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Uncertainty in Power Systems Operation

Renewable energy increases variability and uncertainty
in power systems operation.
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Uncertainty in Power Systems Operation

How to limit adverse impacts of uncertainty?
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Uncertainty in Power Systems Operation

Chance-Constrained Optimal Power Flow
Limit probability of constraint violations
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Uncertainty in Power Systems Operation

Chance-Constrained AC Optimal Power Flow
Non-linear dependence on uncertain variables!
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Outline
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4. Numerical Results
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AC Power Flow

Two equations per bus:
Nodal power balance equations
for active and reactive power
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AC Power Flow

Two equations per bus:
Nodal power balance equations
for active and reactive power

Four variables per bus:
p - active power
q - reactive power
v - voltage magnitude
θ - Voltage angle
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AC Power Flow

Two equations per bus:
Nodal power balance equations
for active and reactive power

Four variables per bus:
p - active power
q - reactive power
v - voltage magnitude
θ - Voltage angle

Choose two variables per bus:
pq bus - load buses
pv bus - local voltage control
θv bus - reference bus/slack bus
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AC OPTIMAL Power Flow

min
∑
i∈G

cG,i(pG,i)

s.t. F (f p, f q, θ, v, p, q) = 0
pmin

G ≤ pG ≤ pmax
G

qmin
G ≤ qG ≤ qmax

G

vmin ≤ v ≤ vmax√
(f p)2 + (f q)2 ≤ smax

θθV = 0

Minimize generation cost

Nodal power balance
Active generation
Reactive generation
Voltage magnitudes
Power flows

Not really necessary to differ between pq, pv and θv buses.

But - influences system response under uncertainty!
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Modeling Uncertainty

• Active power = p + ω

p - forecasted active power
ω - random fluctuation

• Reactive power = q + γω

q - forecasted reactive power
γω - constant power factor
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Power System Balancing

Consumed and produced power must be balanced at all times!

• Balanced for ω = 0

• Active power - Automatic Generation Control (AGC)
[Borkowska 1974], [Vrakopoulou 2013]

pnew
G = pG − α (

∑
ω)

• Reactive power - Local voltage control at PV buses

vi = const, adjust reactive power qnew
G to achieve this!
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Chance Constraints

Generator active power

P(pG,i −αi

(∑
ω
)

︸ ︷︷ ︸
RESERVE

≤ pmax
G,i ) ≥ 1 − ϵ Insufficient reserves

Generator reactive power
P
(

qG,i(ω) ≤ qmax
G,i

)
≥ 1 − ϵ Voltages change

Voltage magnitudes
P (vi(ω) ≤ vmax

i ) ≥ 1 − ϵ Voltages out of bound

Power flows
P
(√

(f p
ij (ω))

2 + (f q
ij (ω))

2 ≤ smax
)
≥ 1 − ϵ Temp. overload/redispatch
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Chance Constraints Challenge

Non-linear uncertainty quantification + optimization friendliness

Some approaches:

• Linear DC power flow approximation
[Vrakopoulou et al 2012], [Roald et al 2013], [Bienstock, Chertkov and
Harnett 2014], [Lubin, Dvorkin, Backhaus 2016]

• SDP relaxation, sample-based reformulation
[Vrakopoulou et al 2013]

• Full AC equations for ω = 0, linearized uncertainty
[Qu, Roald, Andersson 2015], [Schmidli et al 2016]

• Linearized AC power flow with voltage constraints
[Baker, Summers, Dall’Anese 2016]

Goal: Include power flow constraints and optimized response!
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Gaussian Chance Constraints

Power injections are not Gaussian.

Power flows are typically close to Gaussian.

P
(√

(f p
ij (ω))

2 + (f q
ij (ω))

2 ≤ smax
)
≥ 1 − ϵ

Depends on high-dimensional random vector

→ ”Central limit theorem”!
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A solution approach

We don’t know how to impose chance constraints directly on ACOPF.
Known tractable methods require a linear relationship between injections,
voltages, and flows.

So we propose to...

1. Solve deterministic AC OPF
2. Linearize around solution point.
3. Solve convex optimization problem with chance constraints.
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Linearization

Let x := (f p, f q, θ, v, p, q), so that the AC equations can be expressed as

F(x) = 0.

Given a feasible operating point x̃ := (̃f p, f̃ q, θ̃, ṽ, p̃, q̃), we instead enforce
the linear equations

∇F(x̃)T(x − x̃) + F(x̃) = 0.

Can be inverted to obtain flows (f p, f q) as affine function of
voltages and injections (θ, v, p, q).
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Recall line flow constraints√
(f p)2 + (f q)2 ≤ smax

Using (approximate) linear relationship, to impose line flow constraints
we end up with chance constraints of the form

Pξ

(
(aTξ + b)2 + (cTξ + d)2 ≤ k

)
≥ 1 − ϵ

where a, b, c, d are decision variables

Is this a convex constraint?
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Not convex for ϵ = 0.445

P((xξ1)
2 + (yξ2)

2 ≤ 1) ≥ 1 − ϵ
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Not convex for ϵ = 0.445

P((xξ1)
2 + (yξ2)

2 ≤ 1) ≥ 1 − ϵ

Counterexample does not apply for smaller ϵ, but anyway let’s look for
approximations
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Start off by trying to understand the simpler (previously unstudied)
constraint

P(a ≤ xTξ ≤ b) ≥ 1 − ϵ

where a ∈ R, b ∈ R, and x ∈ Rn are decision variables, and ξ is jointly
Gaussian with known mean and covariance

Result: The “two-sided” chance constraint above defines a convex set in
(a, b, x) when ϵ ≤ 1

2 (L., Bienstock. Vielma, 2016)

But representation requires perspective transformation, so nonsmooth.
Not representable using standard cones.

20



Start off by trying to understand the simpler (previously unstudied)
constraint

P(a ≤ xTξ ≤ b) ≥ 1 − ϵ

where a ∈ R, b ∈ R, and x ∈ Rn are decision variables, and ξ is jointly
Gaussian with known mean and covariance

Result: The “two-sided” chance constraint above defines a convex set in
(a, b, x) when ϵ ≤ 1

2 (L., Bienstock. Vielma, 2016)

But representation requires perspective transformation, so nonsmooth.
Not representable using standard cones.

20



Start off by trying to understand the simpler (previously unstudied)
constraint

P(a ≤ xTξ ≤ b) ≥ 1 − ϵ

where a ∈ R, b ∈ R, and x ∈ Rn are decision variables, and ξ is jointly
Gaussian with known mean and covariance

Result: The “two-sided” chance constraint above defines a convex set in
(a, b, x) when ϵ ≤ 1

2 (L., Bienstock. Vielma, 2016)

But representation requires perspective transformation, so nonsmooth.
Not representable using standard cones.

20



2ϵ outer approximation
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• With two linear constraints plus second-order cone, we guarantee
that chance constraint holds with 2ϵ. (Can be made conservative)

• Proof: split into two linear chance constraints P(a ≤ xTξ) ≥ 1 − ϵ,
P(xTξ ≤ b) ≥ 1 − ϵ
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1.25ϵ outer approximation
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• With three linear constraints plus second-order cone, we guarantee
that chance constraint holds with 1.25ϵ

• Proof: L., Bienstock, Vielma (2016)
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Approximating quadratic chance constraints

Fix ϵ < 1
2 and β ∈ (0, 1). If ∃ f1, f2 such that

P(|aTξ + b| ≤ f1) ≥ 1 − βϵ

P(|cTξ + d| ≤ f2) ≥ 1 − (1 − β)ϵ

f21 + f22 ≤ k

then
P
(
(aTξ + b)2 + (cTξ + d)2 ≤ k

)
≥ 1 − ϵ

Proof: Union bound
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So this gives us a convex, tractable (via SOCP) approximation for

P
(
(aTξ + b)2 + (cTξ + d)2 ≤ k

)
≥ 1 − ϵ

What about other approaches?

• Robust optimization (→ SDP)
• CVaR (sampling)
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Experimental setup

1. Solve deterministic ACOPF (using local nonlinear solver)
2. Linearize around that solution, add chance constraints
3. Solve convex problem (SOCP) to obtain new production levels p, q

and response parameters α, etc
4. Given realization of uncertainty (in sample), solve feasibility problem

with injections fixed to check if computed solution induces feasible
flows and voltages
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Table 1: Comparison of Feasibility (%) Against In-Sample Uncertainty
Realizations (1000 samples)

ϵ 10−1 10−2 10−3

ACOPF (αi = 1/Ng) 0.073 0.076 0.076
ACOPF (cheating) 53.0 53.4 53.4

CCACOPF (αi = 1/Ng ) 84.1 97.4 99.8
CCACOPF (opt) 85.4 98.6 99.8

Test system: IEEE RTS96 three area
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JuMPChance

There’s modeling software too!

github.com/kersulis/IJulia-WPS

github.com/mlubin/JuMPChance.jl

jumpchance.readthedocs.io/en/latest/twoside.html
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Conclusions

• Preliminary results show that deterministic ACOPF + linearization
+ chance constraints can give more “robust” solutions than
determistic ACOPF.

• Very little additional computational overhead compared with solving
determistic ACOPF alone

• Can be used to study reactive power generation response policies.
• Lots of room to experiment and expand on the methodology.
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Thanks!
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