

A *skew-morphism* of a group G is a permutation φ of G preserving the identity and satisfying the property

$$arphi(\mathsf{g}\mathsf{h})=arphi(\mathsf{g})arphi^{\pi(\mathsf{g})}(\mathsf{h})$$

for all $g, h \in G$ and a function $\pi : G \to \mathbb{Z}_{|\varphi|}$, called the *power* function of G.

A *skew-morphism* of a group G is a permutation φ of G preserving the identity and satisfying the property

$$arphi(\mathsf{g}\mathsf{h})=arphi(\mathsf{g})arphi^{\pi(\mathsf{g})}(\mathsf{h})$$

for all $g, h \in G$ and a function $\pi : G \to \mathbb{Z}_{|\varphi|}$, called the *power* function of G.

 skew-morphisms were originally introduced for the study of regular Cayley maps

A *skew-morphism* of a group G is a permutation φ of G preserving the identity and satisfying the property

$$arphi(\mathsf{g}\mathsf{h})=arphi(\mathsf{g})arphi^{\pi(\mathsf{g})}(\mathsf{h})$$

for all $g, h \in G$ and a function $\pi : G \to \mathbb{Z}_{|\varphi|}$, called the *power* function of G.

- skew-morphisms were originally introduced for the study of regular Cayley maps
- they have since proved central in the theory of cyclic group extensions

an orientable map *M* is a 2-cell embedding of a graph in an orientable surface

- an orientable map *M* is a 2-cell embedding of a graph in an orientable surface
- an orientation-preserving map automorphism of a map M is a permutation of its darts that preserves the orientation, adjacency, and faces

An orientable map \mathcal{M} is called **(orientably) regular** if any pair of arcs admits the existence of an orientation preserving automorphism of \mathcal{M} that maps the first arc to the second.

An orientable map \mathcal{M} is called **(orientably) regular** if any pair of arcs admits the existence of an orientation preserving automorphism of \mathcal{M} that maps the first arc to the second.

An orientable map $\ensuremath{\mathcal{M}}$ is regular if and only if

 $|Aut\mathcal{M}| = |D(\mathcal{M})|$

A Cayley map CM(G, X, p) is an embedding of a connected Cayley graph, C(G, X), that has the same local orientation p at each vertex.

A Cayley map CM(G, X, p) is an embedding of a connected Cayley graph, C(G, X), that has the same local orientation p at each vertex.

Equivalently, a Cayley map is a drawing of a Cayley graph on a surface such that the outgoing darts are ordered the same way around each vertex; the local successor of the dart (g, x) is the dart (g, p(x)).

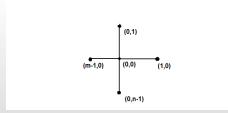


Figure : $CM(\mathbb{Z}_m \times \mathbb{Z}_n, ((0, 1), (1, 0), (0, n - 1), (m - 1, 0)))$

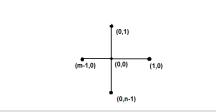
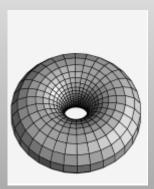


Figure : $CM(\mathbb{Z}_m \times \mathbb{Z}_n, ((0,1), (1,0), (0, n-1), (m-1, 0)))$



 ▶ all the left multiplications of the underlying group G induce map automorphisms of the Cayley map ⇒ |Aut(CM(G, X, p))| ≥ |G|

- ▶ all the left multiplications of the underlying group G induce map automorphisms of the Cayley map ⇒ |Aut(CM(G, X, p))| ≥ |G|
- $\blacktriangleright \implies$ Cayley maps are 'almost' regular from the beginning

- ▶ all the left multiplications of the underlying group G induce map automorphisms of the Cayley map ⇒ |Aut(CM(G, X, p))| ≥ |G|
- $\blacktriangleright \implies$ Cayley maps are *'almost'* regular from the beginning
- many of the well-known families of orientably regular maps turn out to be Cayley maps
 (o.g. orientably regular emobddings of K orientably regular)

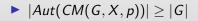
(e.g., orientably regular emebddings of K_n , orientably regular embeddings of graphs of prime order)

- ▶ all the left multiplications of the underlying group G induce map automorphisms of the Cayley map ⇒ |Aut(CM(G, X, p))| ≥ |G|
- $\blacktriangleright \implies$ Cayley maps are *'almost'* regular from the beginning
- many of the well-known families of orientably regular maps turn out to be Cayley maps (e.g., orientably regular emebddings of K_n, orientably regular embeddings of graphs of prime order)
- four of the five Platonic solids are Cayley maps

- ▶ all the left multiplications of the underlying group G induce map automorphisms of the Cayley map ⇒ |Aut(CM(G, X, p))| ≥ |G|
- $\blacktriangleright \implies$ Cayley maps are *'almost'* regular from the beginning
- many of the well-known families of orientably regular maps turn out to be Cayley maps (e.g., orientably regular emebddings of K_n, orientably regular embeddings of graphs of prime order)
- four of the five Platonic solids are Cayley maps
- all orientably regular maps are factors of regular Cayley maps

we do not know what is the proportion of Cayley maps among orientably regular maps

- we do not know what is the proportion of Cayley maps among orientably regular maps
- we do not know what is the proportion of Cayley graphs among the vertex-transitive graphs



|Aut(CM(G, X, p))| ≥ |G| |D(CM(G, X, p))| = |G| ⋅ |X|

- $|Aut(CM(G,X,p))| \geq |G|$
- $\blacktriangleright |\mathcal{D}(CM(G,X,p))| = |G| \cdot |X|$
- ► ⇒ in order for a Cayley map to be regular, the stabilizer of any vertex in Aut(CM(G, X, p)) must be of size |X|

- $|Aut(CM(G,X,p))| \geq |G|$
- $\blacktriangleright |\mathcal{D}(CM(G,X,p))| = |G| \cdot |X|$
- ► ⇒ in order for a Cayley map to be regular, the stabilizer of any vertex in Aut(CM(G, X, p)) must be of size |X|
- since the stabilizers of orientable maps are cyclic, in order for a Cayley map to be regular, there must exist an automorphism that maps (1, x) to (1, p(x))

A **skew-morphism** of a group *G* is a permutation φ of *G* preserving the identity and satisfying the property

$$\varphi(gh) = \varphi(g)\varphi^{\pi(g)}(h)$$

for all $g, h \in G$ and a function $\pi : G \to \mathbb{Z}_{|\varphi|}$, called the *power* function of G.

Theorem

Let $\mathcal{M} = CM(G, X, p)$ be any Cayley map. Then \mathcal{M} is regular iff there exists a skew-morphism φ of G satisfying the property $\varphi(x) = p(x)$ for all $x \in X$.

In order to construct all regular Cayley maps for a given group G:
 ▶ construct all skew-morphisms of G

construct all skew-morphisms of G

every regular Cayley map on G is of the form

$$CM(G, \{x, \varphi(x), \ldots, \varphi^{n-1}(x)\}, (x, \varphi(x), \ldots, \varphi^{n-1}(x))),$$

where φ is a skew-morphisms with a generating orbit $\{x, \varphi(x), \dots, \varphi^{n-1}(x)\}$ that is closed under inverses

construct all skew-morphisms of G

every regular Cayley map on G is of the form

$$CM(G, \{x, \varphi(x), \ldots, \varphi^{n-1}(x)\}, (x, \varphi(x), \ldots, \varphi^{n-1}(x))),$$

where φ is a skew-morphisms with a generating orbit {x, φ(x),..., φⁿ⁻¹(x)} that is closed under inverses
→ regular Cayley maps on G correspond to orbits of skew-morphisms of G that generate G and are closed under

inverses

construct all skew-morphisms of G

every regular Cayley map on G is of the form

$$CM(G, \{x, \varphi(x), \ldots, \varphi^{n-1}(x)\}, (x, \varphi(x), \ldots, \varphi^{n-1}(x))),$$

where φ is a skew-morphisms with a generating orbit $\{x, \varphi(x), \dots, \varphi^{n-1}(x)\}$ that is closed under inverses

- regular Cayley maps on G correspond to orbits of skew-morphisms of G that generate G and are closed under inverses
- each skew-morphism of G gives rise to a regular or a half-regular Cayley map on a non-trivial subgroup of G

Lemma

Let φ be a skew-morphism of a group G and let π be the power function of φ . Then the following holds :

1. the set $Ker \varphi = \{g \in G \mid \pi(g) = 1\}$ is a subgroup of G;

2. $\pi(g) = \pi(h)$ if and only if g and h belong to the same right coset of the subgroup Ker φ in G.

Lemma

Let φ be a skew-morphism of a group G and let π be the power function of φ . Then the following holds :

1. the set $Ker \varphi = \{g \in G \mid \pi(g) = 1\}$ is a subgroup of G;

2. $\pi(g) = \pi(h)$ if and only if g and h belong to the same right coset of the subgroup Ker φ in G.

Lemma

If A is a finite abelian group and φ is a skew-morphism of A, then

- 1. φ preserves Ker π setwise;
- 2. the restriction of φ to Ker π is a group automorphism.

The automorphism group of a(ny) Cayley map CM(G, X, p) is a complementary product of the subgroup of automorphisms induced by G_L and the cyclic group generated by the automorphism induced by the skew-morphism of CM(G, X, p):

$$Aut(CM(G,X,p)) \cong G_L \cdot \langle \varphi \rangle, \qquad G_L \cap \langle \varphi \rangle = \langle 1_G \rangle$$

Cyclic Extensions from Skew-Morphisms

Let G be a group, and φ be a(ny) skew-morphism of G with power function π , and let

$$s(i,b) = \sum_{j=0}^{i-1} \pi(\varphi^j(b)).$$

Cyclic Extensions from Skew-Morphisms

Let G be a group, and φ be a(ny) skew-morphism of G with power function π , and let

$$s(i,b) = \sum_{j=0}^{i-1} \pi(\varphi^j(b)).$$

Define a multiplication * on $G \times \langle \varphi \rangle$ as follows:

 $(a, \varphi^i) * (b, \varphi^j) = (a\varphi^i(b), \varphi^{s(i,b)+j}),$

for all $a, b \in G$ and all $i, j \in \mathbb{Z}_{|\varphi|}$.

Cyclic Extensions from Skew-Morphisms

Let G be a group, and φ be a(ny) skew-morphism of G with power function π , and let

$$s(i,b) = \sum_{j=0}^{i-1} \pi(\varphi^j(b)).$$

Define a multiplication * on $G \times \langle \varphi \rangle$ as follows:

$$(a, \varphi^i) * (b, \varphi^j) = (a\varphi^i(b), \varphi^{s(i,b)+j}),$$

for all $a, b \in G$ and all $i, j \in \mathbb{Z}_{|\varphi|}$.

Theorem

Let G be a group and φ be a skew-morphism of G of finite order m and power function π . Then $A = (G \times \langle \varphi \rangle, *)$ is a group and $G \times \langle \varphi \rangle$ is a complementary factorization of A.

Skew-Morphisms from Cyclic Extensions

Let $G = A \langle \rho \rangle$, $A \cap \langle \rho \rangle = \langle 1_G \rangle$ (a complementary factorization).

Let $G = A \langle \rho \rangle$, $A \cap \langle \rho \rangle = \langle 1_G \rangle$ (a complementary factorization). For every $a \in G$,

$$\rho \mathbf{a} = \mathbf{a}' \rho^i,$$

for some unique $a' \in A$ and some unique nonnegative integer i less than the order of ρ .

Let $G = A \langle \rho \rangle$, $A \cap \langle \rho \rangle = \langle 1_G \rangle$ (a complementary factorization). For every $a \in G$,

$$\rho \mathbf{a} = \mathbf{a}' \rho^i,$$

for some unique $a' \in A$ and some unique nonnegative integer i less than the order of ρ .

Define $\varphi(a) = a'$ and $\pi(a) = i$. Then for any a, b in A,

 $\varphi(ab) = \varphi(a)\varphi^{\pi(a)}(b).$

Let $G = A \langle \rho \rangle$, $A \cap \langle \rho \rangle = \langle 1_G \rangle$ (a complementary factorization). For every $a \in G$,

$$\rho \mathbf{a} = \mathbf{a}' \rho^i,$$

for some unique $a' \in A$ and some unique nonnegative integer i less than the order of ρ .

Define $\varphi(a) = a'$ and $\pi(a) = i$. Then for any a, b in A,

$$\varphi(ab) = \varphi(a)\varphi^{\pi(a)}(b).$$

Already observed in the 1930's (e.g., Oystein Ore, 1938).

If G is any finite group with a complementary subgroup factorisation G = AY with Y cyclic, then for any generator y of Y, the order of the skew morphism φ of A is the index in Y of its core in G, or equivalently, the smallest index in Y of a normal subgroup of G.

If G is any finite group with a complementary subgroup factorisation G = AY with Y cyclic, then for any generator y of Y, the order of the skew morphism φ of A is the index in Y of its core in G, or equivalently, the smallest index in Y of a normal subgroup of G.

Moreover, in this case the quotient $\overline{G} = G/\operatorname{Core}_G(Y)$ is the skew product group associated with the skew morphism φ , with complementary subgroup factorisation $\overline{G} = \overline{A} \overline{Y}$ where $\overline{A} = AY/Y \cong A/(A \cap Y) \cong A$ and $\overline{Y} = Y/\operatorname{Core}_G(Y)$.

Theorem (Lucchini)

If P is a transitive permutation group of degree n > 1 with cyclic point-stabilizers, then $|P| \le n(n-1)$.

Theorem (Herzog and Kaplan)

Let A be a non-trivial finite group of order n with a cyclic subgroup $\langle x \rangle$ satisfying the property $|x| \ge \sqrt{n}$. Then $\langle x \rangle$ contains a non-trivial normal subgroup of A.

Theorem (Khoroshevskij)

1. The order of every automorphism of a finite group H is less than |H|.

Theorem (Khoroshevskij)

- 1. The order of every automorphism of a finite group H is less than |H|.
- 2. All group automorphisms of finite nilpotent groups and of finite groups that do not contain a non-trivial normal solvable subgroup possess a precise orbit.

Theorem (Khoroshevskij)

- 1. The order of every automorphism of a finite group H is less than |H|.
- 2. All group automorphisms of finite nilpotent groups and of finite groups that do not contain a non-trivial normal solvable subgroup possess a precise orbit.
- 3. If the order of a group automorphism φ of a finite group is relatively prime to the order of the group, then φ possesses a precise orbit.

Theorem

If φ is a skew morphism of a finite group H, then the order of φ is less than |H|.

Theorem

If φ is a skew morphism of a finite group H, then the order of φ is less than |H|.

Corollary

Every skew morphism of a non-trivial finite group has non-trivial kernel.

Theorem

If φ is a skew morphism of a finite group H, then the order of φ is less than |H|.

Corollary

Every skew morphism of a non-trivial finite group has non-trivial kernel.

Corollary

Every skew morphism of a cyclic group of prime order is an automorphism.

If A is a finite abelian group of order greater than 2, then the kernel of every skew morphism of A has order greater than 2.

If A is a finite abelian group of order greater than 2, then the kernel of every skew morphism of A has order greater than 2.

Theorem

Let A be a finite abelian group of order greater than 2. If K is the kernel of any skew morphism of A, then every prime divisor of |K| is larger than every prime that divides |A| but not |K|. In particular if q is the largest prime divisor of |A|, then the order of the kernel of every skew morphism of A is divisible by q when q is odd, or by 4 when q = 2.

If A is a finite abelian group of order greater than 2, then the kernel of every skew morphism of A has order greater than 2.

Theorem

Let A be a finite abelian group of order greater than 2. If K is the kernel of any skew morphism of A, then every prime divisor of |K| is larger than every prime that divides |A| but not |K|. In particular if q is the largest prime divisor of |A|, then the order of the kernel of every skew morphism of A is divisible by q when q is odd, or by 4 when q = 2.

Corollary

Every skew morphism of an elementary abelian 2-group is an automorphism.

Let φ be a skew morphism of C_n . Then the order m of φ divides $n\phi(n)$. Moreover, if gcd(m, n) = 1 or $gcd(\phi(n), n) = 1$, then φ is an automorphism of C_n .

Let φ be a skew morphism of C_n . Then the order m of φ divides $n\phi(n)$. Moreover, if gcd(m, n) = 1 or $gcd(\phi(n), n) = 1$, then φ is an automorphism of C_n .

Theorem

Let A be any finite abelian group. Then every skew morphism of A is an automorphism of A if and only if A is is cyclic of order n where n = 4 or $gcd(n, \phi(n)) = 1$, or A is an elementary abelian 2-group.

Let φ be a skew morphism of C_n . Then the order m of φ divides $n\phi(n)$. Moreover, if gcd(m, n) = 1 or $gcd(\phi(n), n) = 1$, then φ is an automorphism of C_n .

Theorem

Let A be any finite abelian group. Then every skew morphism of A is an automorphism of A if and only if A is is cyclic of order n where n = 4 or $gcd(n, \phi(n)) = 1$, or A is an elementary abelian 2-group.

Classification and enumeration of the skew-morphisms of the cyclic groups C_{p^2} and C_{pq} , $C_p \times C_p$ and finite simple groups.

Definition

Let $G = A \cdot K$ be a complementary factorization. Then G is a **skew-product** of A and K if for each pair $a \in A$ and $h \in K$ there exists an $a' \in A$ and i such that

$$ah = h^i a'.$$

Definition

Let $G = A \cdot K$ be a complementary factorization. Then G is a **skew-product** of A and K if for each pair $a \in A$ and $h \in K$ there exists an $a' \in A$ and i such that

$$ah = h^i a'.$$

Conjecture: The set of all skew-morphisms of a finite group A is a subgroup of \mathbb{S}_A if and only if all the skew-morphisms of A are group automorphisms of A.