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Fermat’s Last Theorem

Theorem (1630 ?)
There are no positive integer solutions to

xn +yn = zn, for all n > 2.

‘Cubum autem in duos cubos, aut quadratoquadratum in duos
quadratoquadratos, et generaliter nullam in infinitum ultra
quadratum potestatem in duos ejusdem nominis fas est
dividere: cujus rei demonstrationem mirabilem sane detexi.
Hanc marginis exiguitas non
caperet.’ Pierre de Fermat, ∼1630

translated: ‘‘ It is impossible to separate a cube into two cubes, or a
biquadrate into two biquadrates, or in general any power higher than the
second into two powers of like degree. I have discovered a truly
remarkable proof which this margin is too small to contain.’’
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Fermat’s Last Theorem (FLT)

Theorem (Wiles 1995)
There are no positive integer solutions to

xn +yn = zn, for all n > 2.

Some well known Mathematicians who worked on this 1600’s-1900’s
century:
Fermat, Euler, Legendre, Gauss, Abel, Dirichlet, Kummer and Cauchy.
In 1770, Euler published a proof for the case n = 3.
In 1630’s, Fermat himself did prove this for the case n = 4.
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Progress

Fermat’s Last Theorem was eventually broken into two cases: Let p be
and odd prime

1 xp +yp = zp has no solutions for which p 6 |xyz.

2 xp +yp = zp has no solutions for which p divides exactly one of x , y
or z.

Theorem (Germain, 1800’s)
If p is an odd prime and there exists an auxiliary prime q = 2pn+1 which
satisfies

there are no consecutive pth power residues modulo q
p is not a pth power reside modulo q,

then in any solution to xp +yp = zp we have p2 must divide one of x, y
or z. Thus, Case 1 of FLT is true.
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Sophie Germain

Theorem
If p is an odd prime and there exists an auxiliary prime q = 2pn+1 which
satisfies

there are no consecutive pth power residues modulo q
p is not a pth power reside modulo q,

then in any solution to xp +yp = zp we have p2 must divide one of x, y
or z. Thus, Case 1 of FLT is true.

Found explicit auxiliary primes
to show this holds for p < 100.
Legendre used this idea
to extend it to all p < 197.
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Sophie Germain Cont’d

Theorem
If p is an odd prime and there exists an auxiliary prime q = 2pn+1 which
satisfies

there are no consecutive pth power residues modulo q
p is not a pth power reside modulo q,

then in any solution to xp +yp = zp we have p2 must divide one of x, y
or z. Thus, Case 1 of FLT is true.

Theorem
If p is an odd prime and q = 2p+1 is also prime then p must divide one
of x, y or z. Thus, Case 1 of FLT is true.

Primes p satisfying that 2p+1 is also prime are called Sophie Germain
primes.
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FLT - a new attack

Theorem
The positive integers x, y, z satisfying x2+y2 = z2 are described exactly
by the following form:

x = r(s2 − t2),y = 2rst and z = r(s2 + t2)

where r ,s, t ∈Z

Lemma
Suppose gcd(u,v)= 1 and uv is a perfect square. Then both u and v
are perfect squares.

y2 = z2 −x2 = (z −x)(z +x)
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FLT - a new attack

Why not try the approach used for x2+y2 = z2 for xn +yn = zn for n ≥ 3?

yn = zn −xn = (z −x)(zn−1 +zn−2x +·· ·+zxn−2 +xn−1)

Try over C:

yn = (z −x)(z −ξx)(z −ξ2x) · · ·(z −ξn−1x)

BWe are not in Z anymore! These factors now live in Z[ξ].
What is a prime? Can we factor uniquely? How do you define the notion
of a common factor?
Unfortunately, if we consider n = p > 19, then for ξ a pth root of unity we
have Z[ξ] the elements do not have unique factorizations.
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Emmy Noether

Next best thing: The ideals of Z[ξ] do
have a unique decomposition

Studying these spaces and their
properties is an active area of research
All of this was made possible by:
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Diophantine Equations

The equation xn +yn = zn for any fixed n is an example of a Diophantine
equation.

Ruled as having no positive integer solutions for n > 2.
Another simpler example is, given a,b,c ∈Z is it possible to find x ,y ∈Z
such that

ax +by = c?

We have a simple algorithm to check if a solution exists: check if
gcd(a,b)|c.
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Hilbert’s 10th Problem

‘Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.’ David Hilbert, 1900

The ultimate answer to this question
is that it is ‘unsolvable’.
Julia Robinson formulates a hypothesis
connecting the exponential function
to the problem
Davis and Putnam adapt her ideas
using (then open) Green-Tao theorem
show that her hypothesis implies the
tenth problem is undecidable.
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Julia Robinson cont’d

Robinson removes the conditional
aspect of Davis and Putnam’s work
making her hypothesis sufficient

Davis and Putnam show her hypothesis
is also necessary
1970 Matiyasevich proves Robinson’s
hypothesis which at this time was an
open question for 20 years.

Robinson went on to solve many other problems about decidability.
Recent work of Alexandra Shlapentokh and co-authors generalize
Hilbert’s 10th problem to rings of integers in special algebraic number
fields.
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But of course, the primes

Consider

µ(n)=


1 if n = 1
(−1)k if n = p1p2 · · ·pk

0 otherwise.

Trivially we have ∣∣∣∣ ∑
n≤x

µ(n)
∣∣∣∣≤ x .

The ‘small’ improvement ∑
n≤x

µ(n)= o(x)

is equivalent to the prime number theorem:∑
n≤x

Λ(n)= x +o(x),

where Λ(n)= logp if n = pk and 0 otherwise.
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∣∣∣∣≤ x .

The ‘small’ improvement ∑
n≤x

µ(n)= o(x)

is equivalent to the prime number theorem:∑
n≤x

Λ(n)= x +o(x),
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Chowla’s conjecture and twin primes

A specialized version of Chowla’s conjecture can be stated as:∑
n≤x

µ(n)µ(n+2)= o(x).

This problem has connections to the twin primes conjecture.

∑
n≤x

Λ(n)Λ(n+2)= 2
∏
p>2

(
1− 1

(p−1)2

)
x +o(x).

where
∏

p>2

(
1− 1

(p−1)2

)
= 0.66016 . . . implies twin primes and if we have

good control on the error term then we obtain the answer to the special
case of Chowla’s conjecture.
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Rising stars

Recently a result of Kaisa Matomäki and Maxsym Radziwiłł has made
some significant progress toward Chowla’s conjecture.

The ideas in their paper are
‘‘ expected to change the theory
of multiplicative functions in
a significant way’’.

In a second paper Matomäki, Radziwiłł and Tao have also made
significant progress to a different specialization of Chowla’s conjecture.
‘‘[. . . ] the prize notes, that Matomäki and Radziwiłł, through their
impressive array of deep results and the powerful new techniques they
have introduced, will strongly influence the development of analytic
number theory in the future.’’
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