
1 Introduction

The goal of this talk is

• Large N duality (Conifold transition): the relation between quantum knot invariants

and enumerative invariants. One way to understand modularity

• Refinement of LMOV and Positivity Conjecture of refined Chern-Simons invariants

1.1 Notation

• K0 = C[q±
1
2 , t±

1
2 ] denotes the ring of Laurent polynomials

• K = C(q
1
2 , t

1
2 ) denotes the field of rational functions

• K[X1, . . . , XN ]Sn denotes the ring of symmetric functions

• For f ∈ K0[Y1, . . . , YN ]sym, we define a Macdonald polynomial Pλ(X) of GLN -type with

a dominant weight λ ∈ P+ by

p(f) · Pλ(X) = f(tρqλ)Pλ(X) , Pλ(X) = mλ +
∑
µ<λ

cλ,µmµ,

where mν is the sum of the elements in SN orbit of Xν and < is the dominance partial

order on the partitions.

• We denote the unreduced invariants by rCSλ(Tm,n; a, q, t) and the reduced invariants by

rCSλ(Tm,n; a, q, t) where they are related by

rCSλ(Tm,n; a, q, t) = rCSλ( ; a, q, t) rCSλ(Tm,n; a, q, t) .

• Assigning the Young diagram with h boxes of one row to the trivial representa-

tion |0〉, the irreducible representations ∧dV of Sh are called hook representations since

their Young tableau are of the form with (h− d)-boxes in the first row

.

2 Refined CS invariants

We follow the definition in [Che13].

2.1 Double affine Hecke algebra of GLN

Topological interpretation. Let E be a 2-torus. Consider the N -fold product EN , and let

(EN )reg := {(x1, . . . , xN ) ∈ EN : xi 6= xj if i 6= j}, C := (EN )reg/SN . The fundamental

group π1(C) is known as the elliptic braid group or double affine braid group.
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Lemma 2.1 We have π1(C) = 〈T±1 , . . . , T
±
N−1, X

±
1 , . . . , X

±
N , Y

±
1 , . . . , Y ±N 〉 with relations

TiTi+1Ti = Ti+1TiTi+1, TiXiTi = Xi+1, Ti
−1YiTi

−1 = Yi+1

[Ti, Tk] = 0, [Ti, Xk] = 0, [Ti, Yk] = 0, for |i− k| > 1

[Xj , Xk] = 0, [Yj , Yk] = 0,

YjX1 . . . XN = X1 . . . XNYj , X1
−1Y2 = Y2X1

−1T1
−2

The generator Xi corresponds to the i-th point going around a loop in the horizontal direction

on E; Yi corresponds to the i-th point going around in the vertical direction on E; while Ti
corresponds to the transposition of the i-th and (i+ 1)-th points.

One can form a twisted group algebra, which is a deformation of the group algebra π1(C)

YjX1 . . . XN = q
1
2X1 . . . XNYj

arising from a central extension of π1(C) (so that the central element z becomes q in the

twisted group algebra). The double affine Hecke algebra (=DAHA) of GLn is obtained by
..
HN := Ktwπc(C)/((Ti + t−

1
2 )(Ti − t

1
2 ))i=1,...,N−1 .

In fact, it contains two copies of the affine Hecke algebras generated by (Ti, Xj) and (Ti, Yj).

2.1.1 Modular transformation

There is an action of PSL(2,Z) = 〈τ± : τ+τ
−1
− τ+ = τ−1

− τ+τ
−1
− 〉 generated by

τ+ =

(
1 1

0 1

)
, τ− =

(
1 0

1 1

)
,

on
..
HN , which can be explicitly written as

τ− :


Xi 7→ XiYi(Ti−1 · · ·Ti)(Ti · · ·Ti−1)

Ti 7→ Ti

Yi 7→ Yi

τ+ :


Xi 7→ Xi

Ti 7→ Ti

Yi 7→ YiXi(T
−1
i−1 · · ·T

−1
i )(T−1

i · · ·T
−1
i−1)

2.1.2 PBW theorem and evaluation coinvaraint

For an element w ∈ W = SN of the Weyl group and its representation w = si1 · · · sij by

transpositions (si = (i, i + 1)), we define Tw := Ti1 · · ·Tij . From the definition of
..
HN ,

this is independent of a representation w. In addition, for a set of non-negative integers

λ = (λ1, . . . , λN ), we define Xλ :=
∏N
i=1X

λi
i and Yλ :=

∏N
i=1 Y

λi
i .

Theorem 2.2 (PBW Theorem) Any h ∈
..
HN can be written uniquely in the form

h =
∑
λ,w,µ

cλ,w,µXλTwYµ,

for cλ,w,µ ∈ K0.

Writing an element h ∈
..
HN in the form of h =

∑
λ,w,µ cλ,w,µXλTwYµ via the PBW Theorem

2.2, we define a map {·}ev :
..
HN → K0 called the evaluation coinvariant by substituting

Xi 7→ t−
N+1−2i

2 , Ti 7→ t
1
2 , Yi 7→ t

N+1−2i
2 . (2.1)
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2.1.3 Spherical subalgebra

Using a central idempotent in the group algebra of the Weyl group W

e :=
∑
w∈W

twTw
t2w

.

we can define the spherical DAHA S
..
HN := e

..
HNe ⊂

..
HN . Note that given a reduced

decomposition w = si1 · · · sik of an element w ∈ W , we define tw := t
k
2 . For instance, the

idempotents for N = 2 and N = 3 are expressed by, respectively,

e =
t
1
2T1 + 1

t+ 1
, e =

1 + t
1
2T1 + t

1
2T2 + tT1T2 + tT2T1 + t

3
2T1T2T1

1 + 2t+ 2t2 + t3
.

2.2 Refined Chern-Simons invariants

Now let us define DAHA-Jones polynomials. Indeed, Macdonald polynomials Pλ(X) ∈
K[X1, . . . , XN ]Sn is an element of the spherical DAHA S

..
HN (precisely speaking, up to the

idempotent e). Therefore, for the (m,n) torus knot, we choose an element γm,n ∈ PSL(2,Z)

γm,n =

(
m ∗
n ∗

)
,

such that reduced DAHA-Jones polynomial is defined by

rCSsl(N),λ(Tm,n; q, t) := {γm,n(Pλ)}ev .

The specialization t = q leads to λ-colored sl(N) quantum invariants of the (m,n) torus knot.

In addition, the existence of stabilization (DAHA-superpolynomials) rCSλ(Tm,n; a, q, t) has

been proven:

Theorem 2.3 (Stabilization) [GN15] There exists a unique polynomial rCSλ(Tm,n; a, q, t)

such that:

rCSsl(N),λ(Tm,n; q, t) = rCSλ(Tm,n; a = tN , q, t) .

The invariant is proven to be equivalent to refined Chern-Simons invariants formulated

in [AS15], using

Sλµ = S00 Pλ(tρqµ)Pµ(tρ) , Tλµ = δλµq
1
2

∑
i λi(λi−1)t

∑
i λi(i−1) .

2.3 Properties

When colors are specified by rectangular Young diagrams, therefined Chern-Simons invariants

with the change of variables

a = −a2 , q = q2t2 , t = q2 , (2.2)

conjecturally coincide with Poincaré polynomial polynomials of colored HOMFLYPT homol-

ogy of the corresponding torus knot. For non-rectangular Young diagrams, it is known that

the DAHA-superpolynomials include both positive and negative signs after the change of the

variables (2.2).

It turns out that refined Chern-Simons invariants have surprisingly rich properties. Es-

pecially, it is proven in [Che16] that the reduced invariants the following properties:
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• mirror/transposition symmetry

rCSλT (Tm,n; a, q, t) = rCSλ(Tm,n; a, t−1, q−1) . (2.3)

• refined exponential growth property

rCS∑`
i=1 λiωi

(Tm,n; a, q = 1, t) =
∏̀
i=1

[
rCSωi(Tm,n; a, q = 1, t)

]λi
, (2.4)

where ωi are the fundamental weights of sl(N).

For instance, (r)-colored refined CS invariants of the trefoil admit cyclotomic expansions

rCS(r)(T2,3; a, q, t) := arq−
r
2 t−

r
2

∑
k≥0

qkrt−k
(
r

k

)
q

(a
t
; q
)
k

Question: How are they related to modular forms? (Tails, refinement of modular forms, etc)

3 Large N duality

Conjecture 3.1

∑
λ

rCSλ(Tm,n; a, q, t) gλ(q, t)Pλ(x; q, t) = exp

( ∞∑
d=1

∑
µ

1

d

f qµ(Tm,n; ad, qd, td)

q
d
2 − q−

d
2

sµ(xd)

)
, (3.1)

∑
λ

rCSλ(Tm,n; a, q, t) PλT (−x; t, q) = exp

( ∞∑
d=1

∑
µ

1

d

f t̄µ(Tm,n; ad, qd, td)

t−
d
2 − t

d
2

sµ(xd)

)
. (3.2)

The refined reformulated invariants f qµ(Tm,n) and f t̄µ(Tm,n), expressed in terms of refined

Chern-Simons invariants of a torus knot Tm,n via the geometric transition (3.1) and (3.2)

can be written

f qµ(Tm,n; a, q, t) =
∑
ρ

Mµρ(t)f̂ρ(Tm,n; a, q, t) ,

f t̄µ(Tm,n; a, q, t) =
∑
ρ

Mµρ(q
−1)f̂ρ(Tm,n; a, q, t) , (3.3)

where, upon the a-grading shift by ±1
2 , f̂ρ(Tm,n) takes the form

f̂ρ(Tm,n; a, q, t) =
∑

charges

(−1)2JrN̂ρ,g,β,Jr(Tm,n)(q
1
2 − q−

1
2 )g(t−

1
2 − t

1
2 )g
(q
t

)Jr−β2
aβ , (3.4)

with non-negative integers N̂ρ,g,β,Jr(Tm,n) ∈ Z≥0. Note that we define an invertible symmetric

matrix

Mµρ(t) :=
∑
σ

CµσρBσ(t) ,
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where the Clebsch-Gordon coefficients Cµσρ of the permutation group Sh are

Cµσρ =
∑
~k

|C(~k)|
k!

χµ(C(~k))χσ(C(~k))χρ(C(~k)) , (3.5)

and physics tells us

Bσ(t) =

{
(−t)dt−

|σ|−1
2 σ : hook rep for ∧d V

0 σ : otherwise
.

Furthermore, for ρ, g, β fixed, the 2Jr charges of non-zero (hence positive) integers

N̂ρ,g,β,Jr(Tm,n) are either all even or all odd so that no cancellation occurs in the unrefined

limit and therefore the LMOV invariant is

N̂ρ,g,β(Tm,n) = ±
∑
Jr∈ 1

2
Z

N̂ρ,g,β,Jr(Tm,n) . (3.6)

The relation between (3.1) and (3.2) can be explained from the mirror/transposition

symmetry (2.3).

Conjecture 3.2 Moreover, f̂ρ(Tm,n; a, q, t) exhibit the other positivity in the following ex-

pansion

f̂ρ(Tm,n; a, q, t) =
∑

charges

N̂PT
ρ,J1,J2,β(Tm,n) qJ1tJ2(−a)β

where N̂PT
ρ,J1,J2,β

(Tm,n) are non-negative integers. These can be regarded as open analogues of

refined Pandharipande-Thomas invariants.

3.0.1 Remark

The BPS states that contribute to the refined index are fermion zero modes on an M2-brane

wrapped on a holomorphic curve Σg,h ⊂ X whose boundary is on L. The fermion zero modes

on an M2-brane can be associated to cohomology groups of the moduli space

Jac(Σg,h) M̂op

Mg,h,β

π ,

where the moduli spaceMg,h,β parametrizes deformations of Σg,h ⊂ X that preserve a half of

supersymmetry. Since the moduli spaces Mg,h,β are in general singular, there has yet to be

a definition. Although the PT/GV invariants (closed version) are related to modular forms,

the relation of its open analogues discussed here to modular forms has not understood at al.

4 Miscellaneous

Other relations of DAHA

For each l ≥ 2 we put αl = T−1
l−1 · · ·T

−1
2 T−2

1 T2 · · ·Tl−1. The following relations hold

X−1
l Y1Xl = αlY1,
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YlX1 = X1Yl + (t−
1
2 − t

1
2 )T−1

l−1 · · ·T
−1
2 T−1

1 T−1
2 · · ·T−1

l−1Y1X1,

q
1
2X1Y1 = T−1

1 · · ·T−1
n−2T

−2
n−1T

−1
n−2 · · ·T

−1
1 Y1X1.

α2 · · ·αl = T−1
1 · · ·T−1

l−2T
−2
l−1T

−1
l−2 · · ·T

−1
1 ,

For n > j ≥ i ≥ 1, we have

Y −1
i+1XiYi+1X

−1
i = T 2

i ,

Y −1
j+1XiYj+1X

−1
i = Tj · · ·Ti+1T

2
i T
−1
i+1 · · ·T

−1
i

X−1
j+1YiXj+1Y

−1
i = Tj · · ·Ti+1T

−2
i T−1

i+1 · · ·T
−1
j

Macdonald functions

The Macdonald functions Pλ (x; q, t) are uniquely defined by orthogonality and normalization

conditions:

〈Pλ, Pµ〉q,t = 0 , if λ 6= µ,

Pλ (x; q, t) = mλ (x) +
∑

µ<λ uλµ (q, t)mµ (x) , uλµ (q, t) ∈ Q (q, t) ,

where the inner product is defined by

〈pλ, pµ〉q,t = δλµzλ
∏
i≥1

1− qλi
1− tλi

, zλ =
∏
i≥1

imimi! .

At the q = t specialization, the Macdonald functions reduce to the Schur functions. From

the definition one can show

(q/t)|λ|

gλ(q, t)
:= 〈Pλ, Pλ〉q,t =

∏
s∈λ

1− qa(s)+1tl(s)

1− qa(s)tl(s)+1
,

Explicit formulas of refined reformulated invariants

f q

t
1
2 − t−

1
2

=rCS ,

t
1
2

q
1
2

f q

t
1
2 − t−

1
2

=
qt− 1

q2 − 1
rCS − t− 1

2(q − 1)
(rCS )2 − t+ 1

2(q + 1)
rCS

(2)
,

t
1
2

q
1
2

f q

t
1
2 − t−

1
2

=
t− q
q2 − 1

rCS +
t2 − 1

qt− 1
rCS − t− 1

2(q − 1)
(rCS )2 +

t+ 1

2(q + 1)
rCS

(2)
,

f t̄

t
1
2 − t−

1
2

=rCS ,

−f t̄

t
1
2 − t−

1
2

=rCS +
1

2
rCS

(2) − 1

2
(rCS )2 ,

−f t̄

t
1
2 − t−

1
2

=rCS +
q − t
qt− 1

rCS − 1

2
rCS

2 − 1

2
rCS

(2)
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