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Background
Diffusion in heterogeneous media

e ordinary diffusion by Brownian motion
(z®) =2Dt, D = const
e anomalous diffusion
(*) xt*, Doxt* ', (0<a<l)

The behavior of the anomalous diffusion is due to an influence that
heterogeneous factors of medium inhibit an movement of diffusing particles.

Reference
@ Fomin, Chugunov, and Hashida (2011)
@ Sun, Meerschaert, Zhang, Zhu, and Chen (2013)
@ Tao, Besant, and Rezkallah (1993)
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Background

<

Figure: £ is the distance between barriers and Az; are displacements per observation
time At;

Source: N. Shimamoto, RIMS Kokyuroku 1810, 59-84 (2012) (in Japanese)
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Background
Modeling by CTRW method

Two key probability density function (pdf)
A(z) : pdf of the jumping length
w(t) : pdf of the waiting time

T : a mean waiting time in the Brownian motion.

—t/T

v' Gaussian distribution A and Poisson distribution w ~ e = the master

equation of this random walk is ordinary diffusion equation

ou— DAu =0

Reference
o Metzler and Klafter, Physics Reports '00
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Background
Modeling by CTRW method

Two key probability density function (pdf)

{/\(ﬂc) :  pdf of the jumping length

w(t) : pdf of the waiting time
T : a mean waiting time in the Brownian motion.
v Gaussian distribution A and Poisson distribution w ~ e~*/7 = the master
equation of this random walk is ordinary diffusion equation
ou— DAu =0
v Gaussian distribution X and w ~ (t/7)” ") = the master equation is a
fractional differential equation
Ofu— D(t)Au =0,

where 97 is Caputo fractional derivative
1 b Oyu(x, s)

Fuet) =ta=ay | G=sp

ds (T : gamma function)

Reference
o Metzler and Klafter, Physics Reports '00
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Background
Mathematical works for eqns with CTFDs

For linear eqns like 9fu — div(a(z)Vu) = f,
o Priss, '93
General theory of linear abstract Volterra eq, strong sol, mild sol

o Luchko, JMAA '09
classical sol, generalized sol using the eigenfunction expansion

@ Sakamoto-Yamamoto, JMAA '11

distributional weak sol by Fourier method in L?
@ Zacher, Funkcial. Ekvac. '09

distributional weak sol, weak form

For fully nonlinear eqns with CTFDs,

@ Allen, arXiv '15

viscosity solns to a eqn that appears in optimal control / regularity pb
o Giga and N., CPDE '17

Well-posedness of (1st order) HJ egs in T¢
@ Topp and Yangari, JDE '17

Well-posedness of 2nd order FNL eqns in R? and large-time behavior
o N., NoDEA '18

Well-posedness of IBVPs of 2nd order FNL eqns
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Background
What | would like to do

A goal is to introduce the viscosity solution to

ofu—Au=0 in Q x (0,7,
w=0 on 99 x [0,T7,
’u,|t:o = Uo onﬁ

and show a unique existence result. Here, for the sake of simplicity, we assume
that €2 is bounded.

Notation :

g=0 ondQx[0,T], =wug onQ.
Remark :

e —Au can be generalized to F(z,t,u, Vu, V>u)

@ other boundary condition
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Background
Caputo fractional derivatives

O I0) = rrma [ e O<a<, =7, (=1

It has similar properties as that of the ordinary derivative
@ linear operator

@ Jfconst =0
oyB . _T(B+1) 4B—a
° 8t t7 = Wt

1 1 1
exBt@7U2:@%2fﬂﬁt+%lzréﬁ%frét%
2 2

[NE

However,

° 97 (f(9)) # (97 )(9)0F'g
0 I (f-9)#OFf) g+ f-(99)

Textbooks
@ Podlubny, '99
o Kilbas, Srivastava, and Trujillo, '06
@ Samko, Kilbas, and Marichev, '93
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Viscosity solution

Viscosity solution (= viscosity sub- and supersolution)

Suppose that u and ¢ are in C and
H;atX(U—SD) = (u—tp)(i,f), (1%77?) € QT-

Use the maximum principle by Luchko:

Lemma (Luchko, JMAA '09)

Let f € C*((0,T]) N C([0,T]) be s.t. f € L*(0,T). Assume that
max(o,7) f = f(£) with £ € (0,T]. Then (67 f)(t) > 0.

This implies that

O (u—)(@,8) 20, Vi(u—p)(@,i) <
If u satisfies the eq pointwise, then 95 (&, 1) — Ap(Z,1) <
-=> u € USC is a viscosity subsolution & Ofp — Ap <0 at (2,f) holds
whenever u — ¢ attains a (local) max at (%, );

--» u € USC is a viscosity subsolution of IBVP oyisa viscosity
subsolution and u < g on 3,Qr

C={peC®(Qr)NC(Qro) | pi(z,") EL' Vz €Q}, Qro=Qx][0,T]
8/20



Main results & outline of proofs

Main result

Theorem (N., NoDEA '18)

Assume up € C(Q) and uo = 0 on 9. Then there exists a unique sol
u € C(Qr U dpQr).

Strategy (in a conventional way")

@ Perron’s method?

© Construct a subsol u— € USC' and a supersol ut € LSC' that satisfy
u_ =uqr =gon 0pQr and u_ <uy in Qr

@ Set u(z,t) = sup{v(z,t) | v : subsol, u— <v <wuy in Qr UdpQr}

© Prove that u* and u. are a subsol and a supersol, respectively.

© Prove that u is a sol by using the comparison principle

@ Comparison principle

cf. Crandall, Ishii, and Lions, User’s guide
2cf. Ishii '87
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Main results & outline of proofs

Comparison principle

Let u be a subsol and v be a supersol. If u < v on 3,Q7, then u < v in Qr.
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Main results & outline of proofs
Comparison principle
Let u be a subsol and v be a supersol. If u < v on 3,Q7, then u < v in Qr.

Basic idea of the proof = doubling variable argument

© Suppose In > 0 s.t. supg,.ug, o (W — v —nt%) = (u— v)(&, 1) — nt* >0
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Main results & outline of proofs
Comparison principle
Let u be a subsol and v be a supersol. If u < v on 3,Q7, then u < v in Qr.

Basic idea of the proof = doubling variable argument

© Suppose In > 0 s.t. supg,.ug, o (W — v —nt%) = (u— v)(&, 1) — nt* >0
Q@ 3(z,t,7,5) ~ (&,1,2,%) : max pt of
(:Cvtayv S) = U(l‘,t) - ’U(y,S) - )\q)(,l‘ -yt - S) - ntaa A>0

on (Qr UdpQr)?. (ex. & ~ |z —y|®> + |t —s|?)
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Main results & outline of proofs
Comparison principle
Let u be a subsol and v be a supersol. If u < v on 3,Q7, then u < v in Qr.

Basic idea of the proof = doubling variable argument

© Suppose In > 0 s.t. supg,.ug, o (W — v —nt%) = (u— v)(&, 1) — nt* >0
Q@ 3(z,t,7,5) ~ (&,1,2,%) : max pt of
(:Cvtayv S) = U(l‘,t) - ’U(y,S) - )\q)(,l‘ -yt - S) - ntaa A>0
on (QrU8,Qr)% (ex. &~ fz—yl* + |t — )

@ {viscosity ineq of u} — {viscosity ineq of v} implies

0 < AOF® 4+ 2®) +nl(1+ a) — A(A, @ + A,®) < 0.
—_— —m — —
might be negative 0< might be positive

We prepare two facts:

an equivalent definition of sols and Jensen-Ishii lemma
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Main results & outline of proofs
Equivalent definition

Caputo derivatives are transformed using integration by parts and changing the
variable of integration as follows.

o _ 1 L Oy (u(x, t) — u(z,s))
O u(z,t) = T —a) /O =) ds

_u(z,t) —u(z,0) o b, t) — u(w,t —7)
S T eTl-a T Tl-a /0 pre ds.

=[] (x.t) =K (g, [u)(x.t)

Proposition

Let w € USC'. The following assertions are equivalent.
@ u is a subsol

o 7 [u(d,t) — u(@,f —7)]/7*T" is integrable on (0,%) and
Ju] + K plu] —Ap <0 at (2,1)

whenenver u — ¢ attains a local max at (#,%) € Qr for p € C*'NC

The problem of finding a suitable test function in time direction is eliminated.
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Main results & outline of proofs

Usability of the equivalent definition

{viscosity ineq of u} — {viscosity ineq of v} implies
Jul(@,t) = J[v](F, 8) + Ko, [ul(Z, 1) — K(0,5[v](¥; 5) — M(Az® + AyP) <0

Remark nI'(1 4+ «) does not appear.

lim inf (Ju)(Z, ) — J[v](7, 5) + K(0,5[u](Z,t) — K(0,5[v](F,5)) >0

A— o0

u(jvf) —U(J_L',O) ’U(:lj,g) —v(gj,O)
te B 5@
(4(8,D)—v(@,8) —nE ]+ i w<w on 9pQr

J's terms ~

liminfy oo | (&%) —v(&, 1) A] — [u(%,0) — v(z,0)] 50
tﬂ
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Main results & outline of proofs

Procedure
@ Divide the interval of integration by 0 < e < t,5

(2]
o
(%]
K'StermSN/ u(®,t) — v(5, )]—[U(it—T)—v(§7§—T)]d7_
0 T
u@,H — u(@t =) T u(g,5) — u(g,5 - 7)
+/ Totl dr 7/5 Tatl dr

Recall: (:E7 t_v Y, §) € argmax(u(x7 t) - U(y7 5) - )\(I)(;Ij -y, t— S) - 77750)
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Main results & outline of proofs

Procedure
@ Divide the interval of integration by 0 < e < t,5

@ The integral on (0,¢) is estimated by k. “=° 0 (if ® ~ |z — y|> + |t — s|?)

o
o
0
+/€ (z,1) ;iﬁfc Fr) 7/; u(y, 5) ;:ﬁ@g_T)dT
> ke + /t u(z, 1) ;:i(ff_ )4 / u(g, 5) ;;i(lg 5o,

Recall: (:E7 t_v Y, §) € argmax(u(x7 t) - U(y7 5) - )\(I)(;Ij -y, t— S) - 77750)
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Main results & outline of proofs

Procedure
@ Divide the interval of integration by 0 < e < t,5
@ The integral on (0,¢) is estimated by k. “=° 0 (if ® ~ |z — y|> + |t — s|?)

© Take liminfy_, . using Fatou lemma

(]
Kstermsw/ u(z,t) — (g, )]_[;logfii_T)_v(g’g_T)]dT
/) zﬂ;ﬁft_TM flgwiﬂ;zgs—er
> ke / w(z, 1) ;ali(ic t— )dr B /j u(i, 5) ;aqu(lgj_T) .

Ta+1

hmlgam 5 +/ [u(z, i) —v(& f)] — [u(f:,f— T) — v(:%,f— T)}dT

Recall: ('%7 t_v Y, §) € argmax(u(x7 t) - U(y7 5) - )\(I)(;Ij -y, t— S) - 77750)
13/20



Main results & outline of proofs

Procedure
@ Divide the interval of integration by 0 < e < t,5
@ The integral on (0,¢) is estimated by k. “=° 0 (if ® ~ |z — y|> + |t — s|?)
© Take liminfy_, . using Fatou lemma

@ The integral on (¢, %) is nonnegative

s tems [ 100 =008~ =) = viga= ),
0 T
${)—U$t—7) §u(g7‘§)_u(gvg_ﬁr)
+/€ Totl dr 7/5 ] dr
't ’u‘(i‘7£) —u(i’,{—’]’) : u(gv '§)_u(g7'§_7—)
Zkg—&—/s e dT—/6 s dr

Ta+1

hml&%m k. +/ [u i‘ i _U(i‘7£)] — [’U,(.’i),fj_ T) — U(i’i_T)}dT > ke — 0

Recall: ('%7 t_v Y, §) € argmax(u(x7 t) - U(y7 5) - )\(I)(;Ij -y, t— S) - 77750)
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Main results & outline of proofs

Jensen-Ishii lemma for eqns with Caputo time fractional derivatives

Let u® and u. denote the sup- and inf-convolution in space, respectively.

Let u € USC be a subsol and v € LSC be a supersol. Assume that

(@gHe  amgmax  (u(z,t) —ve(y, 1) — 9(2,9,1).
(z,y,t) €Qe X Qe X (0,T]

Then there exist X,Y € S¥*? s t.

T, 1) = T[ve] (9, 1) + Ko,5)[u](Z, £) = Ko,5[ve] (9, £) — tr(X) + tr(Y) <0

2 I O X O _

If o(z,y,t) = Mz — y|?, then

(X O>§<2M 0) S t(X) + tr(Y) > 0,

and

0O Y O 2)\I
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Main results & outline of proofs
Continuity property

Assume ug € C(2) and up = 0 on 99. Let uq, a € (0,1), be the solution of
IBVP where the order of the Caputo time fractional derivative is «. Let

B € (0,1]. Then u, converges to a solution ug uniformly on Qr U dQr as
a— B.

— The definition of viscosity solution is its natural extension in the integer
order case.

— The behavior of anomalous diffusion look like ordinary diffusion when the
medium is almost homogeneous.

Proof : Prove that

up(2,t) = lim sup{ua(y, s) | (4, 5) € Bs(2, )N (QrUGQT),0 <la— 5] < 5}

and ug = _(_U)B are a sub- and supersolution, respectively. Clearly, ug > ug.
Use the comparison principle to see g < ugz. Therefore uq converges to
Ug = ug uniformly.
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Open problems & summary

Problems

@ Free boundary value problem

@ Relationship with other notions of solutions
o What kind of solution is equivalent?

© Extension of fractional derivatives
o the distributed order Caputo fractional derivative

(8t(w>f)(t) = /1 O f(t)w(a)der, where w € C(0,1) and w > 0.
0
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Open problems & summary

Consider the heat balance

¢
—/ / g~ - vdt'ds = / pcu + pLdx,
=Jo T'(t)

where ¢ is a “fractional heat flux" defined by

1 0 [t gq(=t)

q%(z,t) = T ot J, mdt', (¢ : ordinary heat flux)

and p, ¢, K respectively represent the density, the volumetric specific heat, the
latent heat. Then wu should satisfy

pcofu = —divg in T'(¢), t >0,
pLv® =q-v on OI'(t), t > 0,

where v is a “fractional normal velocity” defined through the integral identity

. o o) |
R St : ord | velocity).
/81"(t) v¥(z,t) 1 iy / =1 (v : ordinary normal velocity)

How to reduce to a level set equation?
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Open problems & summary

Summary

@ anomalous diffusion is observed in various fields and modeled using Caputo
time fractional derivatives by CTRW method

@ the notion of viscosity solutions is extended to eqns with Caputo time
fractional derivatives

@ techniques for Perron’s method and the comparison principle are extended
to obtain a continuous viscosity solution

@ Jensen-Ishii lemma for eqns with Caputo time fractional derivatives

@ continuity property

The development of viscosity solution theory to equations with Caputo time
fractional derivatives has just begun, and many interesting problems remain.
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Open problems & summary

Thank you very much for your kind attention.

19/20



o, t) = J(s) o, flx) = f(y)
0+ Cq /_Oo mds, (=A)*: C —— 2 dy

e |z — gl

Viscosity solution theory for eqns with space-fractional derivatives
@ Soner '86 (first result)
@ Barles-Imbert '08 (2nd order eqgs with Lévy op)
o Alibaud-Imbert '08

Caffarelli-Silvestre '09 (regularity)

measure, i.e., non-negative Radon measure s.t.

) du(z), where p is a Lévy
/ min{1, |z]*}du(z) < 4oo.
R4
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