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Key Points

1 P. Painlevé motivation — construction of new, purely nonlinear, special functions (similar to
the construction of usual special functions, such as Airy, Bessel, and so on, as general
solutions of linear ODE).

2 Painlevé transcendent (general solutions of Painlevé differential equations) play an
increasingly important role in a wide range of nonlinear problems and applications.

3 The theory of discrete Painlevé equations is much more recent, but it is already very clear
that the same is true — these equations appear in many important applied problems. So it is
essential to understand how to effectively work with them.

4 The classification scheme for discrete Painlevé equations, due to H. Sakai, is much more
complicated than the differential case. There are 22 types of these equations; in each type
there are infinitely many non-equivalent equations. Nice expression for some equations in
each class are known (e.g., by construction, as in the deautonomization of QRT maps).

5 Even these simple equations look “nice” when written in particular coordinates (that we shall
call the Painlevé coordinates). When a discrete Painlevé equation appears in application, it is
written in application coordinates and it can look very complicated. Thus, it is essential to
be able to understand the type of a discrete Painlevé equation that appears in an applied
problem and whether it is equivalent to a known simple example

6 Main Problem that we consider: determine whether a given discrete Painlevé dynamics is
equivalent to a known example, and if so, how to explicitly find the change of coordinates
from the application coordinates to the Painlevé coordinates.

7 Main point: since discrete Painlevé equations are essentially algebraic objects, Sakai’s theory
gives the right set of tools to effectively answer the above question.

8 As an example, we consider the computation of gap probabilities in a generalized tiling
problem (Alisa Knizel’s work).
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7 Main point: since discrete Painlevé equations are essentially algebraic objects, Sakai’s theory
gives the right set of tools to effectively answer the above question.

8 As an example, we consider the computation of gap probabilities in a generalized tiling
problem (Alisa Knizel’s work).

A. Dzhamay (UNCO) Gap Probabilities and q-Painlevé equations September 6, 2018 2 / 27
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equivalent to a known example, and if so, how to explicitly find the change of coordinates
from the application coordinates to the Painlevé coordinates.
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Probabilistic Model: q-Distributions on Boxed Plane Partitions

Models of a random surfaces: boxed plane partition (lozenge tiling of a hexagon).
Consider tilings of an a× b × c hexagon (a, b, c ≥ 1) by three types of lozenge tilings
(obtained by gluing together two adjacent triangles of a regular triangular grid).

Denote the set of all possible such tilings by
Ωa×b×c . Equip this set with a probability measure,
where, for T ∈ Ωa×b×c ,

P(T ) =
w(T )

Z(a, b, c)
, where w(T ) =

∏

♦∈T
w( ♦),

and Z(a, b, c) is the usual normalization constant,

Z(a, b, c) =
∑

T ∈Ωa×b×c

w(T ).

Originally, the most studied distribution was uniform, w( ♦) = 1. In 2009, A. Borodin,
V. Gorin, and E. Rains introduced a far-reaching generalization of this model with a very
general elliptic weight and (complex) parameters u1, u2, p, q:

w( ♦) = w( ♦ i,j ) =
(u1u2)1/2qj−1/2θp(q2j−1u1u2)

θp(qj−3i/2−1, qj−3i/2u1, qj+3i/2−1, qj+3i/2u2)
,

where θp(x) =
∞∏
i=0

(1− pi x)(1− pi+1/x) and θp(a, b, c, . . . ) = θp(a)θp(b)θp(c) . . . .
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From Plane Partitions to Orthogonal Polynomial Ensembles

Change variables to N = a, T = b + c, S = c and interpreting plane partitions as nonintersecting
paths via an affine transformation

⇐⇒

The most general elliptic weight w( ♦) =
(u1u2)1/2qj−1/2θp(q2j−1u1u2)

θp(qj−3i/2−1, qj−3i/2u1, qj+3i/2−1, qj+3i/2u2)
corresponds to certain biorthogonal functions (not polynomials).

The most general orthogonal polynomial case is the limit p → 0, u1 = O(
√

p), u2 = O(
√

p),

u1u2 = pκ2q−S with the q-Racah weight w( ♦) = κqj−(S+1)/2 −
1

κqj−(S+1)/2
.

Taking the limit with κ→ 0 (with appropriate rescaling) gives q-Hahn weights w( ♦) = q−j .
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Gap Probabilities (the q-Hahn case)

View the boxed partition model as the non-intersecting paths model; equip it with the q-Hahn
weight w( ♦) = q−j . Fix a section t. Let the coordinates of the nodes be C(t) = (x1, . . . , xN ).

Theorem (Borodin, Gorin, Rains (2009))

Prob{C(t) = (x1, . . . , xN )} = const ·
∏

0≤i<j≤M

(q−xi − q−xj )2
N∏

i=1

w(xi ),

where w(x) is the weight function of the q-Hahn polynomial ensemble up to a factor not
depending on x.

Gap probability

The one-interval gap probability function DN
s is

DN
s = Prob[max{xi} < s].
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Theorem (Knizel (2016), q-Volume case)

The gap probability DN
s for the q-Hahn ensemble can be computed recursively

DN
s =

(DN
s−2)2

DN
s−1

(rs−1w − qvz1z2)(rs w − quz1z2)(ts−1 − qz1)(ts−1 − qz2)

uvz1z2(qz1 − z3)(qz1 − z5)(qz2 − z4)(qz2 − z6)
,

where the sequence (rs , ts ) satisfies the recursion (equivalent to after some change of parameters)

(rs ts−1 + 1)(rs−1ts−1 + 1) =
z1z2(ts−1 − z3)(ts−1 − z4)(ts−1 − z5)(ts−1 − z6)

z3z4z5z6(qts−1 − z1)(qts−1 − z2)
,

(rs ts + 1)(rs ts−1 + 1) =
uv(z1z2)2(rs z3 + 1)(rs z4 + 1)(rs z5 + 1)(rs z6 + 1)

(rs ws − vz1z2)(qrs ws − uz1z2)
.

The parameters u, v ,w , z1, . . . , z6 and the initial conditions are explicitly computed in terms of

α, β, q, s. The above recursion coincides with the q-P
(

A
(1)
2 /E

(1)
6

)
of (KNY) after some change

of parameters.

This relation is obtained through the DRHP approach, that can be interpreted as describing
isomonodromy deformations of a q-connection.

Moduli space of such connections turn out to coincide with Sakai’s q-Painlevé surfaces.

Thus, the isomonodromy deformations of connections are maps in this q-Painlevé family, and
hence should be given by q-P equations.

How to identify them?
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α, β, q, s. The above recursion coincides with the q-P
(

A
(1)
2 /E

(1)
6

)
of (KNY) after some change

of parameters.

This relation is obtained through the DRHP approach, that can be interpreted as describing
isomonodromy deformations of a q-connection.

Moduli space of such connections turn out to coincide with Sakai’s q-Painlevé surfaces.

Thus, the isomonodromy deformations of connections are maps in this q-Painlevé family, and
hence should be given by q-P equations.

How to identify them?
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DRHP for q-Hahn

Theorem (Borodin-Boyarchenko (2002))

Fix card(X) > k > 0 and set w(ψ) =

[
0 w(ψ)
0 0

]
. For any s ≥ k there exists unique analytic

function ms (ψ) : C \Ns → Mat(C, 2) with simple poles at points in Ns = {x0, . . . , xs−1} such
that

Resψ=x ms (ψ) = lim
ψ→x

ms (ψ)w(ψ), x ∈ Ns ;

ms (ψ) ·
[
ψ−k 0

0 ψk

]
= I + O

(
1

ψ

)
as ψ →∞.

Introduce matrix

As (z) = ms (q−1z)A0(z)m−1
s (z), where A0(z) =

qw(x + 1)

w(x)
0

0 1

 with z = q−x .

In the q-Hahn case,
qw(x + 1)

w(x)
=

(z − αq) · (z − q−M )

αβ(z − q) · (z − β−1q−M )
.

A. Dzhamay (UNCO) Gap Probabilities and q-Painlevé equations September 6, 2018 7 / 27
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Then the following holds:

Gap probabilities DN
s can be computed in terms of the matrix elements of As =

[
as

11 as
12

as
21 as

22

]
;

For any s matrix element as
21 has a unique zero. Denote it by ts and as

11(ts ) by ps .

Evolution (ts , ps )→ (ts+1, ps+1) is described by (after some adjustments) q-P(A
(1)
2 ).

Structure of a generic As (z) of type λ = (z1, . . . , z6; u, v ,w ,w ; 3)

A(z) =

[
a11(z) a12(z)
a21(z) a22(z)

]
, A(0) =

[
w 0
0 w

]
,

where deg(a11) ≤ 3, deg(a12) ≤ 2, deg(a21) ≤ 2, deg(a22) ≤ 3 and

det A(z) = uv(z − z1)(z − z2)(z − z3)(z − z4)(z − z5)(z − z6)

We also impose asymptotic conditions

det A(z) = uvz6 +O(z5) tr A(z) = (u + v)z3 +O(z2).

Parameter evolution

When As (z)→ As+1(z), the parameters evolve as

(zs
1 , z

s
2 , . . . , z

s
6 , us , vs ,ws )→ (zs+1

1 , zs+1
2 , . . . , zs+1

6 , us+1, vs+1,ws+1)

with zs+1
2 = qzs

2 , zs+1
4 = qzs

4 , ws+1 = qws , and zs+1
i = zs

i for i 6= 2, 4.

A. Dzhamay (UNCO) Gap Probabilities and q-Painlevé equations September 6, 2018 8 / 27
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Weight degenerations and Sakais Classification scheme for Discrete Painlevé
equations

The main goal of this project is to both find a way to extend the results from the q-Hahn case to
a more general q-Racah case, and also to see how it fits the degeneration cascade in Sakai’s
classification scheme for discrete Painlevé equations.
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q-Racah q-Hahn

Racah Hahn

q-PVI q-PV q-PIV, q-PIII

q-PI

PVI, d-PV PV, d-PIV
d-PIII

PIII
alt. d-PII

PIII PIII

PIV, d-PII PII , alt.d-PI PI

Every discrete Painlevé equation is a discrete dynamical system given by a non-homogeneous
birational automorphism of P1 × P1. It is resolved by blowing up P1 × P1 at eight points, and
becomes a flow on a family of such surfaces. Configuration of blowup points is encoded by an
affine Dynkin diagram. Its “dual” affine Dynkin diagram encodes the affine Weyl symmetry group
of the family (above) and Discrete Painlevé equation is equivalent to a translation in its lattice.
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of the family (above) and Discrete Painlevé equation is equivalent to a translation in its lattice.

A. Dzhamay (UNCO) Gap Probabilities and q-Painlevé equations September 6, 2018 9 / 27



Discrete Painlevé Equations: Reference Example of q-P
(
A

(1)
2 /E

(1)
6

)

A
(1)
2 surface model

δ0 δ1

δ2

δ0 = Hf + Hg − F1 − F2 − F3 − F4

δ1 = HF − F5 − F6

δ2 = Hg − F7 − F8

Here the configuration of the blowup points is the following:

Four points πi (bi = νi , ν
−1
i ), i = 1, . . . , 4 on the (1, 1) curve fg = 1;

Points π5(0, b−1
5 = ν5k−1

2 ), π6(0, b−1
6 = ν6k−1

2 ) on the line f = 0 and π7(0, b7 = k1ν
−1
7 ),

π8(0, b8 = k1ν
−1
8 ) on the line g = 0.

The points πi lie on the (2, 2)-curve that is the pole divisor of the symplectic form

ω =
df ∧ dg

fg(1− fg)
=

df ∧ ds

fs(1− s)
=

ds ∧ dg

gs(1− s)
, s = fg , that is used to define the period map

.
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E
(1)
6 symmetry sub-lattice Q = SpanZ{αi |αi • δj = 0}

α1 α2

1

α3 α4 α5

α6−1

α0 α0 = F7 −F8 α1 = F6 −F5

α2 = Hg −F1 −F6 α3 = F1 −F2

α4 = F2 −F3 α5 = F3 −F4

α6 = Hf −F1 −F7

δ = α0 + α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6

A
(1)
2 /E

(1)
6 period map

The period map χ : Q → C, χ(αi ) = ai , is used to pass from the original parameters νi and kj

that still have some Möbius gauge freedom to the invariant root variables ai = exp(αi ).
Moreover, the evolution of the root variables is also canonical. We get

a0 =
ν7

ν8
, a1 =

ν6

ν5
, a2 =

k2

ν1ν6
, a3 =

ν1

ν2
, a4 =

ν2

ν3
, a5 =

ν3

ν4
, a6 =

k1

ν1ν7
.

The dynamic on parameters ν̄i = νi , k̄1 = q−1k1, k̄2 = qk2 results in ā2 = qa2, ā6 = q−1a6, and

āi = ai otherwise; here q = exp(χ(δ)) = a0a1a2
2a3

3a2
4a5a2

6 =
k1k2

ν1 · · · ν8
.
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āi = ai otherwise; here q = exp(χ(δ)) = a0a1a2
2a3

3a2
4a5a2

6 =
k1k2

ν1 · · · ν8
.

A. Dzhamay (UNCO) Gap Probabilities and q-Painlevé equations September 6, 2018 11 / 27



The structure of difference Painlevé equations is encoded by the extended affine Weyl symmetry

group, which in our case is W̃
(

E
(1)
6

)
.

W̃
(

E
(1)
6

)
= Aut(E

(1)
6 ) n W (E

(1)
6 )

The full extended Weyl symmetry group W̃
(

E
(1)
6

)
is a semi-direct product of

The affine Weyl symmetry group of reflections wi = wαi acting on Pic(X ) as reflections in
simple roots, wαi (C) = C + (αi • C)αi .

W (E
(1)
6 ) =

〈
w0, . . . ,w6

∣∣∣∣∣∣∣∣∣∣
w2

i = e

wi ◦ wj = wj ◦ wi when αi αj

wi ◦ wj ◦ wi = wj ◦ wi ◦ wj when αi αj

〉
α1 α2 α3 α4 α5

α6

α0

The finite group of Dynkin diagram automorphisms

Aut
(

E
(1)
6

)
' Aut

(
A

(1)
2

)
' D3,

where D3 = {e,m0,m1,m2, r , r
2} = 〈m0, r | m2

0 = r3 = e,m0r = r2m0〉 is the usual dihedral
group of the symmetries of a triangle.

The action of W̃
(

E
(1)
6

)
on Pic(X ) can be extended to the action on the space of initial

conditions, giving us the birational representation of W̃
(

E
(1)
6

)
.
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The structure of difference Painlevé equations is encoded by the extended affine Weyl symmetry

group, which in our case is W̃
(

E
(1)
6

)
.

W̃
(

E
(1)
6

)
= Aut(E

(1)
6 ) n W (E

(1)
6 )

The full extended Weyl symmetry group W̃
(

E
(1)
6

)
is a semi-direct product of

The affine Weyl symmetry group of reflections wi = wαi acting on Pic(X ) as reflections in
simple roots, wαi (C) = C + (αi • C)αi .

W (E
(1)
6 ) =

〈
w0, . . . ,w6

∣∣∣∣∣∣∣∣∣∣
w2

i = e

wi ◦ wj = wj ◦ wi when αi αj

wi ◦ wj ◦ wi = wj ◦ wi ◦ wj when αi αj

〉
α1 α2 α3 α4 α5

α6

α0

The finite group of Dynkin diagram automorphisms

Aut
(

E
(1)
6

)
' Aut

(
A

(1)
2

)
' D3,

where D3 = {e,m0,m1,m2, r , r
2} = 〈m0, r | m2

0 = r3 = e,m0r = r2m0〉 is the usual dihedral
group of the symmetries of a triangle.

The action of W̃
(

E
(1)
6

)
on Pic(X ) can be extended to the action on the space of initial

conditions, giving us the birational representation of W̃
(

E
(1)
6

)
.

A. Dzhamay (UNCO) Gap Probabilities and q-Painlevé equations September 6, 2018 12 / 27
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For the standard example, knowing the action on the root variables, ā2 = qa2, ā6 = q−1a6, and
āi = ai otherwise, we see that mapping ϕ∗ induces the translation

〈ᾱ0, ᾱ1, ᾱ2, ᾱ3, ᾱ4, ᾱ5, ᾱ6〉 = 〈α0, α1, α2, α3, α4, α5, α6〉+ 〈0, 0, 1, 0, 0, 0,−1〉δ

and then, using some standard techniques, we can represent this translation as a word in the
generators:

ϕ∗ = rw2w3 w1w2w6 w3w4w0 w6w3w5 w4w2w3 w1w2.

This allows us to compute the action of ϕ∗ on Pic(X ) and also, using the standard birational

representation of W̃
(

E
(1)
6

)
, to compute the actual birational automorphism ϕ of P1 × P1 whose

lifting to the resolved surface X induces the mapping ϕ∗; in our case it is given by equation (8.8)
of KNY:

(
q-P

(
A1

2/E
(1)
6

))
:



(fg − 1)(f̄g − 1)

f f̄
=

(
g − 1

ν1

)(
g − 1

ν2

)(
g − 1

ν3

)(
g − 1

ν4

)
(

g − ν5
k2

)(
g − ν6

k2

)
(fg − 1)(f g − 1)

gg
=

(f − ν1)(f − ν2)(f − ν3)(f − ν4)(
f − k1

ν7

)(
f − k1

ν8

) .

Note that a more traditional approach is to start with the equation and then obtain the
corresponding translation vector.
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The q-Hahn Connections and Modui Space Parameterization

Structure of a generic A(z) of type λ = (z1, . . . , z6; u, v ,w ,w ; 3)

A(z) =

[
a11(z) a12(z)
a21(z) a22(z)

]
, A(0) =

[
w 0
0 w

]
,

where deg(a11) ≤ 3, deg(a12) ≤ 2, deg(a21) ≤ 2, deg(a22) ≤ 3 and

det A(z) = uv(z − z1)(z − z2)(z − z3)(z − z4)(z − z5)(z − z6)

We also impose asymptotic conditions

det A(z) = uvz6 +O(z5) tr A(z) = (u + v)z3 +O(z2).

Parameter evolution

When A(z)→ A(z), the parameters evolve as

(z1, z2, . . . , z6, us , vs ,ws )→ (z1, z2, . . . , z6, u, v ,w)

with z2 = qz2, z4 = qz4, w = qw , and z i = zi for i 6= 2, 4.
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Moduli space of q-Hahn connections

Let us now explicitly describe the moduli space of q-Hahn connections of type
λ = (z1, . . . , z6; u, qv ,w ,w , ; 3). After gauging we can put a21(z) = z(z − t), where t = t1/t2 is
our first spectral coordinate. The second spectral coordinate we adjust slightly and put

p =
p1

p2
=

z1z3z5 a11(t)

(t − z1)(t − z3)(t − z5)
.

If we just use p = a11(t), we get singular points (zi , 0) that results in a −6 curve that appears
after we resolve the singularities of the parameterization using blowup, the above change of
variables results in two −3-curves that are easier to handle. Then we get the following
singularities picture:

p1

p2

p3

p4

p5

p6

p7

p8

p9

(z1,1) (z3,1)

(z4, 0) (z6, 0)

(0, w)

t = 0 t = 1

p = 0

p = 1
✓
1, ⇢1 =

vz1z3z5

q

◆

✓
1, ⇢2 =

w2

vz2z4z6

◆

(z5,1)

(z2, 0)

−−−−−−−−−−−−−−−→
need to blow-up at π9

⇡8⇡7

⇡6

⇡5

⇡4

⇡3

⇡2

⇡1

⇡9

Note that the q-Hahn surface is not minimal and requires blowing down the −1-curve t = 0. It is
easier to match it with the standard example by blowing up the point π9(∞, 0) in the standard
(f , g)-coordinates and establishing the identification on the level of Picard lattices, and then
extending it to the birational change of coordinates.
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1, ⇢2 =

w2

vz2z4z6

◆

(z5,1)

(z2, 0)

−−−−−−−−−−−−−−−→
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⇡8⇡7
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Note that the q-Hahn surface is not minimal and requires blowing down the −1-curve t = 0. It is
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Matching the two dynamics

After some minor trial and error, we see that the following identification works:

Hf = Ht F1 = E1, F3 = E3, F5 = E7, F7 = E2, F9 = Ht − E9,

Hg = Ht +Hp − E6 − E9, F2 = Ht − E6, F4 = E5, F6 = E8, F8 = E4.

The standard techniques then give us the explicit change of variables from the application
coordinates (or the spectral coordinates t and p) to the Painlevé coordinates f and g :

f =
1

t
, g =

twz6

z6(p − w) + tw
.

We also get the parameter matching;

k1 =
1

w
, ν1 =

1

z1
, ν3 =

1

z3
, ν5 = ρ1z6, ν7 =

z2

w
,

k2 = w , ν2 =
1

z6
, ν4 =

1

z5
, ν6 = ρ2z6, ν8 =

z4

w
,

(note that there is a parameter constraint in q-Hahn, w2 = uvz1 · · · z6).
With this identification the spectral coordinates evolution under isomonodromic transformations

coincides with q-P
(

A1
2/E

(1)
6

)
of (KNY).
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f =
1

t
, g =

twz6

z6(p − w) + tw
.

We also get the parameter matching;

k1 =
1

w
, ν1 =

1

z1
, ν3 =

1

z3
, ν5 = ρ1z6, ν7 =

z2

w
,

k2 = w , ν2 =
1

z6
, ν4 =

1

z5
, ν6 = ρ2z6, ν8 =

z4

w
,

(note that there is a parameter constraint in q-Hahn, w2 = uvz1 · · · z6).

With this identification the spectral coordinates evolution under isomonodromic transformations

coincides with q-P
(

A1
2/E

(1)
6

)
of (KNY).

A. Dzhamay (UNCO) Gap Probabilities and q-Painlevé equations September 6, 2018 16 / 27
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The q-Racah orthogonal ensemble and q-P(A
(1)
1 /E

(1)
7 )

Consider now the example of a q-Racah orthogonal polynomial ensemble and q-P
(

A
(1)
1 /E

(1)
7

)
.

q-P
(

A
(1)
1 /E

(1)
7

)
surface and reference dynamic

δ0 δ1

1 1

α1 α2 α3 α4 α5 α6 α7

α0

2−2

1 2 3 41 3 2 1

Dynkin diagram A
(1)
1 Dynkin diagram E

(1)
7

δ0 = Hf +Hg −F1 −F2 −F3 −F4

δ1 = Hf +Hg −F5 −F6 −F7 −F8

α0 = Hf −Hg α4 = Hg −F1 −F5

α1 = F3 −F4 α5 = F5 −F6

α2 = F2 −F3 α6 = F6 −F7

α3 = F1 −F2 α7 = F7 −F8

The surface data The symmetry data
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Reference Example of q-P
(
A

(1)
1 /E

(1)
7

)

A
(1)
1 point configuration and the surface model

pi

(
νi ,

1

νi

)
, i = 1, . . . , 4;

pi

(
κ1

νi
,
νi

κ2

)
, i = 5, . . . , 8.

π∗(d0) : fg = 1

π∗(d1) : fg = κ =
κ1

κ2

π∗(d0)

π∗(d1)

p1

p2

p3

p4

p5
p6

p7

p8

The points πi lie on the (reducible) (2, 2)-curve that is the pole divisor of the symplectic form

ω = (k − 1)
df ∧ dg

(fg − 1)(fg − k)
= (k − 1)

df ∧ ds

f (s − 1)(s − k)
= (k − 1)

ds ∧ dg

g(s − 1)(s − k)
, where again

we put s = fg . Degeneration to
(

A
(1)
1 /E

(1)
7

)
case is very straightforward, just put κ→ 0.
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A
(1)
1 /E

(1)
1 period map

The period map χ : Q → C, χ(αi ) = ai , in this case gives us the root variables ai = exp(χ(αi )):

a0 =
κ1

κ2
, a1 =

ν3

ν4
, a2 =

ν2

ν3
, a3 =

ν1

ν2
, a4 =

κ2

ν1ν5
, a5 =

ν5

ν6
, a6 =

ν6

ν7
, a7 =

ν7

ν8
.

The dynamic on parameters ν̄i = νi , k̄1 = q−1k1, k̄2 = qk2 results in ā0 = q−2a0, ā4 = qa4, and
āi = ai otherwise.

For the standard example, we can represent the mapping ϕ∗ that induces the translation

ϕ∗ : α = 〈α0, α1, α2, α3, α4, α5, α6, α7〉 7→ α = α + 〈2, 0, 0, 0,−1, 0, 0, 0〉δ.
as

ϕ∗ : w0w4w5w3w4w6w5w2w3w4w1w2w3w0w4w7w6w5w4w3w0w4w6w5w2w3w4w7w6w5w1w2w3w4,

This allows us to compute the action of ϕ∗ on Pic(X ) and also, using the standard birational

representation of W̃
(

E
(1)
7

)
, to compute the actual birational automorphism ϕ of P1 × P1 whose

lifting to the resolved surface X induces the mapping ϕ∗; in our case it is given by equation (8.7)
of KNY: 

(
fg − κ1

κ2

)
(f g − κ1

qκ2
)

(fg − 1)(f g − 1)
=

(
g − ν5

κ2

)(
g − ν6

κ2

)(
g − ν7

κ2

)(
g − ν8

κ2

)
(

g − 1
ν1

)(
g − 1

ν2

)(
g − 1

ν3

)(
g − 1

ν4

) ,
(

fg − κ1
κ2

)
(f g − qκ1

κ2
)

(fg − 1)(f g − 1)
=

(
f − κ1

ν5

)(
f − κ1

ν6

)(
f − κ1

ν7

)(
f − κ1

ν8

)
(f − ν1) (f − ν2) (f − ν3) (f − ν4)

.
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Moduli space for q-Racah connections

In this case, we look at moduli spaces λ = (z1, . . . , z6; u, d = d1, d2; 6) of 2× 2 matrices
satisfying the following conditions:

A(z) =
1

P(z)

[
a11

a12

z
a21 a22

]
, a21(0) = 0,

where deg(a11) ≤ 6, deg(a12) ≤ 8, deg(a21) ≤ 5, deg(a22) ≤ 6 and

det A(z) =
P(z)

Q(z)
,

P(z) = (z − z1)(z − u2/z2)(z − z3)(z − u2/z4)(z − z5)(z − u2/z6)

Q(z) =
z1z3z5

z2z4z6
(z − u2/z1)(z − z2)(z − u2/z3)(z − z4)(z − u2/z5)(z − z6),

with some asymptotic conditions and modulo gauge transformations of the form

Â(z) = R(z/q + u2/z)A(z)R−1(z + u2/(qz)), R(z) =

[
r11(z) r12(z)

0 r22(z)

]
,

where deg(r11) = deg(r22) = 0 and deg(r12) ≤ 1 and the very important involution condition
A(u2/z) = A−1(z).

Parameter evolution

In this case, the parameters evolve as

z̄2 = qz2, z̄4 = qz4, d̄ = q−1d , z̄i = zi otherwise.
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z2z4z6
(z − u2/z1)(z − z2)(z − u2/z3)(z − z4)(z − u2/z5)(z − z6),

with some asymptotic conditions and modulo gauge transformations of the form

Â(z) = R(z/q + u2/z)A(z)R−1(z + u2/(qz)), R(z) =

[
r11(z) r12(z)

0 r22(z)

]
,

where deg(r11) = deg(r22) = 0 and deg(r12) ≤ 1 and the very important involution condition
A(u2/z) = A−1(z).

Parameter evolution

In this case, the parameters evolve as

z̄2 = qz2, z̄4 = qz4, d̄ = q−1d , z̄i = zi otherwise.
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Moduli space of q-Racah connections

Let us now explicitly describe the moduli space of q-Racah connections. After gauging we can
put a21(z) = z(z − t)(z − u2)(z2 − u2), where t = t1/t2 is our first spectral coordinate, and the
second spectral coordinate p is again the adjusted value of a11(t).

In the coordinates (t, p) we get more than 8 points because of the involution t ↔ u2/t and
p ↔ 1/p, e.g., we get the following six pairs of points:(

u2

z1
, 0

)
, (z1,∞) ,

(
u2

z3
, 0

)
, (z3,∞) ,

(
u2

z5
, 0

)
, (z5,∞) ,

(z2, 0) ,

(
u2

z2
,∞
)
, (z4, 0) ,

(
u2

z4
,∞
)
, (z6, 0) ,

(
u2

z6
,∞
)
,

points (u, 1) and (−u,−1), and points (∞,−ρ1 = d) and

(
∞,−ρ2 =

z1z3z5

z2z4z6qd

)
.

To fix this, we need to introduce the involution-invariant coordinates x = t +
u2

t
and y =

pt − u

pu − t
gluing these pairs of points together.

Then, in the (x , y)-coordinates we get the correct picture.

But can it be matched with the standard example?
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The q-Racah surface

πi

(
zi +

u2

zi
,

zi

u

)
, i = 1, 3, 5;

πi

(
zi +

u2

zi
,

u

zi

)
, i = 2, 4, 6;

π7 (∞, ρ1 = −d) ,

π8

(
∞, ρ2 = −

z1z3z5

z2z4z6qd

)
.

We also get conjugated points

π′i

(
zi +

u2

zi
,

u

zi

)
, i = 1, 3, 5;

π′i

(
zi +

u2

zi
,

zi

u

)
, i = 2, 4, 6.

π∗(d0)

π∗(d1)

π1

π′1

π′2

π2

π3

π′3

π′4

π4

π5

π′5

π′6

π6

π7

π8

π9

Note that the points π7 and π8 lie on the (1, 0)-curve π∗(d1) = V (X = 1/x) and π1, . . . , π6 lie

on the (1, 2)-curve π∗(d0) = V (u(y2 + 1)− xy); note also that when x = zi +
u2

zi
, the equation

u(y2 + 1)− xy factors as u(y2 + 1)− xy = u(y − y(πi ))(y − y(π′i )). Finally, there is an
additional blowup point π9(−2u,−1), similar to the q-Hahn case.
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Matching the q-Racah dynamics with the standard dynamics

Looking at the decomposition of the anti-canonical divisor class,

δ0 = Hf +Hg −F1 −F2 −F3 −F4 −F9 = Hx + 2Hy − E1 − E2 − E3 − E4 − E5 − E6 − E9,

δ1 = Hf +Hg −F5 −F6 −F7 −F8 = Hx − E7 − E8,

we see that it makes sense to preliminary take

Hf = Hx +Hy − E2 − E9, Hx = Hf +Hg −F7 −F8,

Hg = Hx +Hy − E4 − E9, Hy = Hf +Hg −F7 −F9,

F1 = E1, E1 = F2,

F2 = E6, E2 = Hg −F7,

F3 = E3, E3 = F3,

F4 = E5, E4 = Hf −F7,

F5 = E7, E5 = F4,

F6 = E8, E6 = F1,

F7 = Hx +Hy − E2 − E4 − E9, E7 = F5,

F8 = Hy − E9, E8 = F6,

F9 = Hx − E9, E9 = Hf +Hg −F7 −F8 −F9.
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Matching the q-Racah dynamics with the standard dynamics

Computing the root variables,

a0 =
z4

z2
, a1 =

z5

z3
, a2 =

z3

z1
, a3 =

z1z6

u2
, a4 = −

u2

ρ1z4z6
, a5 =

ρ1

ρ2
, a6 = −

ρ2z2z4

u2
, a7 =

u2

z2z4
.

and using our parameter dynamics, we get the following translation element:

ψ∗ : α = 〈α0, α1, α2, α3, α4, α5, α6, α7〉 7→ α = α + 〈0, 0, 0, 0, 0, 0,−1, 2〉δ,

which is different from the standard translation vector

ϕ∗ : α = 〈α0, α1, α2, α3, α4, α5, α6, α7〉 7→ α = α + 〈2, 0, 0, 0,−1, 0, 0, 0〉δ.

However, these elements are conjugated. This can be observed, for example, by looking at the
corresponding words in the affine Weyl symmetry group:

ψ∗ : w7w6w5w4w3w0w4w5w2w3w4w1w2w3w0w4w6w5w4w3w0w4w6w5w2w3w4w1w2w3w0w4w5w6,

ϕ∗ : w0w4w5w3w4w6w5w2w3w4w1w2w3w0w4w7w6w5w4w3w0w4w6w5w2w3w4w7w6w5w1w2w3w4.

Using the far commutativity and the braid relations in W
(

E
(1)
7

)
, we get

ψ∗ = (w6w5w4w0w7w6w5w4)ϕ∗(w6w5w4w0w7w6w5w4)−1.
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Matching the q-Racah dynamics with the standard dynamics

This adjusts the divisor matching as

Hf = 2Hx +Hy − E2 − E4 − E6 − E9, Hx = Hf +Hg −F5 −F6,

Hg = Hx +Hy − E6 − E9, Hy = Hf + 2Hg −F1 −F5 −F6 −F9,

F1 = Hx − E6, E1 = F2,

F2 = E1, E2 = Hg −F5,

F3 = E3, E3 = F3,

F4 = E5, E4 = Hg −F6,

F5 = Hx +Hy − E2 − E6 − E9, E5 = F4,

F6 = Hx +Hy − E4 − E6 − E9, E6 = Hf +Hg −F1 −F5 −F6,

F7 = E7, E7 = F7,

F8 = E8, E8 = F8,

F9 = Hx − E9, E9 = Hf +Hg −F5 −F6 −F9.

The new root variables are

a0 =
u2

z2z4
, a1 =

z5

z3
, a2 =

z3

z1
, a3 =

z1

z6
, a4 =

z2z6

u2
, a5 =

z4

z2
, a6 = −

u2

ρ1z4z6
, a7 =

ρ1

ρ2
,

which, given the parameter dynamic z̄2 = qz2, z̄4 = qz4, d̄ = q−1d (and so ρ̄i = q−1ρi ),
immediately gives us the correct translation element:

ψ∗ : α = 〈α0, α1, α2, α3, α4, α5, α6, α7〉 7→ α = α + 〈2, 0, 0, 0,−1, 0, 0, 0〉δ.
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Matching the q-Racah dynamics with the standard dynamics

We then get the following parameter matching: κ1 =
u

z2
, κ2 =

z4

u
, and

ν1 =
1

z6
, ν2 =

1

z1
, ν3 =

1

z3
, ν4 =

1

z5
, ν5 =

uz4

z2
, ν6 = u, ν7 = −

ρ1z4z6

u
, ν8 = −

ρ2z4z6

u
.

Main Result

The change of variables from the spectral coordinates to the discrete Painlevé coordinates
matching the q-Racah isomonodromic dynamics to the standard dynamics is given by

f (x, y) =
σ3(xy + u(y − 1))− u2(x2 − σ1x + σ2(y + 1)) + u3(1− y)(σ1 − x) + u4(1 + y)

σ3x(xy + u(y − 1))− u2(σ2xy + σ3(y + 1)) + u3σ2(1− y) + u4(σ1(1 + y)− x) + u5(y − 1)
,

→
1

x
,

g(x, y) =
xyz6 + uz6(y − 1)− u2(1 + y)

z6(1 + y)− x − u(1 + y)
→

xyz6

z6(1 + y)− x
, where

σ1 = z2 + z4 + z6, σ2 = z2z4 + z4z6 + z6z2, σ3 = z2z4z6.

Everything does have the correct limit to the q-Hahn case as u → 0.
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