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The Colored Jones Polynomial

@ The colored Jones polynomial is knot invariant.
@ It assigns to each knot a sequence of polynomials.

@ We want to look at the coefficients of these polynomials.
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The Colored Jones Polynomial

@ The colored Jones polynomial is knot invariant.
@ It assigns to each knot a sequence of polynomials.

@ We want to look at the coefficients of these polynomials.

‘ Highest Terms of the Colored Jones Polynomial of 4;
¢—q+1-q'+q7°
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The Colored Jones Polynomial

@ The colored Jones polynomial is knot invariant.
@ It assigns to each knot a sequence of polynomials.

@ We want to look at the coefficients of these polynomials.
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Notes on Normalization

@ The (N + 1)* colored Jones polynomial of a knot K is the Jones
polynomial of K decorated with the f(V), the Jones-WenzI
idempotent in TL,.
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Notes on Normalization

@ The (N + 1)* colored Jones polynomial of a knot K is the Jones
polynomial of K decorated with the f(V), the Jones-WenzI
idempotent in TL,.

Normalized colored Jones polynomial:

J;\Lunknot(q) =1

Un-normalized colored Jones polynomial:

JN,unknot(q) =An_1= (_1)N_1[N]

Ink(q
Sila) = Tl

We use the convention that N = 2 gives the standard Jones polynomial.
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The 5% colored Jones Polynomial for figure 8 knot is:

6 1 2 2 1
+7*Q*2q2*2(73*q4+6q5*q6*2q7*2q8*q9+5q10

+7 77777777
® ¢ ¢ ¢ g

gl g2 g3 gt 315 — g8 — 1% 4 ¢

This has coefficients:

{1a _17 _1a Oa 07 37 _1a _17 _1a _17 57 _1» _27 _27 _17 61 _17

-1,-2,-2,-1,6,-1,-2,-2,-1,5,-1,-1,—1,-1,3,0,0,—1,-1,1}
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{1,-1,-1,0,0,3,—-1,-1,-1,-1,5,—-1,-2,-2,-1,6,—1,-2,-2,—1,7,
-1,-2,-2,-1,6,—-1,-2,-2,-1,5,—~1,—-1,-1,-1,3,0,0, -1, 1,1}

We can plot these:

................

Figure: Coefficients of the 5t Colored Jones Polynomial for the Figure Eight Knot
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Figure: Coefficients of the 20" Colored Jones Polynomial for the Figure Eight
Knot
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Figure: Coefficients of the 50" Colored Jones Polynomial for the Figure Eight
Knot
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Figure: Coefficients of the 95" Colored Jones Polynomial for the Figure Eight
Knot
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What is this polynomial?

N—-1 n
Ina, (@) = {N+ kHN — k}

n=0 k=1
N—1 n

_ H(q—(N+k)/2 o q(N+k)/2)(q—(N—k)/2 _ q(N—k)/Z)
n=0 k=1
N—-1 n

— H(qN_qk_qfk_i_qu)
n=0 k=1
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What about other knots? See Mathematica Demo....
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But what about the middle?
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Figure 8 Knot Middle Coefficients Observed Properties

@ The middle coefficient is the constant term.
@ The maximum coefficient is the coefficient of constant term.

@ Some sort of N-periodicity in the middle coefficients.
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Constant Coefficient of the Colored Jones
Polynomial of the Figure 8 Knot
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Figure: The Maximum Coefficient of the N Colored Jones Polynomial of the
Figure 8 Knot as a function of N.
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Assumption

The maximum coefficient takes the form Ae®™ where N is the number of
colors and A and b depend on the knot.

Proposition

The colored Jones polynomial of a knot K satisfies

27i /N
i 108 k(M) (e )| < lim log myc(N)
N—o0 N N—ro0 N

If the above assumption holds, then the colored Jones polynomial satisfies

lim

< b.
N—oco

log | Jk(N)(e*™/N)|
N
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Assumption

The maximum coefficient takes the form Ae®™ where N is the number of
colors and A and b depend on the knot.

So for knots where the Hyperbolic Volume Conjecture holds we get to
following

Proposition

For knots for which the Hyperbolic Volume conjecture holds

3
vol(5°\K) < lim log mK(N).
27 N—ro0 N

Now, if we include the above assumption, so that m(k)(N) = Ae®N, we get

3
vol(5°\ K) <
2w -
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Assumption

The maximum coefficient takes the form AePN where N is the number of
colors and A and b depend on the knot.

Assumption

The coefficients take the form of a normal distribution times a sine wave
of period 2N.

Proposition
If the colored Jones polynomial of a knot satisfies these two assumptions
then -~
I f T
b fim lo8l(n(e™ )
N—oo N

If this is a knot for which the Hyperbolic Volume Conjecture holds,

b vol(S3\K)
B 2r
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of the Figure 8 Knot
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semi-(un)normalized colored Jones polynomial:sJy k(q) = {N}Jy «(q).

£In,k (@1} = sInk(q) = Iy k(@) {N}
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semi-(un)normalized colored Jones polynomial:sJy k(q) = {N}Jy x ().

£In,k (@1} = sInk(q) = Iy k(@) {N}

iﬁi

axatt

Figure: The coefficients of the 95 colored semi-(un)normalized Jones polynomial
of the figure 8 knot.
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Figure: The middle 2000 coefficients of the sJgs 4, (q).
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Figure: The middle 1000 coefficients of the sJos 4, (q).
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Figure: The middle 400 coefficients of the sJgs 4,(q).
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Conjecture

Let c(q") be the coefficient of the q' term of sy 4,(q). When N is odd,

gy =+ i=+N/2 or £3N/2
99700 Jij<2N—1/2andi#+£N/2 or +3N/2

When N is even,

) = +1 i=+Nor £3N/2
99710 il <2N and i+ £N or £3N/2

05F

-05F

. -10F
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Head and Tail Stabilty

@ In 2006, Dasbach and Lin conjectured that the first and last
coefficients of the colored Jones polynomial stabilize for alternating
knots.

@ In 2011, Armond proved this for alternating links and for adequate
links, using skein theoretical techniques.

@ The head and tail do not exist for all knots, however. Armond and
Dasbach showed that the head and tail does not exist for the (4,3)
torus knot.

@ It was also independently proven by Garoufalidis and Lé. In fact, they
proved a stronger version of this stability.
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Definition

The head of the Colored Jones Polynomial of a knot K - if it exists - is a
polynomial whose first N terms (highest powers of g) have the same
coefficients as the first N terms of J;V,K'

Definition

The tail of the Colored Jones Polynomial of a knot K - if it exists - is a
polynomial whose last N terms (lowest powers of g) have the same
coefficients as the last N terms of JI/V,K'
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\ Highest Terms of the Colored Jones Polynomial of 4;

¢—q+1-qg ' +q?

9" +2¢ - ¢ —q+3-q ' —qg°+ -

+2¢% —2¢° +3q* —3¢% + - --

+0g° +3¢1° — gt — B + .-

o|~N|o|o|slw | =

g7 g0
gl 418
g8 10651 ¢® +2¢% + 095 1 -
g%
-

10452+ P11 0g%0 T
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The Head of the Colored Jones Polynomial of 4,

N—1 n
Iva(@ = Y J[d"—d" —a*+q"
n=0 k=1
The max degree of each summand is Nn so decreasing the n by 1 changes
the max degree by N thus only n = N — 1 contributes to the head and tail.

N—-1
HT _ _
Ina (@) = " —g-—gF+q "
k=1
wr
gl g — g~
k=1
N—-1
— gV H 1— gk N
k=1

reindex:k’ = N — k
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Theorem (Euler's Pentagonal Number Theorem)

H (1—x") = Z (—1)kxkBk-1)/2
n=1 k=—o00

= 1-x—xX°+x>+x"—x2—xP4...

A similar arguments shows that the head of twists knots is the same
polynomial.
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Theorem (Armond)

The head and tail of the colored Jones polynomial exist for alternating and
adequate links.

v

Theorem (Armond and Dasbach)

The tail and head of the colored Jones polynomial of adequate links only
depend on a certain reduced checkerboard graph of a diagram of the link.

v
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Figure: The Knot 6,

\\@
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Figure: The Knot 6, with a checkerboard coloring
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Figure: The Knot 6, with one of its associated graph
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Figure: The Knot 6, with the other associated graph
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Knot | knot Diagram cn;x::t:;;rd Chenke”v[:tj:zGraph Tail Head
AR
*—e
HvY
5.1 @ —o Q hs | 1
AR
62 ‘2} v é h; | hsh,
b= Bdb s L
CC A
8.5 @ v 9 hy | ?%?

hb(q) — Z(_l)nqbn(n+1)/2—n hz(q) _ Z 6(n)qbn(n—i—l)/2—n

neZ nez
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Definition (Garoufalidis and L&)

A sequence (f,(q)) € Z|[[q]] is k-stable if there exist ®;(q) € Z((q)) for
j=0,..., k such that

lim g~ ") | £,(q) —

n—o0

o;(q)g ") | = 0.

M-

I
o

J

We call ®,(q) the k-limit of (f,(q)). We say that (f,(q)) is stable if it is
k-stable for all k.

For example, a sequence (f,(q)) is 2-stable if

lim q72(n+1) (fn(q) o (q)o(q) + q(n+1)¢1(q) + q2(n+1)¢2(q))) —0.

n—o0
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For the knot 8s:

o0

o=[[(1-qa"= 3 (-1)q2C,
n=1 k=—o00
o 1 -1-10010 1 0 0 0 0 -1 0 0
N=5 1 -1 -1 005 -1 -3 -3 -5 11 4 1
N=6 1 -1 -1 001 4 0 4 3 3 -1 9 8 1
N=7 1 -1 -1001 0 5 -1 4 -3 -3 0 -2 14

Katie Walsh Hall

Patterns and Higher Order Stability
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ol 1 -1 -1 0010 1 0 0 0 0 -1 O 0
N=5 1 -1 -1 0 0 5 -1 -3 -3 -5 11 4 1 -

N=6 1 -1 -1 0 01 4 0 4 -3 -3 -1 9 38 1
N=7 1 -1 -1 0 01 0 5 -1 4 -3 -3 0 -2 14

Now, since we know all of ®g, we can subtract it from the shifted colored
Jones polynomials. Now are coefficients are:

b 1 -1 -1 0010 1 0 O O O -1 0 O
N=5 0 0 0 0 0 4 -1 4 -3 -5 11 4 2 X

N=6 0 0 0 O OO 4 -1 -4 -3 -3 -1 10 38 1
N=7 0 0 0 0 OO O 4 -1 4 -3 -3 1 -2 14
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ol 1 -1 -1 0010 1 0 0 0 0 -1 0 O
N=5 0 0 0 0 O0 4 -1 -4 -3 -5 11 4 2 .

N=6 0 0 0 O OO 4 -1 -4 -3 -3 -1 10 38 1
N=7 0 0 0 0 OO O 4 -1 4 -3 -3 1 -2 14

Shifting these sequences back so that they start with a non-zero term, we
can see that they again stabilize. The sequence they stabilize to is ®;.

&, 4 1 4 3 3 1 0 4 3 3 3 3
N=5 4 -1 4 3 5 11 4 2

N=6 4 -1 4 3 3 -1 10 8 1 -4 -
N=7 4 -1 4 3 3 1 2 14 7 1 -4 9.
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&, 4 1 4 3 3 1 0 4 3 3 3 3
N=5 4 -1 4 3 5 11 4 2 .-

N=6 4 -1 -4 3 3 -1 10 8 1 -4 ...
N=7 4 -1 4 3 3 1 2 14 7 1 -4 9.

Subtracting and shifting these sequences back so that they start with a
non-zero term, we can see that they again stabilize. The sequence they
stabilize to is ®5x*.

o« 2 10 4 2 -7 -12--
N=5 2 10 4 -2 ---

N=6 2 10 4 2 -7 -
N=7 2 10 4 2 -7 -12--.
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Theorem (Garoufalidis and L&)

For every alternating link K, the sequence fy(q) = (Jn11,k(q)) is stable
and its associated k-limit ®k ,(q) can be effectively computed from any
reduced alternating diagram D of K.
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A k + 1-stable sequence satisfies:

k+1
le'oo q—(k+1)(N+1) Ins1k(q) — Z q/(N+1)q>j(q) =0.
j=0

@ The first k(N + 1) coefficients of Jyy1,k(q) match Zjl'(:o g (N+1)

for large enough N.

@ This does not guarantee this property from the beginning.

Katie Walsh Hall Patterns and Higher Order Stability
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Order

1st
Order

Higher
Order

Stabilization of
Coefficients

v

adequate links

v

for
links

alternating

Katie Walsh Hall

Which knots stabilize
to the same sequence?

v

What do they
stablize to?

v

in some cases
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Corollary

Let m be the minimum number of parallel edges in a diagram. In addition
to the first N + 1 terms only depending on the overall graph structure, the
next (m — 1)N terms also depend only on the graph structure.

Corollary

To find &, we can consider the graph diagram reduced so that multiples
edges with multiplicity greater than k are reduced to k multiple edges.
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Order

1st
Order

Higher
Order

Stabilization of
Coefficients

v

adequate links

v

for
links

alternating

Katie Walsh Hall

Which knots stabilize
to the same sequence?

v
v

What do they
stablize to?

v

in some cases
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my

Figure: A knot with its checkerboard graph.
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Int1k(q) =
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Fusion

a

Ac s s
b - zC: 6(a, b, C)H (1)
8o ={C5p) = 1+ 1 ©)

[n] = Hi, (n}=A" A2 and A*=a2=q. (3)

where
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Fusion

a

Ac s a
b - zC: 6(a, b, C)H )

Assume (a, b, ¢) is an admissible triple, then let i, j, k be the internal
colors, in particular

i=(b+c—a)/2 j=(a+c—b)/2 k=(a+b—2c)/2. (5)

a

itjrk i +J + k+ 1] A]!
b <> -y EIE k]]![[}' —E]k[]!] - ©
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Int1k(q) =
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Twist Coefficients

N =0 b,c)b:\/ ‘ (7)
with
at+b—c b 32+b2—c2
v(a,bc) = (-1)"2 AT (8)
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Int1k(q) =
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m-reduced graph Corollary Proof

Label edge sets with m or more parallel edges 1 through b.

A2J,
JN+1,K = Z ny N N 2./’ G(N N 2 ) N 3L 5e5k)
JiyJk=01i=1
.(m—;l)N (N N 2[\/)2: L mi
A
S\ 2j;
X Z H Y(N, N, 2j;)™ H T (N N s 1,
, - =2 O(N, N, 2j;)
Jb+17~~~a./k:0 I:b+1 i=1
(9)
Again, since y(N, N,2N) only contributes an overall shift, we get the same
highest (m + 1)N coefficients regardless of the values of my,..., my and

thus knots with the same m + 1-reduced graph structure have the same
highest (m + 1)N coefficients.
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Ayj
JN+1,K ZH’Y N N 2-/’ 9(/\/ /\; zj)rN:(leZ,B)
=0i=1

What terms contribute to the first 2N + 1 coefficients?
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Ayj
JN+1,K ZH’Y N N 2-/’ 9(/\/ /\; 2J)rN:(,il:j2J3)
=0i=1

What terms contribute to the first 2N + 1 coefficients?

either all j; = N or exactly one j; = N — 1 and the rest are N
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In the case where each mj is greater than 2, the maximum degree
decreases by more than 2N when we decrease j; from N to N — 1, thus we
only need to deal with the case where each j; = N. Thus we get

3
s\m; AZI
JN+1,K(Q) = | | (N, N, 2j;) IQ(N NJ 2j; )rN,(jl,J'zJa)
i=1

JAVYY

N, N, 2N)™ 2N
VNN 2N G N 2y )

N
Ji=0
3
i=1

3
_ 7(N,N,2N)m1+m2+m3 <6(N’AKI”V2N)> (I_N,(N,N,N))
e (D[N
N2 (1- 2050 (1)
(~1){N}

(1-35)
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. 2g-N-1
Jsa,x(q) - stabilized head % (-1)V{wy! < (1+ P+

N <1 - 1q—Nq‘11> )
- (s )

— (~1)Ng M- 1({,\/}, 3{’\;}' )

[e%s) N i 3 i=1 1-— —i
= H(l—q )+ Hl—_(qlq ),
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When an m; is 1, we do get a term with j; = N — 1.
Need to consider the graph (N + 1, N — 1, N — 1) and its evaluation.
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v v—inny =F(N+1L,N-1,N—1)).
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Theorem (KPWH)

Let m be the number edges in the checkerboard graph with m; of 2 or
more. The tailneck of knots whose reduced checkboard graph is the
triangle graph is:

L n Hzoz(l—q")
n];[1(1—q)+m11_q :

i.e. the pentagonal numbers plus the m times the partial sum of the
pentagonal numbers.

Katie Walsh Hall Patterns and Higher Order Stability
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Oliver Dasbach suggested the following:

@ Redefine the neck and tail neck by subtracting consecutive terms in
sequence, shifted so that they have the same minimum degree.

@ This gives us a simpler expression for the higher order stable pieces.
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Oliver Dasbach suggested the following:

@ Redefine the neck and tail neck by subtracting consecutive terms in

sequence, shifted so that they have the same minimum degree.

@ This gives us a simpler expression for the higher order stable pieces.

Corollary

Again, let m be the number edges in the checkerboard graph with m; of 2

or more. Then we have

(e}

. N ;
Ik — @Ik =0+m—q) [[1-q").

n=1

Katie Walsh Hall
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If we want the first 3N + 1 terms, which terms in the sum contribute?

Labeling (up to permutation) | Increase in min degree from (N, N, N)
(N, N, N) 0

(N,N,N —1) at least N +1
(N,N,N —2) at least 2N + 1
(N,N—-1,N—1) at least 2N + 2
(N,N,N —3) at least 3N — 1
(N,N—1,N—2) at least 3N +1
(IN-1,N-1,N-1) at least 3N + 3
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The Graph rN7(N7N_1’N_1)
N

We can absorb the smaller idempotents into the larger ones and combine
adjoining ones.
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We resolve the remaining N idempotents but only one of the terms is

Ay_»
N—1

non-zero. We get a factor of — (A ) from each resolution.

2
The evaluation of [y (y.y_1n_1) = (ﬁxj) F(N, N, N —2).
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Let's look at the next stable sequence for these knots:

q_(2N+2)(q(j/N,K - j'N+1,K) - (JA’N+1,K - JA/N+27K))/H(1 N qi)
i=1
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Values of (my,mp, m3) | Ty | T3 1 g ¢ ¢
(up to permutation)
(1,1,1) 1_g 0 1 -1 -1 1
(1,1,2) 2 g 0 4 -1 3 1
(1,1,3%) 2 gq 1 4 0 3 1
(1,2,2) 3_g 0 7 0 4 1
(1,2,3%) 3_¢ 17 1 -4 1
(1,3%,3%) 3—gq 2 7 2 4 1
(2,2,2) 4_¢q 0 10 2 -4 1
(2,2,3%) 4-gq 110 3 4 1
(2,3%,3%) 4—gq 2 10 4 -4 1
(37,3%,3T) 4—gq -3 10 5 -4 1
Katie Walsh Hall Patterns and Higher Order Stability

66 /68



What information is contained these coefficients?

Question J
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Question J

What information is contained these coefficients?

More questions:
@ Can we prove that these are the stable sequences?
o Can we get a geometric proof of stability for all knots?

@ What does the stable sequence look like for other families of knots or
for even higher stability?

@ Can these sequences help us understand the middle coefficients?
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