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Monge Transport and Skorokhod Embedding

Move snow from p

Given Wy ~ 1
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Tour of Dynamic Problems

@ Fixed end-time: ct(y,z) = irjyf S(l) {L(t,'y,q'/)dt;fy(O) =y,7(1) = z}.

Eg. L(t,x,v)=3v? = cy.2z)=3%z—y]

Benamou-Brenier, Bernard-Buffoni, Fathi-Figalli
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Tour of Dynamic Problems

@ Fixed end-time: ct(y,z) = irjyf Sé {L(t,'y,q'/)dt;fy(O) =y,7(1) = z}.

Eg Lit,x,v)=3lv? = cy.2)=3lz—y]
Benamou-Brenier, Bernard-Buffoni, Fathi-Figalli
@ :k Free end-time: ¢/ (y,z) = Lyn;‘ $o {L(t,%"y)dt;fy(O) =y,v(r) = z}.
© Controlled Dynamics: t+— A€ A, 4 = f(v,A)
Minimize Sg L(t,v,A)dt. Lee-Agrachev (Fixed end-time)
Q Add Diffusion: dXt = f(Xt,At)dt + O'(Xt,At)th,
|Ar3£{E Uo L(t,Xt,At)dt] S Xo~ iy Xo ~ u}.

Mikame-Theullen, Gentil-Léonard-Ripani (Fixed end-time)
@ 3k Skorokhod Embedding (without control):

inf{E U L(t, Wt)dt] S Wo ~ o, W ~ u}.
T 0

Literature in probability and finance; Beiglbock-Cox-Heusmann
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Problems We Consider

@ C(lassical Existence and Uniqueness of Transport.
Gangbo-McCann, Kantorovich, Sudakov, Evans-Gangbo for Monge
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Pontryagin Transversality for Optimal Control
Root/Rost for Skorokhod Embeddings
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© Eulerian Formulation with Continuity Equation.
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Problems We Consider

@ C(lassical Existence and Uniqueness of Transport.
Gangbo-McCann, Kantorovich, Sudakov, Evans-Gangbo for Monge

@ Not so Classical: End-Time as a Hitting-Time.
Pontryagin Transversality for Optimal Control
Root/Rost for Skorokhod Embeddings

© Eulerian Formulation with Continuity Equation.
Benamou-Brenier, Bernard-Buffoni for Optimal Transport,
Relates to: Fluids, Kinetic Theory, Phase Transitions.

@ Kantorovich Duality as Free-Boundary PDE.

Bensoussan-Lions for Optimal Stopping
Dupire, Meilijson, Gassiat, Cox-Wang for Skorokhod Embeddings

@ Understanding Regularity; Viscosity Solutions / Weak Solutions.
Everyone here to name a few
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Part 1: Free End-Time and Eulerian formulation

Optimal Transport:

V(p,v) = Tinf fCL (y, T(y))du()’)

sp=v

built from dynamic optimization

0

ay.2)i= inf { [ Le(0.3(0)de 2(0) =y, 4() = 2}.
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Part 1: Free End-Time and Eulerian formulation
Optimal Transport: &

V(p,v) = _inf fq(y, T(Y))dﬂ(}’)

Tyu=v

built from dynamic optimization

ay.2)i= inf { [ L{e2(0.5(0)de 2(0) = y. o(r) = 2}.

T,V(') 0

Eulerian Formulation:

Thm: V(u,v)=E(p,v):= mff f L(t,x,v)n(t,dx,dv)dt
TRn

Phase-Space Density n : RT — M(TR"), n > 0, ST gn (0, x, dv) = pu(x)
Stopping-Measure pe M(RT x R™"), p > 0, §y pldt,x) =v(x)

p(t,x) + 8tf n(t,x,dv) + V- v n(t,x,dv) =0
T RP T RP

/16



Duality Review: Optimal Transport for Fixed End-Time

The general Kantorovich dual problem is
W) i=sup { [wdv — [odps 0(2) - o(y) < (. 2)}

Optimizer satisfies  (ct(y,z) = igf Sé L(t,v,%)dt;7(0) = y,7(1) = 2)

1
o) = supl(2) — cHy,2)} = sup {w(6(1) - || Lt )}
z v

0
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Duality Review: Optimal Transport for Fixed End-Time

The general Kantorovich dual problem is

W) i=sup { [wdv — [odps 0(2) - o(y) < (. 2)}

Optimizer satisfies  (ct(y,z) = igf Sé L(t,v,%)dt;7(0) = y,7(1) = 2)

1
o) = supl(2) — cHy,2)} = sup {w(6(1) - || Lt )}
z v

0
Bernard-Buffoni, Fathi-Figalli: ¢ = J,(0, ),
Let H(t,x,p) = sup{p-v — L(t,x,v)}
Oedy (t,x) + H(t,x, Vy(t,x)) =0, Jy(1,) = .
Hamiltonian flow, p(t) = VJy(t,(t)):

Y(t) = DpH(t, (1), p(t)),  b(t) = —DeH(t,7(t), p(t))
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Eulerian Duality: Free End-Time

The dual problem via Eulerian formulation:

Thm': W(u,v) = D(u,v) :==  sup Y(z)v(dz) — | J(0,y)u(dy),
(Ja)eN(L) Jre R

(J,9) € N(L) satisfy
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Eulerian Duality: Free End-Time

The dual problem via Eulerian formulation:

Thm': W(u,v) = D(p,v) ==  sup P(z)v(dz) — | J(0,y)u(dy),
(J)eN(L) JR" R"

(J,9) € N(L) satisfy

Thm": Optimal J, satisfies the Hamilton-Jacobi-Bellman inequality:

mx{ P(t, x) — Jw(tx)}:()
Oedy (£, x) + H(t x, VJy(t,x)) .

H(t,x,p) =sup{p-v — L(t,x,v)} (proof by Perron’s method)

Dynamic programming shows equivalence:

o) = swpl(2) — ety 2)} =sup {u (o) - |

0

T

L(t,fy,"y)dt}.
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Monotonicity by Viscosity Solution Methods

Proposition

A. tw L increasing = tw— J, decreasing.
B. t > L decreasing = t v~ Jy increasing.

Let s(x) = inf{t; Jy(t, x) = ¢(x)} (for A., for B. use sup);
We have the transversality condition:

H(s(x),x,Vi(x)) = 0.
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Hitting-Time

With A. or B., and good H, u, v:

Theorem

Unique optimal * € MN(p,v) given by T(x) := v*(7%).
Pontryagin transversality

H(m™, T(x),Vi(T(x)) =0, so7*=s(T(x)).

Hamiltonian flow for t < 7%, p(7) = V(T (x)):

Y(t) = DpH(t,v(t),p(t)), p(t) = —DxH(t,~(t), p(t))
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Hitting-Time
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Hamiltonian flow for t < 7%, p(7) = V(T (x)):

Y(t) = DpH(t,v(t),p(t)), p(t) = —DxH(t,~(t), p(t))

Optimal attainment of Eulerian problem with supp p € {(s(x), x)}.
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Hitting-Time

With A. or B., and good H, u, v:

Theorem

Unique optimal * € MN(p,v) given by T(x) := v*(7%).
Pontryagin transversality

H(™, T(x), V(T (x)) =0, so 7 =s(T(x)).
Hamiltonian flow for t < 7%, p(7) = V(T (x)):

Y(t) = DpH(t,v(t),p(t)), p(t) = —DxH(t,~(t), p(t))

Optimal attainment of Eulerian problem with supp p € {(s(x), x)}.
If J € C* then /) = {; ., dn is determined by (for A.)

Otf) + Vi - DoH(VJ)) =0, t < s(x)

Unresolved: Is n uniquely determined with J Lipschitz?
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Relationship to Classical Problems

Suppose

L(t,x, v) = { g'(t), |v/<1 }

w, |v|>1
with g(0) = 0 and g/(t) = 0.

If g is convex or concave, characteris-
tics are straight lines, cost is A

c(y,z) = g(lz = yl).

Gangbo-McCann for Monge Map

A. < g convex

B. & g concave B.
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Part 2: Skorokhod Embeddings

Uncontrolled diffusion
Wo ~ p

Stopping-time to transport
W, ~ v.

28 constructions in 1-D
Azéma-Yor, Perkins, Root, Rost ...

Our problem is (multi-D):

V(u,v) :=inf E [J L(t, Wy)dt; Wo ~ pu, Wy ~ V:| .
T 0

(Real applications in mathematical finance; options pricing)

Hobson, Obtdj, Henry-Labordere ...
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Eulerian Formulation and Duality

No optimal transportation cost!
@ Eulerian Formulation:

E(u,v) :=  inf J f (t,x)n(t, x)dxdt,

(n,p)€T (p,v
(n,p) e M(w,v) if n=0, p=0, and (weakly)

0

p+ a1.“77 = EAna 77(0’ ) = M, J;) p(dta ) =
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Eulerian Formulation and Duality

No optimal transportation cost!

@ Eulerian Formulation:

E(u,v) = inf f f (t,x)n(t, x)dxdt,
(n,p)€T (p,v n
(n,p) e M(w,v) if n=0, p=0, and (weakly)
ee}
p+ a1.“77 = EAna 77(0’ ) =M J;) p(dta ) =V
@ Dual Problem (via Eulerian Formulation):
Thm: V(u,v) = E(u,v) = D(p,v) :==  sup fl/}dl/ fJ dp,
(J)eT(L

(J,) e T(L) if
P(x) = J(t,x) < 0
OrJ(t, x) + %AJ(t,X) < L(t,x)
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Dual Attainment

Maximize:

_ Y v=dy |
f@bdu JJ¢(O, )du; max{athp-i—éAJw—L}_O'

Remaining degrees of freedom for (v, J;;)
@ Subtract a positive function from ¢. (Let ¢ = inf>q Jy.)

@ Subtract a subharmonic function from 1 and J,. (Harder to handle.
This shows that D(u,v) = o0 unless p <sy v.)

fhdugfhdy Y hst. Ah >0

Theorem (in progress)

Under suitable assumptions the dual problem is attained at regular (1, Jy).

Aaron Zeff Palmer with N. Ghoussoub and YFrom Monge Transport to Skorokhod Embedt April 9, 2018 13 / 16



Complementary Slackness

@ To verify optimality:
(n,p) € T(p,v) and (1, Jy,) € T(L) are optimal if and only if

Joof L(t,x)n(t,x)dxdt = | dv— | J(O,-)dp.
0 n Rn Rn
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Complementary Slackness

@ To verify optimality:
(n,p) € T(p,v) and (1, Jy,) € T(L) are optimal if and only if

o If (1, Jy) and (n, p) are optimal and regular then:

P(x) = Jy(t,x), p a.e. (t,x),

and
1
OrJy(t, x) + EAJ¢(t’X) = L(t,x), n a.e. (t,x).
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Root/Rost Embeddings

Proposition

A. t — L is increasing = t > Jy is decreasing.
B. t — L is decreasing = t — Jy is increasing.

s(x) = inf{t; Jy(t, x) = ¥(x)} (For B. use sup). We can choose v to solve

%A@b(x) = L(s(x),x).
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Root/Rost Embeddings

Proposition

A. t — L is increasing = t > Jy is decreasing.
B. t — L is decreasing = t — Jy is increasing.

s(x) = inf{t; Jy(t, x) = ¥(x)} (For B. use sup). We can choose v to solve

%A@b(x) = L(s(x),x).

e By complementary slackness, 7(t,-) € H3({x; t < s(x)}),
is unique given s and A. If se C!, v(x) = Vs(x) - Vn(s(x), x).

Aaron Zeff Palmer with N. Ghoussoub and YFrom Monge Transport to Skorokhod Embedt April 9, 2018 15 / 16



Root/Rost Embeddings

Proposition

A. t — L is increasing = t > Jy is decreasing.
B. t — L is decreasing = t — Jy is increasing.

s(x) = inf{t; Jy(t, x) = ¥(x)} (For B. use sup). We can choose v to solve

%A@b(x) = L(s(x),x).

e By complementary slackness, 7(t,-) € H3({x; t < s(x)}),

is unique given s and A. If se C!, v(x) = Vs(x) - Vn(s(x), x).
o Rigidity Theorem: If s is optimal for increasing L,

s is optimal for any increasing L (For B. t > s(x) and —v).
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Root/Rost Embeddings

Proposition

A. t — L is increasing = t > Jy is decreasing.
B. t — L is decreasing = t — Jy is increasing.

s(x) = inf{t; Jy(t, x) = ¥(x)} (For B. use sup). We can choose v to solve

%A@b(x) = L(s(x),x).

e By complementary slackness, 7(t,-) € H3({x; t < s(x)}),

is unique given s and A. If se C!, v(x) = Vs(x) - Vn(s(x), x).
o Rigidity Theorem: If s is optimal for increasing L,

s is optimal for any increasing L (For B. t > s(x) and —v).
@ Martingale Duality of Beiglebock-Cox-Huesmann:

Maximize §¢dv — E[My], Wy ~ p1, My martingale,

t

(We) = My <0 as. My = Jy(t, W) + E UT L(s, Ws)ds]

Aaron Zeff Palmer with N. Ghoussoub and YFrom Monge Transport to Skorokhod Embedt April 9, 2018 15 / 16



Stochastic Transportation

General stochastic control with free end-time:

V(u,v) = inf E [J L(t,Xt,At)dt}
TvA(') 0
with dX; = f (X, Ae)dt + o(X¢, Ar)dWy, Xo ~ pu, Xr ~ v. Eulerian form:

1
p+8tf d77+V'J fd77=V2-f o?dn.
A A 2 A
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Stochastic Transportation

General stochastic control with free end-time:

V(u,v) = inf E[J L(t,Xt,At)dt}
TvA(') 0

with dX; = f (X, Ae)dt + o(X¢, Ar)dWy, Xo ~ pu, Xr ~ v. Eulerian form:

1
p+8tf d77+V'f fd77=V2-f o?dn.
A A 2 A

Dual problem is
W (p,v) := sup {fwdu - JJ(Q ')dﬂ}
¥, J

P(x) = J(t,x) <0
0¢d + (-, A)-VJ + %&(-,A) V2 < L(, -, A).

subject to

Many interesting questions!
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