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I' Cost Function
Minimize
e Overall length (TSP)

e Maximal edge length (bottleneck TSP)

Maximize
e Overall length (Max-TSP)
e Minimum length (Max-Scatter TSP; MSTSP)



r Applications

Riveting:
Aim to place rivets
far from each other

Drilling:
Workpiece heats up
Consecutive holes
far from each other




r Background
Maximum Scatter TSP introduced by
[Arkin—Chiang—Mitchell-Skiena—Yang SODA’97]
In metric graphs:

2-approximation
APX hard, lower bound 2

— tight if P £ NP

They asked: What happens for instances
in the Euclidean plane?



r Known Results

Metric Euclidean
(fixed dimension)
min TSP 1081 <a<1.5 a=1+4+¢€
[Karpinski-Lampis—Schmied 2015] [Arora 1996]
[Christofides 1976] [Mitchell 1996]
max TSP 14+e<a<1.14 a=1+c¢
[Papadimitriou—Yannakakis 1993] [Barvinok 1996]
[Kowalik—Mucha 2009]
min max TSP a =2 o= 2
[Parker—Rardin 1982] [Sarvanov 1995]
(bOttleneCk) [Doroshko—Sarvanov 1981]
max min TSP a =2

[Arkin—Chiang—Mitchell-Skiena—Yang 1997]

(max. scatter)
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I Our Results [SODA 2017]

(1 + €)-approximation algorithm for d-dimensional
doubling metrics with running time

~

O(n? 4 20K s KDy " — (13 /€)?

Corollary:
(1 4 €)-apx for (loglog n)/c-dimensional
doubling metrics (for some constant c)

Matching hardness result:

(4/3)/P — ¢ lower bound for /,, distances in R¢1°8 "
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I Simplified Setup

There is a PTAS for MSTSP in the Euclidean plane

\

(1 + €)-approximation
for arbitrarily small constant ¢ > 0

Answers question of Arkin et al. [SODA 1997]



r Step One

Formulate as decision problem
by guessing optimum solution value /¢

Remaining Problem:

Find Hamiltonian tour in unweighted graph G

Structural property: high degrees if vertices far apart
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r Step Two

Idea: Snap vertices to grid
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r Step Two Cont'd

€ - £ grid: N
o _i

No point farther than e/ - v/2/2 from next grid point

@% Length changes by at most O(¢)/
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r Step Three

Consider balls of radius ¢

If no ¢-ball contains > n /2 vertices, all degrees > n /2
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r Step Three Cont'd

Dirac’s Theorem

If all degrees > n /2, we can efficently find
Hamiltonian tour

= If no /-ball contains > n /2 vertices,
we can efficiently find the tour

Assume in the following:
The graph contains ¢-ball with > n /2 vertices
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] Remaining Instance

Several vertices at one grid point:

Super-vertex with multiplicity L}T — _.:2_

Constantly many super-vertices in 3¢-ball
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I Low Degree Vertices

If deg(v) < n/2, > n/2 vertices in ¢-ball around v

All these balls have non-empty
pairwise intersection

AN\~

\/

= they fit into 2/-Ball ‘
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r Bondy-Chvatal Thm

If
deg(u) + deg(v) > nin G and

G' = G + {u,v} Hamiltonian,

then G Hamiltonian

Bondy-Chvatal closure: apply theorem iteratively
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r Single Vertex Outside

Degree < n/2

Contains > n /2 vertices

< All vertices of deg. < n/2

All vertices outside 3/-ball

<" moved to single super-vertex

Solve many-visits TSP
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I’ Many Visit TSP

[Berger, Kozma, Mnich, Vincze 2018]
Many-visits TSP exact in time 2°) + poly(n, k)

Number of vertices: n
Number of super-vertices: k
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I Last Step

Compute Eulerian tour
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Vertices in Supervertex: arbitrary order
= Eulerian implies Hamiltonian tour



I' High Dimensions

Runtime dominated by 22°
= Polynomial time for d = loglogn/c
for some constant ¢

What about higher dimensions?

APX hard for > log n dimensions

Proof: Along the lines of [Trevisan STOC 1997],
but needs changes in encoding
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r Non-Euclidean Metric

Hardness due to dimensionality

Doubling Dimension k:
Each ball B,.(-) can be covered with
2% pballs Br/Q(')

Property of arbitrary metric space
(not restricted to Euclidean space)

Definition matches the properties
needed for a “good” e-net
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r Conclusion

Solved:

Basically tight result for all dimensions > 3

Open:

Sitation not clear for 2 dimensions
- Could still be in P
- FPTAS?

Related: MaxTSP in 2D
- Issues with real values:
sum of square roots
22



