{\ell}, s^{m}, (rs)^{2} \rangle$ is orientably-regular, then (H; s, r) and $(H; s^{-1}, r^{-1})$ are the *positive* and the *negative dual* of (H; r, s).

イロト 不得 トイヨト イヨト 二日

Checking self-duality: A regular map $(G; r_0, r_1, r_2)$ is self-dual if and only if there is an automorphism of G that fixes r_1 and interchanges r_0 with r_2 .

If $(G; r_0, r_1, r_2)$ is orientably-regular, then so is its dual; representing it by $(G^+, r, s) = \langle r, s | r^m, s^m, (rs)^2, \ldots \rangle$ with $r = r_0 r_1$, $s = r_1 r_2$, the swap $r_0 \leftrightarrow r_2$ corresponds to the interchange of $r \leftrightarrow s^{-1}$ and $s \leftrightarrow r^{-1}$.

This also changes the orientation of the supporting surface; to retain the orientation one may use conjugation by r_1 to invert both r and s.

If $(H; r, s) = \langle r, s | r^{\ell}, s^{m}, (rs)^{2} \rangle$ is orientably-regular, then (H; s, r) and $(H; s^{-1}, r^{-1})$ are the *positive* and the *negative dual* of (H; r, s).

An orientably-regular maps (H; r, s) is positively (negatively) self-dual iff H admits an involutory automorphism interchanging r with s (r with s^{-1}).

イロト 不得下 イヨト イヨト 二日

The Petrie dual of a regular map $M = (G; r_0, r_1, r_2)$: $P(M) = (G; r_0r_2, r_1, r_2)$.

- 31

イロト イポト イヨト イヨト

The Petrie dual of a regular map $M = (G; r_0, r_1, r_2)$: $P(M) = (G; r_0r_2, r_1, r_2)$. The flag gluing rule for i = 0: two flags $g, g' \in G$ are 0-adjacent in P(M) if $g' = gr_0r_2$ (leaving the 1, 2-adjacency rules intact).

イロト 不得下 イヨト イヨト 二日

The *Petrie dual* of a regular map $M = (G; r_0, r_1, r_2)$: $P(M) = (G; r_0r_2, r_1, r_2)$. The flag gluing rule for i = 0: two flags $g, g' \in G$ are 0-adjacent in P(M) if $g' = gr_0r_2$ (leaving the 1, 2-adjacency rules intact). Face boundary walks in P(M) are (pairs of) orbits of the cyclic group $\langle (r_0r_2)r_1 \rangle$;

イロト 不得下 イヨト イヨト 二日

The Petrie dual of a regular map $M = (G; r_0, r_1, r_2)$: $P(M) = (G; r_0r_2, r_1, r_2)$. The flag gluing rule for i = 0: two flags $g, g' \in G$ are 0-adjacent in P(M) if $g' = gr_0r_2$ (leaving the 1, 2-adjacency rules intact). Face boundary walks in P(M) are (pairs of) orbits of the cyclic group $\langle (r_0r_2)r_1 \rangle$; they appear on the original map as 'zigzag' or 'left-right' walks, known as Petrie walks:

A regular map $M = (G; r_0, r_1, r_2)$ is self-Petrie $(M \cong P(M))$ if and only if G admits an automorphism fixing r_1, r_2 and interchanging r_0 with r_0r_2 .

A regular map $M = (G; r_0, r_1, r_2)$ is self-Petrie $(M \cong P(M))$ if and only if G admits an automorphism fixing r_1, r_2 and interchanging r_0 with r_0r_2 .

P preserves graphs but *not* surfaces (and their orientability) in general.

A regular map $M = (G; r_0, r_1, r_2)$ is self-Petrie $(M \cong P(M))$ if and only if G admits an automorphism fixing r_1, r_2 and interchanging r_0 with r_0r_2 .

P preserves graphs but *not* surfaces (and their orientability) in general.

If M is orientable, then P(M) is orientable iff the graph of M is bipartite.

For a regular map $M = (G; r_0, r_1, r_2)$ the operators D and P act on $\langle r_0, r_2 \rangle \cong C_2 \times C_2$ as automorphisms $r_0 \leftrightarrow r_2$ and $r_0 \leftrightarrow r_0 r_2$,

- 3

イロト イポト イヨト イヨト

イロト 不得下 イヨト イヨト 二日

This way $M = (G; r_0, r_1, r_2)$ gives rise to an orbit of the group $\langle D, P \rangle$ containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1, i.e., D and P are automorphisms of G, the regular map M is said to be *completely self-dual* (called also a regular map with *trinity symmetry*).

イロト イポト イヨト イヨト 二日

This way $M = (G; r_0, r_1, r_2)$ gives rise to an orbit of the group $\langle D, P \rangle$ containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1, i.e., D and P are automorphisms of G, the regular map M is said to be *completely self-dual* (called also a regular map with *trinity symmetry*).

Richter, Š, Wang (2011): For an infinite sequence of valencies m there exists a finite completely self-dual regular map of type (m, m).

This way $M = (G; r_0, r_1, r_2)$ gives rise to an orbit of the group $\langle D, P \rangle$ containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1, i.e., D and P are automorphisms of G, the regular map M is said to be *completely self-dual* (called also a regular map with *trinity symmetry*).

Richter, Š, Wang (2011): For an infinite sequence of valencies m there exists a finite completely self-dual regular map of type (m, m).

(By residual finiteness of $ET(2, \infty, \infty) = \langle R_0, R_1, R_2 | R_0^2, R_1^2, R_2^2, (R_0R_2)^2 \rangle$ but no control over the values of *m*.)

イロト 不得 トイヨト イヨト 二日

This way $M = (G; r_0, r_1, r_2)$ gives rise to an orbit of the group $\langle D, P \rangle$ containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1, i.e., D and P are automorphisms of G, the regular map M is said to be completely self-dual (called also a regular map with *trinity symmetry*).

Richter, Š, Wang (2011): For an infinite sequence of valencies m there exists a finite completely self-dual regular map of type (m, m).

(By residual finiteness of $ET(2, \infty, \infty) = \langle R_0, R_1, R_2 | R_0^2, R_1^2, R_2^2, (R_0R_2)^2 \rangle$ but no control over the values of *m*.)

Jones and Poulton (2010): For an infinite sequence of valencies m there is a finite orientably regular map of degree m invariant under the operator DP of order 3 but admitting no duality.

Jozef Širáň	OU and STU	External symmetries of regular maps	Banff	26.09.2017	6 / 11

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ | 臣 | のへの

Let $M = (H; s, t) = \langle s, t | s^m, t^2, (st)^\ell, \ldots \rangle$ be orientably-regular.

프 에 에 프 어

Keeping the graph: the left cosets of $\langle s \rangle$ and $\langle t \rangle$ should remain the same.

7 / 11

イロト 不得下 イヨト イヨト 二日

Keeping the graph: the left cosets of $\langle s \rangle$ and $\langle t \rangle$ should remain the same.

To define a new map (H; s', t') with these restrictions, up to conjugation (representing a selection of a fixed dart) we have just one choice, namely, to let s' be a generator of $\langle s \rangle$ and to let t' = t.

イロト イポト イヨト イヨト 二日

Keeping the graph: the left cosets of $\langle s \rangle$ and $\langle t \rangle$ should remain the same.

To define a new map (H; s', t') with these restrictions, up to conjugation (representing a selection of a fixed dart) we have just one choice, namely, to let s' be a generator of $\langle s \rangle$ and to let t' = t.

If s^j is a generator of $\langle s \rangle$, we define the *j*-th power operator E_j on orientably-regular maps of valency *m* as the mapping assigning to a map M = (H, s, t) as above the (orientably-regular) map $E_j(M) = (H; s^j, t)$.

Keeping the graph: the left cosets of $\langle s \rangle$ and $\langle t \rangle$ should remain the same.

To define a new map (H; s', t') with these restrictions, up to conjugation (representing a selection of a fixed dart) we have just one choice, namely, to let s' be a generator of $\langle s \rangle$ and to let t' = t.

If s^j is a generator of $\langle s \rangle$, we define the *j*-th power operator E_j on orientably-regular maps of valency *m* as the mapping assigning to a map M = (H, s, t) as above the (orientably-regular) map $E_j(M) = (H; s^j, t)$.

 E_j a.k.a. *j*-th hole operator, or Wilson operator (1979); Coxeter-Moser.

Keeping the graph: the left cosets of $\langle s
angle$ and $\langle t
angle$ should remain the same.

To define a new map (H; s', t') with these restrictions, up to conjugation (representing a selection of a fixed dart) we have just one choice, namely, to let s' be a generator of $\langle s \rangle$ and to let t' = t.

If s^j is a generator of $\langle s \rangle$, we define the *j*-th power operator E_j on orientably-regular maps of valency *m* as the mapping assigning to a map M = (H, s, t) as above the (orientably-regular) map $E_j(M) = (H; s^j, t)$.

 E_j a.k.a. *j*-th hole operator, or Wilson operator (1979); Coxeter-Moser.

A unit *j* mod *m* for which $E_j(M) \cong M$ is an *exponent* of *M*; these form a subgroup of C_m^* (Nedela and Škoviera (1997)).

Keeping the graph: the left cosets of $\langle s \rangle$ and $\langle t \rangle$ should remain the same.

To define a new map (H; s', t') with these restrictions, up to conjugation (representing a selection of a fixed dart) we have just one choice, namely, to let s' be a generator of $\langle s \rangle$ and to let t' = t.

If s^j is a generator of $\langle s \rangle$, we define the *j*-th power operator E_j on orientably-regular maps of valency *m* as the mapping assigning to a map M = (H, s, t) as above the (orientably-regular) map $E_j(M) = (H; s^j, t)$.

 E_j a.k.a. *j*-th hole operator, or Wilson operator (1979); Coxeter-Moser.

A unit j mod m for which $E_j(M) \cong M$ is an *exponent* of M; these form a subgroup of C_m^* (Nedela and Škoviera (1997)).

A unit j mod m is an exponent of an orientably-regular map (H; s, t) if and only if H admits an automorphism fixing t and sending s onto s^{j} .

イロト 不得 トイヨト イヨト 二日

3

く 戸 ト く ヨ ト く ヨ ト

Š, Wang (2010): For every $m \ge 3$ there exist infinitely many finite, kaleidoscopic, orientably-regular maps of valency m.

イロト 不得下 イヨト イヨト 二日

Š, Wang (2010): For every $m \ge 3$ there exist infinitely many finite, kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of $T(m, \infty) = \langle S, T | S^m, T^2 \rangle$, no control over the face length;

イロト イポト イヨト イヨト 二日

Š, Wang (2010): For every $m \ge 3$ there exist infinitely many finite, kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of $T(m, \infty) = \langle S, T | S^m, T^2 \rangle$, no control over the face length; in fact, orientably-regular maps of type (m, 3) for $m \equiv \pm 1 \mod 6$ cannot have more than $\phi(m)/2$ exponents.

イロト イポト イヨト イヨト 二日

Š, Wang (2010): For every $m \ge 3$ there exist infinitely many finite, kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of $T(m, \infty) = \langle S, T | S^m, T^2 \rangle$, no control over the face length; in fact, orientably-regular maps of type (m, 3) for $m \equiv \pm 1 \mod 6$ cannot have more than $\phi(m)/2$ exponents.

Archdeacon, Gvozdjak and Š (1997): For every $m \ge 3$ there exist infinitely many finite orientably-regular maps of valency m with no exponents except the trivial one. (Method: Coverings.)

イロト 不得 トイヨト イヨト 二日

Š, Wang (2010): For every $m \ge 3$ there exist infinitely many finite, kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of $T(m, \infty) = \langle S, T | S^m, T^2 \rangle$, no control over the face length; in fact, orientably-regular maps of type (m, 3) for $m \equiv \pm 1 \mod 6$ cannot have more than $\phi(m)/2$ exponents.

Archdeacon, Gvozdjak and Š (1997): For every $m \ge 3$ there exist infinitely many finite orientably-regular maps of valency m with no exponents except the trivial one. (Method: Coverings.)

Conder, Š (2016): For each $m \ge 3$ and each $U \le C_m^*$ there are infinitely many orientably-regular maps of valency m with exponent group = U.

Š, Wang (2010): For every $m \ge 3$ there exist infinitely many finite, kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of $T(m, \infty) = \langle S, T | S^m, T^2 \rangle$, no control over the face length; in fact, orientably-regular maps of type (m, 3) for $m \equiv \pm 1 \mod 6$ cannot have more than $\phi(m)/2$ exponents.

Archdeacon, Gvozdjak and Š (1997): For every $m \ge 3$ there exist infinitely many finite orientably-regular maps of valency m with no exponents except the trivial one. (Method: Coverings.)

Conder, Š (2016): For each $m \ge 3$ and each $U \le C_m^*$ there are infinitely many orientably-regular maps of valency m with exponent group = U.

Method: Construction of a suitable *U*-invariant subspace in D/N, where D=[T, T] for $T=T(m, \infty)=\langle S, T| S^m, T^2 \rangle \cong C_m * C_2$, and $N=D'D^{(p)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Let an operator on (fully) regular maps $M = (G, r_0, r_1, r_2)$ keep both the graph and Aut(M) physically unchanged.

3

This can only be achieved by fixing r_2 and either fixing r_0

イロト 不得下 イヨト イヨト 二日

9 / 11

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2 (Petrie);

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 シックマ

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2 (Petrie); focus on fixing both r_0, r_2 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 シックマ

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2 (Petrie); focus on fixing both r_0, r_2 . The only freedom in the resulting map (G', r'_0, r'_1, r'_2) , is to let $r'_0 = r_0, r'_2 = r_2$, and $r'_1 r'_2 = (r_1 r_2)^j$ for some j such that $(r_1 r_2)^j$ generates the cyclic part of $\langle r_1, r_2 \rangle$.

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2 (Petrie); focus on fixing both r_0, r_2 . The only freedom in the resulting map (G', r'_0, r'_1, r'_2) , is to let $r'_0 = r_0, r'_2 = r_2$, and $r'_1r'_2 = (r_1r_2)^j$ for some j such that $(r_1r_2)^j$ generates the cyclic part of $\langle r_1, r_2 \rangle$.

Thus, for $j \in C_m^*$, the *j*-th power operator E_j takes M onto the regular map $E_j(M) = (G; r_0, (r_1r_2)^j r_2, r_2);$

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2 (Petrie); focus on fixing both r_0, r_2 . The only freedom in the resulting map (G', r'_0, r'_1, r'_2) , is to let $r'_0 = r_0, r'_2 = r_2$, and $r'_1r'_2 = (r_1r_2)^j$ for some j such that $(r_1r_2)^j$ generates the cyclic part of $\langle r_1, r_2 \rangle$.

Thus, for $j \in C_m^*$, the *j*-th power operator E_j takes M onto the regular map $E_j(M) = (G; r_0, (r_1r_2)^j r_2, r_2); j$ is an exponent of M if $E_j(M) \cong M$.

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2 (Petrie); focus on fixing both r_0, r_2 . The only freedom in the resulting map (G', r'_0, r'_1, r'_2) , is to let $r'_0 = r_0, r'_2 = r_2$, and $r'_1 r'_2 = (r_1 r_2)^j$ for some j such that $(r_1 r_2)^j$ generates the cyclic part of $\langle r_1, r_2 \rangle$.

Thus, for $j \in C_m^*$, the *j*-th power operator E_j takes M onto the regular map $E_j(M) = (G; r_0, (r_1r_2)^j r_2, r_2); j$ is an exponent of M if $E_j(M) \cong M$.

A unit *j* mod *m* is an exponent of *M* if and only if there is an automorphism of *G* fixing r_0 and r_2 while taking r_1 onto $(r_1r_2)^j r_2$.

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2 (Petrie); focus on fixing both r_0, r_2 . The only freedom in the resulting map (G', r'_0, r'_1, r'_2) , is to let $r'_0 = r_0, r'_2 = r_2$, and $r'_1 r'_2 = (r_1 r_2)^j$ for some j such that $(r_1 r_2)^j$ generates the cyclic part of $\langle r_1, r_2 \rangle$.

Thus, for $j \in C_m^*$, the *j*-th power operator E_j takes M onto the regular map $E_j(M) = (G; r_0, (r_1r_2)^j r_2, r_2); j$ is an exponent of M if $E_j(M) \cong M$.

A unit *j* mod *m* is an exponent of *M* if and only if there is an automorphism of *G* fixing r_0 and r_2 while taking r_1 onto $(r_1r_2)^j r_2$.

The powers E_j commute with the Petrie duality P, generating $C_m^* \times C_2$.

This can only be achieved by fixing r_2 and either fixing r_0 or swapping r_0 with r_0, r_2 (Petrie); focus on fixing both r_0, r_2 . The only freedom in the resulting map (G', r'_0, r'_1, r'_2) , is to let $r'_0 = r_0, r'_2 = r_2$, and $r'_1 r'_2 = (r_1 r_2)^j$ for some j such that $(r_1 r_2)^j$ generates the cyclic part of $\langle r_1, r_2 \rangle$.

Thus, for $j \in C_m^*$, the *j*-th power operator E_j takes M onto the regular map $E_j(M) = (G; r_0, (r_1r_2)^j r_2, r_2); j$ is an exponent of M if $E_j(M) \cong M$.

A unit *j* mod *m* is an exponent of *M* if and only if there is an automorphism of *G* fixing r_0 and r_2 while taking r_1 onto $(r_1r_2)^j r_2$.

The powers E_j commute with the Petrie duality P, generating $C_m^* \times C_2$.

Lack of results analogous to the ones for orientably-regular maps ...

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ …

Archdeacon, Conder and Š (2014) For every even m there exists a kaleidoscopic and completely self-dual regular map of valency m.

10 / 11

Archdeacon, Conder and Š (2014) For every even m there exists a kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

10 / 11

Archdeacon, Conder and Š (2014) For every even m there exists a kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

Power operators E_j go nicely with the Petrie operator P but not with duality D.

イロト イポト イヨト イヨト

Archdeacon, Conder and Š (2014) For every even m there exists a kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

Power operators E_j go nicely with the Petrie operator P but not with duality D. What about the group $\text{Ext}(M) = \langle D, P, \{E_j | j \in C_m^*\} \rangle$ of all *external symmetries* for kaleidoscopic completely self-dual regular maps?

10 / 11

イロト 不得下 イヨト イヨト 二日

Archdeacon, Conder and Š (2014) For every even m there exists a kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

Power operators E_j go nicely with the Petrie operator P but not with duality D. What about the group $\text{Ext}(M) = \langle D, P, \{E_j | j \in C_m^*\} \rangle$ of all *external symmetries* for kaleidoscopic completely self-dual regular maps?

Conder, Kwon, Š (2014): There is an infinite sequence of completely self-dual kaleidoscopic regular maps M_n of valency 8 with $|\text{Ext}(M_n)| \to \infty$.

10 / 11

イロト 不得 トイヨト イヨト 二日

Archdeacon, Conder and Š (2014) For every even m there exists a kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

Power operators E_i go nicely with the Petrie operator P but not with duality D. What about the group $\operatorname{Ext}(M) = \langle D, P, \{E_i | i \in C_m^*\} \rangle$ of all external symmetries for kaleidoscopic completely self-dual regular maps?

Conder, Kwon, Š (2014): There is an infinite sequence of completely self-dual kaleidoscopic regular maps M_n of valency 8 with $|\text{Ext}(M_n)| \to \infty$. External symmetry groups appear to behave strangely even for valency 8...

10 / 11

E 990

*ロト *檀 * * 注 * * 注 *

 Does there exist a completely self-dual regular map of valency n for every odd n ≥ 5?

(日) (周) (日) (日)

- Does there exist a completely self-dual regular map of valency n for every odd n ≥ 5?
- Does there exist a kaleidoscopic completely self-dual regular map of valency n for every odd n ≥ 5?

- Does there exist a completely self-dual regular map of valency n for every odd n ≥ 5?
- Does there exist a kaleidoscopic completely self-dual regular map of valency n for every odd n ≥ 5?
- 3. Structure of the external symmetry group of a kaleidoscopic completely self-dual regular map?

11 / 11

(4 個) トイヨト イヨト

- 1. Does there exist a completely self-dual regular map of valency n for every odd $n \ge 5$?
- 2. Does there exist a kaleidoscopic completely self-dual regular map of valency *n* for every odd n > 5?
- Structure of the external symmetry group of a kaleidoscopic completely self-dual regular map?
- 4. Is it true that for every $m \geq 3$ and every subgroup U of $C_m^* \times C_2$ there exists a non-orientable regular map of valency m with exponent group U?