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Dualities on (orientably-) regular maps

We identify a (fully) regular map M with a presentation of G = Aut(M):

G = (G ; r0, r1, r2) = 〈r0, r1, r2| r2
0 , r

2
1 , r

2
2 , (r0r1)`, (r1r2)m, (r2r0)2, . . .〉

Images of a flag z under reflections ri and rotations r0r1, r1r2 and r0r2:
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r (z)
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r r (z)1 2

r r (z)0 1

r r (z)0 2

0 1

2

Duality is a result of interchanging the roles of the involutions r0 and r2.
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Dualities on (orientably-) regular maps

The duality operator D assigns to a regular map M = (G ; r0, r1, r2)
its dual map D(M) = (G ; r2, r1, r0);

M is self-dual if M ' D(M).

Checking self-duality: A regular map (G ; r0, r1, r2) is self-dual if and only if
there is an automorphism of G that fixes r1 and interchanges r0 with r2.

If (G ; r0, r1, r2) is orientably-regular, then so is its dual; representing it by
(G+, r , s) = 〈r , s| rm, sm, (rs)2, . . .〉 with r = r0r1, s = r1r2, the swap
r0 ↔ r2 corresponds to the interchange of r ↔ s−1 and s ↔ r−1.

This also changes the orientation of the supporting surface; to retain
the orientation one may use conjugation by r1 to invert both r and s.

If (H; r , s) = 〈r , s| r `, sm, (rs)2〉 is orientably-regular, then (H; s, r) and
(H; s−1, r−1) are the positive and the negative dual of (H; r , s).

An orientably-regular maps (H; r , s) is positively (negatively) self-dual iff
H admits an involutory automorphism interchanging r with s (r with s−1).

Jozef Širáň OU and STU External symmetries of regular maps Banff 26.09.2017 3 / 11



Dualities on (orientably-) regular maps

The duality operator D assigns to a regular map M = (G ; r0, r1, r2)
its dual map D(M) = (G ; r2, r1, r0); M is self-dual if M ' D(M).

Checking self-duality: A regular map (G ; r0, r1, r2) is self-dual if and only if
there is an automorphism of G that fixes r1 and interchanges r0 with r2.

If (G ; r0, r1, r2) is orientably-regular, then so is its dual; representing it by
(G+, r , s) = 〈r , s| rm, sm, (rs)2, . . .〉 with r = r0r1, s = r1r2, the swap
r0 ↔ r2 corresponds to the interchange of r ↔ s−1 and s ↔ r−1.

This also changes the orientation of the supporting surface; to retain
the orientation one may use conjugation by r1 to invert both r and s.

If (H; r , s) = 〈r , s| r `, sm, (rs)2〉 is orientably-regular, then (H; s, r) and
(H; s−1, r−1) are the positive and the negative dual of (H; r , s).

An orientably-regular maps (H; r , s) is positively (negatively) self-dual iff
H admits an involutory automorphism interchanging r with s (r with s−1).
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Dualities on (orientably-) regular maps

The Petrie dual of a regular map M=(G ; r0, r1, r2): P(M)=(G ; r0r2, r1, r2).

The flag gluing rule for i = 0: two flags g , g ′ ∈ G are 0-adjacent in P(M)
if g ′ = gr0r2 (leaving the 1, 2-adjacency rules intact). Face boundary walks
in P(M) are (pairs of) orbits of the cyclic group 〈(r0r2)r1〉; they appear on
the original map as ‘zigzag’ or ‘left-right’ walks, known as Petrie walks:
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Dualities on (orientably-) regular maps

A topological way to form P(M) from M is by introducing a ‘half-twist’
at every edge of the ribbon graph, or the band-complex of M:

A regular map M = (G ; r0, r1, r2) is self-Petrie (M ∼= P(M)) if and only if
G admits an automorphism fixing r1, r2 and interchanging r0 with r0r2.

P preserves graphs but not surfaces (and their orientability) in general.

If M is orientable, then P(M) is orientable iff the graph of M is bipartite.
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Jozef Širáň OU and STU External symmetries of regular maps Banff 26.09.2017 5 / 11



Dualities on (orientably-) regular maps

For a regular map M = (G ; r0, r1, r2) the operators D and P act on 〈r0, r2〉
∼= C2 × C2 as automorphisms r0 ↔ r2 and r0 ↔ r0r2,

so that, in terms of
this action, 〈D,P〉 ' Aut〈r0, r2〉 ' S3 (Jones and Thornton, 1983).

This way M = (G ; r0, r1, r2) gives rise to an orbit of the group 〈D,P〉
containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1,
i.e., D and P are automorphisms of G , the regular map M is said to be
completely self-dual (called also a regular map with trinity symmetry).

Richter, Š, Wang (2011): For an infinite sequence of valencies m there
exists a finite completely self-dual regular map of type (m,m).

(By residual finiteness of ET (2,∞,∞)=〈R0,R1,R2|R2
0 ,R

2
1 ,R

2
2 , (R0R2)2〉

but no control over the values of m.)

Jones and Poulton (2010): For an infinite sequence of valencies m there
is a finite orientably regular map of degree m invariant under the operator
DP of order 3 but admitting no duality.
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Exponents of regular maps

Let M = (H; s, t) = 〈s, t| sm, t2, (st)`, . . .〉 be orientably-regular.

What
operator would keep the graph and Aut+(M) physically unchanged?

Keeping the graph: the left cosets of 〈s〉 and 〈t〉 should remain the same.

To define a new map (H; s ′, t ′) with these restrictions, up to conjugation
(representing a selection of a fixed dart) we have just one choice, namely,
to let s ′ be a generator of 〈s〉 and to let t ′ = t.

If s j is a generator of 〈s〉, we define the j-th power operator Ej on
orientably-regular maps of valency m as the mapping assigning to a map
M = (H, s, t) as above the (orientably-regular) map Ej(M) = (H; s j , t).

Ej a.k.a. j-th hole operator, or Wilson operator (1979); Coxeter-Moser.

A unit j mod m for which Ej(M) ∼= M is an exponent of M; these form a
subgroup of C ∗m (Nedela and Škoviera (1997)).

A unit j mod m is an exponent of an orientably-regular map (H; s, t) if
and only if H admits an automorphism fixing t and sending s onto s j .
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A unit j mod m is an exponent of an orientably-regular map (H; s, t) if
and only if H admits an automorphism fixing t and sending s onto s j .
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Exponents of regular maps

Orientably-regular maps M of valency m with Ej(M) ' M for every
j ∈ C ∗m are called kaleidoscopic (Archdeacon, Conder, Š (2014)).

Š, Wang (2010): For every m ≥ 3 there exist infinitely many finite,
kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of T (m,∞) = 〈S ,T | Sm,T 2〉, no control
over the face length; in fact, orientably-regular maps of type (m, 3) for
m ≡ ±1 mod 6 cannot have more than φ(m)/2 exponents.

Archdeacon, Gvozdjak and Š (1997): For every m ≥ 3 there exist
infinitely many finite orientably-regular maps of valency m with no
exponents except the trivial one. (Method: Coverings.)

Conder, Š (2016): For each m ≥ 3 and each U≤C ∗m there are infinitely
many orientably-regular maps of valency m with exponent group = U.

Method: Construction of a suitable U-invariant subspace in D/N, where
D=[T ,T ] for T=T (m,∞)=〈S ,T | Sm,T 2〉∼=Cm ∗ C2, and N=D ′D(p).

Jozef Širáň OU and STU External symmetries of regular maps Banff 26.09.2017 8 / 11



Exponents of regular maps

Orientably-regular maps M of valency m with Ej(M) ' M for every
j ∈ C ∗m are called kaleidoscopic (Archdeacon, Conder, Š (2014)).
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Archdeacon, Gvozdjak and Š (1997): For every m ≥ 3 there exist
infinitely many finite orientably-regular maps of valency m with no
exponents except the trivial one. (Method: Coverings.)
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Š, Wang (2010): For every m ≥ 3 there exist infinitely many finite,
kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of T (m,∞) = 〈S ,T | Sm,T 2〉, no control
over the face length; in fact, orientably-regular maps of type (m, 3) for
m ≡ ±1 mod 6 cannot have more than φ(m)/2 exponents.
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G , r0, r1, r2) keep both the
graph and Aut(M) physically unchanged.

Preservation of edges means no
change of left cosets of 〈r2〉 = {1, r2} and no change of left multiples of
the coset r0〈r2〉 = {r0, r0r2}, representing darts and their reverses.

This can only be achieved by fixing r2 and either fixing r0 or swapping r0
with r0, r2 (Petrie); focus on fixing both r0, r2. The only freedom in the
resulting map (G ′, r ′0, r

′
1, r
′
2), is to let r ′0 = r0, r ′2 = r2, and r ′1r

′
2 = (r1r2) j

for some j such that (r1r2) j generates the cyclic part of 〈r1, r2〉.

Thus, for j ∈ C ∗m, the j-th power operator Ej takes M onto the regular
map Ej(M) = (G ; r0, (r1r2) j r2, r2); j is an exponent of M if Ej(M) ∼= M.

A unit j mod m is an exponent of M if and only if there is an
automorphism of G fixing r0 and r2 while taking r1 onto (r1r2) j r2.

The powers Ej commute with the Petrie duality P, generating C ∗m × C2.

Lack of results analogous to the ones for orientably-regular maps ...
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Super-symmetric maps?

Can one have an ‘absolute level of external symmetry’ of regular maps,
that is, regular maps that are kaleidoscopic and completely self-dual?

Archdeacon, Conder and Š (2014) For every even m there exists a
kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. WIlson (1976); coverings.

Power operators Ej go nicely with the Petrie operator P but not with
duality D. What about the group Ext(M) = 〈D,P, {Ej | j ∈ C ∗m}〉 of all
external symmetries for kaleidoscopic completely self-dual regular maps?

Conder, Kwon, Š (2014): There is an infinite sequence of completely
self-dual kaleidoscopic regular maps Mn of valency 8 with |Ext(Mn)| → ∞.

External symmetry groups appear to behave strangely even for valency 8...
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Super-symmetric maps?

Questions

1. Does there exist a completely self-dual regular map of valency n
for every odd n ≥ 5?

2. Does there exist a kaleidoscopic completely self-dual regular map
of valency n for every odd n ≥ 5?

3. Structure of the external symmetry group of a kaleidoscopic
completely self-dual regular map?

4. Is it true that for every m ≥ 3 and every subgroup U of C ∗m × C2

there exists a non-orientable regular map of valency m with exponent
group U?
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