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The Lorentz gas

P — locally finite subset of R with
constant density

scatterers are fixed open balls of
radius r centered at the points in P
the particles are assumed to be
non-interacting

each test particle moves with con-
stant velocity v(t) between colli-
sions

the scattering is specular reflection
we assume w.l.o.g. [[v(t)]| =1



Diffusion in the classical periodic Lorentz gas (dimension two)

In the case of fixed scattering radius r, proofs of CLT for the Lorentz gas are
currently restricted to the 2-dim periodic setting.

Finite horizon:

e Bunimovich & Sinai (Comm Math Phys 1980): Standard CLT for finite horizon
e Melbourne & Nicol (Annals Prob 2009): More general invariance principles

Infinite horizon:

e Bleher (J Stat Phys 1992): Heuristics for CLT with ¢ logt mean square dis-
placement

e Szasz & Varju (J Stat Phys 2007): Proof of CLT for billiard map

e Dolgopyat & Chernov (Russ Math Surveys, 2009): Proof of CLT & invariance
principle in continuous time



Diffusion in the classical periodic Lorentz gas (higher dimension)

The problem in higher dimensions is control of complexity of singularities

e Chernov (J Stat Phys 1994)
e Balint & Toth (AHP 2008, Nonlinearity 2012)

and in the case of infinite horizon the subtle geometry of free flight channels

e Dettmann (J Stat Phys 2012)
e Nadori, Szasz & Varju (CMP 2014)

As we will see, the problem becomes tractable if we consider the small scatterer
(Boltzmann-Grad) limit » — 0. In particular (taking first r — 0 then t — o)

e JM & Balint Toth (CMP 2017): CLT with ¢tlogt mean square displacement
in any dimension (with time ¢ measured in units of the mean collision time);
builds on JM & Strombergsson (Annals Math 2010 & 2011, GAFA 2011)
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Diffusion in the classical aperiodic/random Lorentz gas

For fixed r, still a major open problem—no CLT established so far.

e Liverani’'s talk

e Dolgopyat, Szasz & Varju (Duke 2009): finite local perturbations

e Lenci (ETDS 2003/06); Christadoro, degli Esposti, Lenci & Seri (Chaos 2010,
J Stat Phys 2011); Lenci & Troubetzkoy (Phys D 2011): recurrence properties

What can be said in the Boltzmann-Grad limit » — 0?



The Boltzmann-Grad limit
Consider the dynamics in the limit of small scatterer radius r
(q(t), v(t)) = “microscopic”’ phase space coordinate at time ¢

A dimensional argument shows that, in the limit » — 0O, the mean free
path length (i.e., the average time between consecutive collisions) scales
like r—(d—1) (= 1/total scattering cross section)

We thus measure position and time the “macroscopic” coordinates

(Q), V(1)) = (ri g~ = Dp), w(r~ = Dy))

Time evolution of initial data (Q, V'):

(Q(), V(1)) =2L(Q, V)



The linear Boltzmann equation

e Time evolution of a particle cloud with initial density f € L!:

1(Q. V) = f(274Q.V))

In his 1905 paper Lorentz suggested that ft(r) IS governed, as r — 0O, by the
linear Boltzmann equation:

0
[a +V. VQ]ft(Qa‘/) =/

gd-1 1(Q, V") = f(Q,V)]a(V,V)aV'

where o(V, V') is the differential cross section of the individual scatterer.
E.g.: o(V,V’) = ||V — V|34 for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, ...




The linear Boltzmann equation—rigorous proofs

Classical:

e Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterer configuration P

e Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations P and potentials

e Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration P (w.r.t. the Poisson random measure)

e Implies CLT for limit process (standard CLT for Markovian random flight pro-
cess)



The linear Boltzmann equation—rigorous proofs

Quantum:

e Spohn (J Stat Phys 1977): Gaussian random potentials, weak coupling limit
& small times

e Erd0s and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General
random potentials, weak coupling limit

e Eng and Erdos (Rev Math Phys 2005): smooth potentials, Boltzmann-Grad
limit



Part I: Boltzmann-Grad limit of classical Lorentz gas
for general scatterer configurations
(joint with A. Strombergsson)

Part Il: Boltzmann-Grad limit of quantum Lorentz gas
for periodic scatterer configurations
(joint with J. Griffin)
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Part I: Boltzmann-Grad limit of classical Lorentz gas
for general scatterer configurations
(joint with A. Strombergsson)
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Intercollision flights

forbidden scatterer

R exclusion zone

\ particle trajectory

T_(d_l)tn_|_1 | >y |

Intercollision flight in the Lorentz gas between the nth and (n + 1)st collision.
The exclusion zone is a long and thin cylinder of radius r with spherical caps.
Scatterers are centered at P.
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Rescaling

Define R(v) : S‘li_1 — SO(d) such that vR(v) = e; = (1,0,...,0) and

D, = ("“dtgl 0 ) c SL(d,R)

r 114

Applying R(wv) D, to the above this cylinder orients it along the e;-axis and
makes it well proportioned.

If at nth scattering event scatterer is located at y,, € P, and particle velocity
is vy, consider

=" = (P — y,)R(vn)Dr

Since vy, and y,, are random (they are functions of the initial random position

and velocity of the particle) we may think of = (") as a random point set
(random point process)
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Assumptions on the scatterer configuration P (l)

e Assume point set P has constant density, i.e., there is ¢p > O such that
. #(PNRD)
lim
R—o0 Rd
for all bounded sets D C R? with vol 9D = 0

= cpVvolD

e For y fixed and v random, limit distribution of (P —y) R(v) D, can in general
depend on y € P; in order to keep track of this, need to assign a mark to
each y; we want the space of marks to be nice
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Assumptions on the scatterer configuration P (ll)

Let > compact metric space with Borel probability measure m, and map
s . P — > (the marking)

e Set ¥ =RYx X, uy = vol xm
e P={(y,s(y)) :y € P)} C X (the marked point set)
o for M € SL(d,R) set (y,s(y))M = (yM,<(y))

Assumption 1 (density)

. #(PNRD)
lim
R— o0 Rd

for all bounded sets D C X with ' (0D) = 0O
Assumption 2 (spherical equidistribution) For v random according to A a.c.
w.r.t. vol measure on S¢~!

= cpux (D)

Er’y — (75 — y)R(’U)Dr i) gg(y) (’I“ — O)

uniformly for all y € P in balls of radius =< r—(4=1), where =, depends
onlyong € >

15



Examples for admissible P

Example 1: P = a realization of the Poisson process in R? with intensity 1, and
> = {1}, proof non-trivial, follows ideas of Boldrighini, Bunimovich and Sinai (J
Stat Phys 1983)

Example 2: P = Z% and ~ = {1} (periodic Lorentz gas); proof uses spher-
ical equidistribution on space of lattices (JM & Strombergsson, Annals of Math
2010/11)

Example 3: P = Z% and ~ = {1} (periodic Lorentz gas with random defects);
proof uses spherical equidistribution on space of marked lattices (JM & Vino-
gradov, Geom. Dedicata 2017)

Example 4: P = Euclidean cut-and-project set (e.g. the vertex set of a Penrose
tiling) and = = R¥ (the internal space in the c&p construction); proof uses uses
equidistribution of lower dimensional spheres in space of lattices and Ratner’s
theorem (JM & Strombergsson, CMP 2014)
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A limiting random process

Recall: a cloud of particles with initial density f(Q, V') evolves in time t to
(L F1(Q, V) = f(#,1(Q,V)).

Theorem A [JM & Strombergsson 2018; for P = 72 Annals of Math 201 1].
Assume P is as above (+ more). Then for every t > 0O there exists a linear
operator

Lt LY (THRY) — LY (THRY)

such that for every f € L1(T1(R%)) and any set A ¢ T1(R%) with boundary
of Liouville measure zero,

lim [ 1LLF)(Q, V) dQaV = [ [L'f1(Q, V) dQdV.

The operator L! thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit » — O.

Note: The family {L'};~¢ does in general not form a semigroup.
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A generalized linear Boltzmann equation
Consider extended phase space coordinates (Q, Vs, &,V 4 ):

(Q,V) € THRY) — usual position and momentum
¢ € > — the mark of current scatterer location
§ € Ry —flight time until the next scatterer
Ve S‘ll_1 — velocity after the next hit

[ +V.-Vg - ]ft(QV§§V+)

— /Z Ld—l ft(Qa Vl) S 07 V) pO(V/7 §/, V’ Sy g’ V+)dV/dIIH(§/)
1

with a collision kernel pg(V’,<', V', s, €, V' 4), which can be expressed as a prod-
uct of the scattering cross section of an individual scatterer and a certain transi-
tion probability for hitting a given point on the next scatterer with mark ¢ after time
¢, given the present scatterer has mark ¢’.
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Part Il: Boltzmann-Grad limit of quantum Lorentz gas
for periodic scatterer configurations
(joint with J. Griffin)
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Schrodi

The setting

nger equation

A O f(t, ) = Hyzf(t,z),  f(0,2) = fo(x)

quantum Hamiltonian

2

h
Hh,)\ — ——8 > JAN —|— )\V(CI))
T

potential

solution

Vi) =Ve(x) = Y W Ha+m)), W e S(RY)

mezd

f(t7m) — Uh,)\(t)fO(w)a

Uh )\(t) — e—QWiHh’)\t/h
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Observables

time evolution of linear operators A(t) (“guantum observables”) given by
Heisenberg evolution A(t) = U, \(t) AU, (1)~
L2 inner product on classical phase space

@b = [, @y b y)dedy,

Hilbert-Schmidt inner product (A4, B)ys = Tr ABT.
semiclassical Boltzmann-Grad scaling

D, pa(z,y) = rdd=D/2p4/2 4 (p4=1g py),

standard Weyl quantisation of o € S(R? x R%),

Op(@f(@) = [,  aG(e+a)y)e((@—2) y) (@) dady

Set Op,.j, = OpoD, ; and Opy = Opy p,.
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A limiting transport process?

Conjecture. There exists a family of operators L(¢) : L1(R? x R%) —
L1(R? x R?) such that (i) for all a,b € S(RY x RY), A = Op,p(a),
B = 0Op, ,(b), A >0andt > 0,

lim (A(tr~4=D), Byys = (L(t)a, b)

r—0
and (ii) L(t)a(x,y) is in general not a solution to the linear Boltzmann equa-
tion.

For random scatterer configurations Eng and Erdos (Rev Math Phys 2005) have
proved convergence to a limit L(¢)a(a, y), which in fact is a solution to the linear
Boltzmann equation with the standard quantum mechanical collision kernel

>(y,y') =872 5(|lyl|* — |V II°) 1T (v, ¥)|?.

Here T'(y, vy’) is the kernel of the T-matrix in momentum representation.
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Evidence for conjecture up to order )2

Consider the formal expansion L(t) ~ >>°2 5 Ln ()",
LO(t)CL(iU, y) — a(a: T ty? y)7 Ll(t)a’(ma y) — 07
Lo(t)a(x, y)

= [ [, Zow.s)at@ sy~ (¢t — ) y) — ol — ty,y)ldy'ds,

These are consistent with L(¢) generating solutions of the linear Boltzmann
equation.
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Evidence for conjecture up to order )2

Theorem B [JM & Giriffin 2018] Let ¢ > 0 and a,b € S(R% x R%), A =
Op, p(a), B = Op, ;(b). Then there exist linear operators Agr)(t), Agr)(t),
Ag)(t), such that

2 6
(A= @) Byye = S (AT (tr= @1y Bypg X4 S O(rd/2)my,

n=0 n=3
and

im (A5 (¢~ @), B)us = (La(®)a,b)  (n=0,1,2).

e We expect terms of order 4 and higher to not match the expansion for the
linear Boltzmann equation (hence the conjecture)
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Key steps in proof

Use Floquet-Bloch decomposition to reduce problem to L2 subspaces of
functions

vz + k) =elk - a)w(x), VkecZ°

with fixed o € [0, 1)

Prove first Theorem for almost every «a (in fact under explicit Diophantine
conditions) and use dominated convergence

Use Duhamel expansion for quantum propagator up to order 3

Uy n(t) = Ug p(t) — 27Ti>\/ot Uxn(t —s) Op(V)Up p(s)ds

Exploit a phase-space extension of the convergence of the pair correlation
statistics of

m + a|?, mez?

to that of a Poisson process (JM, Duke Math J 2002, Annals of Math 2003)
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Thank you!
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