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Introduction

I Crystalline curvature motions: definition, some known results;

I “distributional” sub and supersolutions;

I Comparison;

I Construction of solutions;

I (“More”) general mobilities.



Anisotropic and Crystalline mean curvature flow

Given a set E ⊂ RN and a surface tension ϕ, which is a convex,
one-homogeneous and even norm, we consider the anisotropic perimeter

Perϕ(E ) :=

ˆ
∂E

ϕ(νE )dHN−1

(appropriately extended to finite perimeter sets) and its first variation

κϕ = div τ∇ϕ(ν).

An anisotropic mean curvature flow is a tube of sets E (t) with boundary
evolving with a speed proportional to −κϕ (or − a nondecreasing
function of κϕ).



Anisotropic and Crystalline mean curvature flow

Such evolutions are well defined

I if ϕ is smooth enough (Almgren-Taylor-Wang, 1993);

I in the level set sense: Chen-Giga-Goto (1991) show existence for

ut + H(Du,D2u) = 0

in the viscosity sense, where H is “geometric” (meaning that all
level sets evolve independently with same law); for anisotropic
motion a typical H has the form |Du|D2ϕ(Du) : D2u.

What if ϕ is not smooth?



Crystalline curvature flow

The crystalline case is the case where {ϕ ≤ 1} is a polytope. In this case,
∇ϕ(ν) is a priori not well defined. We should use a selection of the
subgradient ∂ϕ(ν): “κϕ ∈ div τ∂ϕ(ν)”.

I loss of ellipticity / solutions are not expected to be regular in the
classical sense [not a problem for viscosity solutions];

I infinite diffusion / the motion should be non-local.



Crystalline curvature flow

Polar function: ϕ◦(ξ) := sup{ξ · η : ϕ(η) ≤ 1};

W = {ϕ◦ ≤ 1} is called the Wulff shape. For ϕ smooth it is a constant
curvature compact set. It minimizes the ϕ-area for fixed volume

In the crystalline case it is a polytope.

Then, one knows how to define mean curvature flows

I in 2D if the initial set is a polygon with facets parallel to the faces of
W (system of ODEs, cf Almgren-Taylor 95, Giga-Gurtin 96...);

I in 2D for a short time if the initial set has a “interior/exterior Wulff
shape conditions” (C.-Novaga, 2012/15);

I in any dimension if the initial set is convex
(Bellettini-Caselles-C-Novaga, 2006);



Crystalline curvature flow

I in 2D in the “viscosity sense” adapted to crystalline motions
(Giga-Giga, 2001)

I in 3D and more, viscosity: Giga-Požar 2016 (preprint 2014) and
2018 (preprint 2017).

An important advantage of the viscosity approach is that it solves any
equation of the form V = −F (ν, κϕ) (with F nondecreasing wr κ).



Recent results

• With Massimiliano Morini (Parma) and Marcello Ponsiglione (Roma I):
motion with “natural” mobility, in any dimension, any anisotropy. That
is

VN = −ϕ(ν)κϕ

or
Vϕ = −κϕ

where Vϕ is the velocity along a Cahn-Hoffmann vector field ∂ϕ(ν)
(Cf. [Bellettini-Paolini, 96])

• With the same and Matteo Novaga (Pisa): arbitrary convex mobility,
forcing term (Lipschitz in time, bounded):

VN = −ψ(ν)(κϕ + g(x , t)) (∗)

• Crystalline limits of viscosity solutions of (∗) for a smoothed anisotropy
ϕ and forcing g (preprint, 2017).



A formal equation

For ψ a norm (ψ = ϕ, or not...), one can define the ψ◦-signed distance
function:

dψ
◦

E (x) = dist ψ
◦
(x ,E )− dist ψ

◦
(x ,E c) = min

y∈E
ψ◦(x − y)−min

y 6∈E
ψ◦(y − x)

Then one has ψ(∇dψ
◦

E ) = 1. If E (t) evolves with a normal velocity VN ,

one can relate the change in dψ
◦

E to VN :

∂dψ
◦

E(t)

∂t
= − 1

ψ(ν)
VN

on ∂E (t).

Hence formally if VN = −ψ(ν)(κϕ + g) one should have

∂dψ
◦

E(t)

∂t
= κϕ + g

on ∂E .



The curvature of the level sets

If z ∈ ∂ϕ(∇dψ
◦

E ), one can recover a ϕ-curvature of {dψ
◦

E = 0} as

κϕ = div z .

In the smooth case if ψ = ϕ, it is standard that κϕ ≤ (N − 1)/dE where
dE > 0. In the crystalline case, one can build a z which satisfies such an
inequality.

In general, the ϕ-curvature of the level sets of dψ
◦

E decreases as one goes
further away from the set.



Super/subsolutions

Definition A (closed) “tube” E ⊆ RN × [0,+∞) is a supersolution
starting from the initial E 0 if

a. E (0) ⊆ E 0;

b. E (t) = ∅ ⇒ E (s) = ∅ if s > t;

c. E is (Kuratowski) left-continuous;

d. For d = dist ϕ
◦
(x ,E ), there exists z ∈ ∂ϕ(∇d) with, for some

M ≥ 0,
∂td ≥ div z

in the distributional sense in RN × (0,T ∗) \ E where T ∗ is the
extinction time of E , moreover (for t ≤ T ∗)

(div z)+ ∈ L∞({d > δ})

for any δ > 0

A subsolution is an open tube A such that Ac is a supersolution starting
from (E 0)c .



Super/subsolutions

Definition A (closed) “tube” E ⊆ RN × [0,+∞) is a supersolution
starting from the initial E 0 if

a. E (0) ⊆ E 0;

b. E (t) = ∅ ⇒ E (s) = ∅ if s > t;

c. E is (Kuratowski) left-continuous;

d. For d = dist ψ
◦
(x ,E ), there exists z ∈ ∂ϕ(∇d) with, for some

M ≥ 0,
∂td ≥ div z + g −Md

in the distributional sense in RN × (0,T ∗) \ E where T ∗ is the
extinction time of E , moreover (for t ≤ T ∗)

(div z)+ ∈ L∞({d > δ})

for any δ > 0

A subsolution is an open tube A such that Ac is a supersolution starting
from (E 0)c .



Remarks

I The main equation is linear in (d , z) (plus constant).

I A kind of mixture of Barles-Soner-Souganidis (93), Ambrosio-Soner
(96), however in the distributional sense. Equivalent to viscosity
solutions if ϕ,ψ, ψ◦ C 2.

I d is a supersolution of the ϕ-total variation flow in E c ;

I if E is a supersolution and its interior a subsolution, then if |∂E | = 0
one expects that ∂td = div z on ∂E , which means that Vϕ = −κϕ
and it is a solution;

I we can prove uniqueness (up to “fattening”) of such solutions, and
existence if ψ is “ϕ-regular”.



Comparison

Theorem Let E be a supersolution with initial datum E 0 and F be a
subsolution with initial datum F 0 ⊃ E 0, and assume
∆ = dist ψ

◦
(E 0, (F 0)c) > 0. Then dist (E (t),F (t)c) ≥ ∆e−Mt for any

t ≥ 0.

[case g = 0,M = 0] The proof is by parabolic comparison. Indeed, if
d(x , t) = dist (x ,E(t)) and d ′(x , t) = dist (x ,F c(t)) then between E and F

∂td ≥ div ∂ϕ◦(∇d), ∂td
′ ≥ div ∂ϕ◦(∇d ′),

and one has d + d ′ ≥ ∆ at t = 0. Using a priori estimate on the speed at

which d , d ′ decrease, one can control also d + d ′ on a parabolic boundary of a

small tube, and obtain the comparison inside this tube. As d , d ′ are distance

function it yields global comparison.



Existence: construction

Basic idea: use Almgren-Taylor-Wang 93 / Luckhaus-Sturzenhecker 95.
We pick a time step h > 0, and for E0 (temporarily a compact set), we
define E n+1 from E n, n ≥ 0 by solving

min
E

Pϕ(E ) +
1

h

ˆ
E

(
dψ
◦

E n +

ˆ (n+1)h

nh

g(x , s)ds
)
dx

Then the Euler-Lagrange equation is

dψ
◦

E n = −h
(
κϕ(E n+1)−

 (n+1)h

nh

g(x , s)ds
)

−→ implicit time discretization of the flow. It remains to pass to the
limit...



Equivalent problem

It is possible to show that this problem can be solved equivalently by
solving (to simplify, g = 0)

min
u

ˆ
ϕ(Du) +

ˆ
(u − dψ

◦

E n )2

2h
dx

and letting then E n+1 = {u ≤ 0}. If E 0 is not compact, one can consider
the Euler-Lagrange equation of this problem in RN . It solves

− h div z + u = dψ
◦

E n ,

z ∈ ∂ϕ(∇u) a.e.

Then one lets E n+1 = {u ≤ 0}.



The limit is a solution

We then consider Eh(t) = E [t/h] and consider a subsequence such that
Ehi → E and (Ehi )

c → Ac in the Kuratowski sense, with therefore A ⊂ E .
One can show then:

Theorem E is a supersolution and A a subsolution. In particular if
∂E = ∂A, they are a solution.



Why does it work?

I The advantage of the scheme using “u” is that at each time, one

has not only E (and dψ
◦

E , u ≈ dψ
◦

E ) but also a candidate field z .

I One can easily show that u is Lipschitz and ψ(∇u) ≤ ψ(∇dψ
◦

E n ) = 1

a.e.: it follows that u ≤ dψ
◦

E n+1 in {u > 0} and u ≥ dψ
◦

E n+1 in {u < 0}.
I As a consequence, in {u > 0},

∂dψ
◦

E

∂t
≈

dψ
◦

E n+1 − dψ
◦

E n

h
≥ div z .

I Very easy to pass to the limit in this equation in the distributional
sense. The difficult part is to show that (d and) z converge to what
we expect.



“ϕ-regularity” of ψ

• If ψ = ϕ, To pass in the limit in zh and show that the limit is calibrating
for the limit of the distance we need some control. This is derived from
the equation defining zh: we can show that if dϕ

◦

Eh(t)
(x) > R then

div zh(x , t + h) ≤ N − 1

R

(this is obtained by comparison of u, with an explicit solution).
• In case ψ 6= ϕ, we need ψ to be “ϕ-regular”:

W ψ = {ψ◦ ≤ 1} = C + εW ϕ

for some convex C and ε > 0. We can then find a similar estimate
(div zh / C/(εR)).



What if ψ is not ϕ-regular?

• Typical: ϕ crystalline, ψ = | · |.
• Idea: we approximate ψ, for instance letting

W ψε := W ψ + εW ϕ.

• Then, we can show that if E ⊂ F are sets with boundaries positive
ϕ◦-distance ∆, evolving one with the mobility ψ and the other ψ′ ≈ ψ,
then they get closer at most like C‖ψ − ψ′‖L∞(B)/∆.

• Hence the sequence of evolutions is a Cauchy sequence and converges
to a unique limit.

• The estimates are uniform in h > 0 small, so that we also deduce that
the ATW schemes converge to a unique limit. [Up to fattening.]



Conclusion

I It is classical that such results lead to existence and uniqueness in
the level-set sense, or uniqueness as long as the solution does not
develop “fattening” (generic uniqueness);

I As usual, no fattening if initial set is star-shaped, or if it is a graph
(hence uniqueness in these cases).

I No clear equation in the non “ϕ-regular” case.

I Equivalent to Giga-Giga, Giga-Požar’s viscosity approach when
applies;

I Also thanks to [Giga, Ohtsuka, Schätzle 2006], convergence of
Allen-Cahn approximations.

I We have a “new” proof of existence based on the approximation
with smooth anisotropies, and viscosity solution (preprint 2017).

I The distributional formulation is difficult to extend to truly nonlinear
evolutions (VN = −F (ν, κϕ)?)



Thank you for your attention
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