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Outline

o Interface Motion by Level Set and Hamilton-Jacobi Equations.

@ Curvature in Periodic Shear Flows: Homogenization, and Cell
Problem as Nonlinear ODEs.

o Front Speed Analysis via Inequalities.

o Cellular Flows: Computation of Front Speeds under Curvature and
Strain (Yu-Yu Liu, finite difference methods: monotone and WENO
schemes).

@ Conclusion and Future Work.
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Level Set and Hamilton-Jacobi Equation

Origin: Premixed Turbulent Combustion

@ In gasoline engine, fuel and air are well-mixed.

Ignite the fuel and flame front propagates.

—
burned - unburned
-
o —
fuel — > fuel

@ Flame front is wrinkled and propagates at an asymptotic speed.

(Turbulent Flame Speed "s7")
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Level Set and Hamilton-Jacobi Equation

Origin: Premixed Turbulent Combustion

@ In gasoline engine, fuel and air are well-mixed.

Ignite the fuel and flame front propagates.
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@ Flame front is wrinkled and propagates at an asymptotic speed.

(Turbulent Flame Speed "s7")

@ In combustion theory, understanding st is a fundamental issue.

Engine Efficiency / Reducing Waste Gas Emission

@ GOAL: modeling flame propagation and study sr.
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Flame Propagation Modeling

@ Complete physical-chemical modeling requires:
Navier-Stokes equations (flow)
coupled with transport equations (chemical reaction).
o Simplified models proposed to characterize flame propagation.

Reaction-Diffusion-Advection equation with prescribed flows.
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Flame Propagation Modeling

@ Complete physical-chemical modeling requires:
Navier-Stokes equations (flow)
coupled with transport equations (chemical reaction).

o Simplified models proposed to characterize flame propagation.
Reaction-Diffusion-Advection equation with prescribed flows.

@ Model flame front as a sharp interface.

Burned I::’Flame Unburned
Fuel ';7 Front Fuel
(__" \Y
>
G<0 (G(x1)=0 G>0
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Level Set and Hamilton-Jacobi Equation

Inviscid G-equation

@ Motion of flame front in a velocity field (flow) driven by

a laminar speed (chemical reaction):

d
d—); = V(x,t)+sin

n= %: unit normal (D: spatial gradient)

s.: laminar flame speed (positive constant)
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Level Set and Hamilton-Jacobi Equation

Inviscid G-equation

@ Motion of flame front in a velocity field (flow) driven by

a laminar speed (chemical reaction):

dx
— = V(x,t)+s
p” (x,t)+sun

= %: unit normal (D: spatial gradient)
s.: laminar flame speed (positive constant)

@ Level set moves in time:

G(x(t),t) =0 = Gt+%-DG:O

Inviscid (hyperbolic) G-equation [Williams'85]:

Ge+ V(x,t)- DG + s |DG| =0
A first order Hamilton-Jacobi (HJ) Partial Differential Equation
(PDE).
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Basic and Extended G-equation Models

@ Inviscid G-equation:
G:+ V(x)-DG+ s |DG| =0
o Curvature-Strain G-equation:

DG-DV-DG : DG

dm: Markstein number.
Degenerate 2nd order nonlinear diffusion.

Non-coercive non-convex Hamiltonian.
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Basic and Extended G-equation Models

@ Inviscid G-equation:
G:+ V(x)-DG+ s |DG| =0
o Curvature-Strain G-equation:
DG-DV-DG DG
V(x)-D ———— | |DG| = D
Gi+V(x) G—I—(SL—I-C/M ’DG|2 > |DG| = duys| G|d|v<’DG|>
dm: Markstein number.
Degenerate 2nd order nonlinear diffusion.
Non-coercive non-convex Hamiltonian.
o Curvature G-equation:
DG
Gt + V(x) - DG + 51| DG| = dps.| DG|div 0G|
@ Viscous G-equation:

Gy + V(X) - DG +SL’DG| =dys  AG
@ GOAL: behavior of st under curvature/viscosity/strain effect.
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Homogenization Method

Large Space-Time Behavior

o Capture front speeds as invariants in large space-time scale, write
dy =d, G(x,t) = eG(%,L):

GE+ V (f) . DG® + 5|DG¢| = ed AGE

V(-): 1-periodic. V (¥): small scale fluctuation

Curvature in Shear Flow (Banff) June, 2018 8 /24



Homogenization Method

Large Space-Time Behavior

o Capture front speeds as invariants in large space-time scale, write

dy =d, G(x,t) = eG(%,L):

GE+ V (f) - DG + 5,|DG| = ed AG*

V(-): 1-periodic. V (¥): small scale fluctuation

<,

G

e—>0
_—

s.(n)

GO

o Periodic Homogenization: as € — 0, formally G¢ — G° satisfying
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G? + A(DG®) =0
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Homogenization Method

Periodic Homogenization

o General Theory [Lions-Papanicolaou-Varadhan'86]:
us + H (i, Due) =0
€
@ Require Hamiltonian to be coercive:

lim |H(x, p)| = 400 uniformly in x,
|p|—+o00

and periodic in x. Cell problem determines H:

H(y,P+ Dy,v) = H(P), Vy € T".
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Homogenization Method

Periodic Homogenization

General Theory [Lions-Papanicolaou-Varadhan'86]:
us + H (i, Due) =0
€

Require Hamiltonian to be coercive:

lim |H(x, p)| = 400 uniformly in x,
|p|—+o00

and periodic in x. Cell problem determines H:

H(y,P+ Dy,v) = H(P), Vy € T".

@ Second order fully nonlinear equations [Evans'89,'92]:

F <D2u€,Du6,u€,x,i> =0
€

Introduce perturbed test function method based on viscosity solutions
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Homogenization Method

Cell Problem: Formal Derivation for Viscous G-equation

@ Two-scale asymptotic expansion:
G (x,1) = G°(x, £) + €G* (x, E )+
Leading order (y = ):
GY + V(y) - (DxG° + D,G") + s, |DxG° + D, G| = dA, G*
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Homogenization Method

Cell Problem: Formal Derivation for Viscous G-equation

@ Two-scale asymptotic expansion:
G (x,1) = G°(x, £) + €G* (x, E )+
Leading order (y = ):
G2+ V(y) - (DxG° + D,G') + 5, |D,G® + D, G| = dA, G*
@ Cell problem: given any vector P € R”, find a unique number
H = H(P) such that the equation
—dAyu+ V(y)-(P+Dyu)+s|P+Dyul=H, yeT"

has a periodic solution u = u(y).
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Homogenization Method

Cell Problem: Formal Derivation for Viscous G-equation

@ Two-scale asymptotic expansion:
G (x,1) = G°(x, £) + €G* (x, E )+
Leading order (y = ):
G2+ V(y) - (DxG° + D,G') + 5, |D,G® + D, G| = dA, G*
@ Cell problem: given any vector P € R”, find a unique number
H = H(P) such that the equation
—dAyu+ V(y)-(P+Dyu)+s|P+Dyul=H, yeT"
has a periodic solution u = u(y).
@ The cell problem is solvable, G-equation has front solution:

Ge(x,t) = —Ht+P-x+eu (g)

If |[P|| =1, H = s = turbulent flame speed in direction P.
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Analysis of Cell Problem of Curvature G-eq

Curvature G-equation

o Cell problem (s, = 1):

. ( p+Dw
—d|p+Dwl| div [ 2= Dw|+ V(y)- Dw) =H
|p+ Dw| 1V<‘p+DW,>+!p+ w|+ V(y)-(p+Dw) = Hy(p)
(1)

solution is unknown in general.

@ Consider 1-periodic shear flow:
V(X) = (V(XZ)vo)a for x = (X17X2) € Rz-

For p = (v, 1), (1) becomes nonlinear ODE:

2W// -
- P WP ) = Fde) @)

e 3 a unique number Hy(p) such that ODE (2) has a C? periodic
solution.
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Analysis of Cell Problem of Curvature G-eq

Curvature G-equation

Theorem (Lyu-X-Yu, CMP 2018)

Let I-periodic function v = v(y) # constant, and v # 0. Then

(1) _
OHq4(p)
od

Thus Hy is strictly decreasing in Markstein number d.

< 0.

(2) limy_,o+ Hy = Ho = Ho(p), the unique number such that the inviscid
cell equation below admits periodic viscosity solution

2+ (p+ W(l))2 +7v(y) = Ho(p).

(3) limg_ oo Hg = |p| + ’yfol v(y)dy, limg_ oo w =0 uniformly in R.

@ Folklore in combustion: st is decreasing in d = dy; because curvature
smoothes wrinkled flames. Rough flames move faster.
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Sketch of Proof of (1)

! . . . .
o Let o = “J“TW unique periodic solution to

d¢’ B ~ Ha(p)
—1+¢2+ 1+ ¢2+v(y) = E(d) = S

subject to fo x) dx = £. Suffices E'(d) < 0.
o F(x) := ¢u(x), perlodlc and mean zero over [0, 1], satisfies:

—d F' + b(x) F = E'(d)(1 + ¢?) + ¢/,
where b(x) = 211%57 + ¢\/1 + ¢2.
e F(0) = F(1) and f[o 1] x)dx =0 imply E'(d) = —Nu/De, Nu is:

1 1 X
¢,e,g(x) dx / e8() gy (e8()_1) / 8(%) / & e=E0) dy dx
0 0 0
fo y)dy, and De > 0. Just show Nu > 0.
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Analysis of Cell Problem of Curvature G-eq

Sketch of Proof of (1)

o Let h(x fo & /14 ¢?dy, \(¢) = arctan ¢. Integration by parts:
Nu = A +B-C,

1 X
¢) = e / M@)e "X g /1 + ¢2 / (14 ¢?)e"™) dydx
0 0
1 1
B(¢) = / M¢)e /1 + 42 / (1 + ¢%)e"™ dydx
0 X

1
C(8) = ("~ 1) [ A@)(1+ 7).

0

0 If h(1)=0,A+B—-—C=A+B>0ass\(s) >0, "="iff p=0.

o WLOG, h(1) > 0. Let ¢ = max{¢,0}, »_ = min{¢,0},

h*(x fo d1+1/1+ ¢% dy. Then h(x) = h™ + h™.
° Prove( =" iff >0, i.e, p_ =0):
A(9) + B(6) = C(9) = e W (A(61) + B(64) = C(44))-
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Analysis of Cell Problem of Curvature G-eq

Sketch of Proof of (1)

o Let £ := ht(x), strictly increasing in x; ¢(&) := ¢4 (x), T = hT(1).

T x / 2

Alpy) = ATy = eT/O A(¢)ex/o Wey dy dx
T T 2

B(64) = Bry = /0 Awe [ e dy e

T 2
C(6s) = Crop = (T — 1)/0 )Y 1; L

@ Prove

X /1+¢2 Y
e’ dy dx
Y

-
0< AT,w 4 BT7¢ = CT,¢ = eT/ )\(w)e_x/
0 0

1+¢2 T 4 1492
/A / e dy de—(e 1)/0 A0) Y d.
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Analysis of Cell Problem of Curvature G-eq

Key Inequality

Let T >0, f € C([0, T]) be positive, g € C*((0, L]), L := maxpo 7] f.
(1) If g’ < —0 for some 6 > 0, then

eTfOTf e X fo ))e” dy dx+f0 _Xf g(f(y))e dy dx

—1) Jy F()8(F(x))) dx+ § fio 7 1F(x) = F(y)[2 dx dy.

(2) If g’ > 0 for some 6 > 0, then
eTfoT f(x)e ™ fo ))eY dy dx + fo e % fXTg(f(y))ey dy dx

B 1) fOT f(X) g(f(x))) dx — gf[oj-]z |f(X) - f(y)\z dx dy.
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Sketch of Proof of (1)

o Let M := max 779 = maxg,1] ¢+ > 0. In key inequality (part 1),
take f(x) = A(¢) = arctan(v), g(y) = ==, L = arctan(M) and

siny
\/ 1442
0= \/141rl\/l2' then ¢¢ = g(f).

o It follows:

ATy + BTy = Cry > 5o fio. 72 IMN@(x)) = AW () dxdy
= 577 Joap IMN6+(x)) = M6+(9))PI(x)I(y) dxdy
>0 (since ¢/, #0).

Here J(x) = ¢4 (x)4/1+ ¢3.
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Cellular Flow

o Front motion in 2D cellular flow (Hamiltonian flow):
V(x) = (=0, M, 0 H)

@@
2 — %sin(27rx1)5in(2ﬂ'x2) @ @

Time independent, incompressible, periodic flow.

Stream function:

A: amplitude/ flow intensity

o QUESTION: How does turbulent flame speed st depend on flow ?
In particular at high flow intensity?
Parameterize s+ as a function of A:
st = st(A)
GOAL: behavior of st(A) in A> 1 (similar to dy < 1 at fixed A).
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Numerical Results on Front Speeds in Cellular Flows

Compare G(x, t) of Inviscid, Curvature, Viscous G-eq

Graphs of G(x, 1) for inviscid (1st row in A =4,8,16), curvature, viscous
G-equation with s; =1, P =€, d = 0.1.
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Numerical Results on Front Speeds in Cellular Flows

Compare s7(A, d) of Inviscid, Curvature, Viscous G-eq

—o—Inv G-eq
14l == Cur G-eq d=0.1)
—&—Vis G-eq (d=0.1)

—#—Inv G-eq
i —6—Cur G-eq (d=0.1)
—&—Cur G-eq (d=0.2)
—8—Cur G-eq (d=1)

0 10 20 30 40 50 0 6 10 15 20 25

(L) Plots of st = s7(A) of inviscid, curvature, viscous G-equations,
suggesting:
sp < s7° < sFT < sTY

(R) Plots of s = s7(A) for curvature G-equation with various d.
inv _ A cur __ vis __
siv = 0 <m> sur — O(77), s¥s = O(1).
June, 2018 20 / 24



Numerical Results on Front Speeds in Cellular Flows

Propagation in Curvature-Strain G-equation

| 1
——
a
4 5 [u] 1 2
1E
a
4 5 0 1 2
1I
4 (-] 0 1 2
A 1I
0
4 ] 1] 1 2
| 1I
0 a
0 1 2 3 4 ] 0 1 2

Front Propagation in curvature-strain G-eq. at A = 32,
t=0.3,0.6,0.9,1.2,1.5. (L) incomplete burning (d = 0.01) (R) front

stops moving at a finite time (d = 0.02).
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Numerical Results on Front Speeds in Cellular Flows

st vs. d, and st vs. A in Curvature-Strain G-equation

T T T T T T
—o—Str G-eq (A=4) —e—Str G-eq (d=0.01)
A ——Str G-eq (A=6) —=—Str G-eq (d=0.02)

1 osr gl

0 L L L SN & L L L L L L
0 0.025 0.05 0.0756 0.1 0.125 0.15 0.175 0.2 0 5 10 15 20 25 30 35 40
d

(L) Plots of st = st(d) for curvature-strain G-eq at A = 4,6.
In inviscid/curvature/viscous G-equation, st > s; for all d > 0.

(R) Plots of st = s7(A) in curvature-strain G-equation at d = 0.01, 0.02.
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Analysis on Quenching of Strain G-equation

st in Cellular Flow and Strain G-equation

Theorem [X-Yu'l4 (Arch Ration Mech Analysis)]

Let G be the unique viscosity solution of the Strain G-equation with
cellular flow (H = A sinx; sinx2), and initial data G(x,0) = p - x, unit
vector p, there exists a universal constant dy € (0, 1) such that when
d<dpand A> &

|G(x,t) — p-x| <3vV2r forall t >0.
In particular,

st(p,A) = lim —6xt)

=0 locally uniformly in R?.
t——+40o0

@ Stretching of the cellular flow dramatically reduces st.
@ Proof is based on two-player differential game representation of
non-convex Hamilton-Jacobi equation.
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Conclusion

Conclusion and Future Work

@ Front speed slow down in Markstein number (curvature smoothing) is
proved for shear flows using structures of nonlinear ODEs.

@ Curvature effects in cellular flows ?

@ Main challenge: analyzing cell problem (a non-coercive, non-convex
Hamilton-Jacobi PDE) under curvature smoothing.

@ Any method to simplify the curvature term 7
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