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The Dominative p-Laplacian £,

For p > 2, the DOMINATIVE p-LAPLACIAN, introduced by K.
Brustad,is the operator

Lpu(x) = 113()\1 o Anll) (p; 1)/\N, J

where we have ordered the eigenvalues of D?u(x) as
A1 < A2... <.

The operator L, is sublinear (thus convex) and uniformly elliptic.
Thus, the viscosity solutions of the equation £,u(x) = 0 are
locally in the class C%°.

We will discuss the relation between £, and the regular
p-Laplacian and then present a discrete stochastic approximation
to the unique viscosity solution of the Dirichlet problem for the
Dominative p-Laplace Equation.
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The Dominative p-Laplacian £,

Recall that the ordinary p-Laplacian is the operator

div (|Vul[P~2Vu) = |Vu|p_2Agu

S (IVur28e) = (9up 2N {05+ (0~ 27 |ty

Proposition (K. Brustad'17)

AzuSpﬁpu:)\l—i—...—i—)\,\,,1+(p—1)/\N,

with equality for radial functions.

Theorem(Crandall-Zhang'03, Lindqvidst-M'08, K. Brustad'17)

Let p > 2 and uy, uo, ..., u, be radial p-superhamonic functions,
then the Z, 1 Uix — y,) is p-superharmonic.

V.
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Fix € > 0 and small. Given a Lipschitz domain Q RV, we build a
strip around 092

Ne={xeH\Q: d(x,00) <e¢}
and set X =QUT..

Note that for x € Q, we always have B.(x) C X.

We are also given a Lipschitz function F : 02 +— R that we can
extend to X when needed, called the payoff function.

Let A denoted the class of functions v: X — R that are bounded
Borel measurable and such that v = F on .. Note that A # 0.
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\EERRYEIES

Set

_ pt+4N+6

2N +4
and let v € A. Define the (sublinear) mean value operator as
follows

MVq(v, Be(x)) = ﬁ JKBE(X) v(y)dy
-2 v(xte o(x))+v(x—<o(x
+ (%)sup[,((*(»g( ()))’

where o: Q — SN~ is a strategy. We also define the averaging

operator T4: A+ A as follows:

forx € Q, Tgv(x) = MVy(v,B(x))
forx e e, Tgv(x) = v(x).
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e-Mean Value Solution

For smooth functions we have

- MVg(v, Be(x)) — v(x) _ P
n e2 ~ Nt 2) 42~

so that if L,v(x) = 0 we have the asymptotic mean value property
v(x) = MVy(v, B(x)) + o(€?).
We want to solve the Dirichlet problem

Lpou(x) = 0 for x € Q
u(x) = F(x) forx e 0RQ.

Lemma (Solution at scale ¢, DPP)

There exist a unique function v, € A such that such that
Tqve(x) = ve(x) for all x € X.
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The Dirichlet problem for £,

Theorem (Brustad-Lindqvist-M'18)

lim ve = u, uniformly in £,
e—0

where u is the only solution to the Dirichlet problem for L in Q
with boundary values F.

The proof that we have uses discrete stochastic methods. We will
give a stochastic interpretation to the e-mean values solution v..
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Fix xg € Q and a strategy 0. We will consider a discrete process
X0y X1y, X2y e ooy X v v s

defined as follows:

If xo € e we set x; = xp and stop, otherwise B.(xo) C X. In this

case, we move one step according to

@ with probability ﬁ select x; € Bc(xp) at random,

e with probability 2(‘7(’7121) select x1 = xo + €o(xp), and

@ with probability 2(%_21) select x; = xg — €o(xp).

We continue this process so that we always have |x; — x;_1| < ¢,
and stop when we first reach I'¢, say at x;_, when k = 7,

To = inf{k: xx & Q}

so that x., € I..
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The payoff of this run is F(x,, ). Averaging over all possible runs
we define the value function for the strategy o

ul (x0) = EX[F(xr,)]
Optimizing over all strategies we get

(o) = sup (12 (x0)) = sup (B [F(x,)])

which we call the e-stochastic solution.

Theorem (Stochastic Solution = Mean Value Solution)
The following hold:
i) ue(x) = F(x) forx € Te.
i) ue(x) = ve(x), where v, is the e-mean value solution above.

That is, we have that u. also satisfies the dynamic
programming principle uc(x) = Tque(x).
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We now study what happens when € — 0.

We follow an argument from Barles-Souganidis’91. For x € Q
define the upper-semicontinuous envelope and the
lower-semicontinuous envelope

U(x) = limsup u(y), u(x) = liminf uc(y)

e—0 =0
y—X y—Xx

u is a viscosity subsolution of L, and u is a viscosity supersolution
of Lp.

We would like to conclude that @ < u, for which we would need
the fact that £, satisfies the STRONG UNIQUENESS CONDITION
OF BS and that Q is of class C2.
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But we don’t know that £, satisfies the STRONG UNIQUENESS
CONDITION OF BS and our domain is Lipschitz, not necessarily
C2.

The condition that we use for Q is the following

There exists ;o > 0 such that for all y € 9Q and 6 € (0,1) we can
always find a ball B(z, 1d) such that

B(z,pud) C B(y,d) \ Q

This condition is clearly satisfied by all bounded Lipschtiz domains.

Juan Manfredi A DISCRETE STOCHASTIC INTERPRETATION OF THE D!



Boundary Estimate

Theorem (Key Boundary estimate)

Given n > 0 there exist 6 = §(n, F), integer ko = ko(n, , F), and
€ = 60(5, uw, k()) such that

u(p) = Fy)| <

N3

for all y € 92, p € Bs/ax(y) N, k > ko and € < ¢o.

The point is that this is an estimate valid for all € < ¢p. This
estimate mplies

limsup U(x) < F(y) and liminf u(x) > F(y)
XEQ,y€0N x€Q,y €00
X=y X—=y
So we we can apply the usual comparison principle for viscosity
solutions of LP to conclude u =T = u and v — u locally
uniformly in €, and thus uniformly in €.
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Proof of the boundary estimate

This is where you get your hands dirty. The proof uses the
following facts:

@ Everything works for smooth C3-functions with non-vanishing
gradient (This part uses probability).

@ c-mean value solutions satisfy a comparison principle

@ Existence of radial barriers centered at

ak

— 5 The
|x — zy|P—T

U(x) =

centered at B(zy, udx) C B(y, dk) \ Q

@ lteration
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Let v € C3(Q) satisfying £L,v = 0 in Q with non-vanishing
gradient. Then, we have, uniformly in  that

v(x) = MV, (v, B(x)) + O(é3).

Fix a strategy o and run the process xg, x1, . . .

Lemma

@ For an arbitrary strategy o the sequence of random variables
My = v(xx) — Ci1ke® is a SUPERMARTINGALE

o Let og(x) = |§Z()>3| by the optimal strategy, then the

sequence of random variables

Ny = v(xx) + Crke is a SUBMARTINGALE
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[v(x) = ve(x)| < Gie¥sup, (E[ro]) < Ce

IAIA

(AVANI

sup, (EX[v(xr,)]) = sup, (E;(O[V(XTU) - Q1. + C17—063])
supy (EX[v(xr,) — C175€%]) + sup, (EX[Ci70€%))
v(xo) + Cie3 sup, (EX[7,])

sup, (EX[v(xr,)]) = (ER[v(xr,) + Ciroe® — Girye’])
E [V(XTUO) + C17'0063] — EX [C17'0063]

0 0

v(xo) — Cie3sup, (EX[7,])

For all strategies o we have EX[7,] < E%
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Thank you very much

manfredi@pitt.edu
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