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Mean curvature flow
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Mean curvature flow arises in a variety of physical applications
> Related to surface tension
> A model for the formation of grain boundaries in crystal growth

Some ideas for numerical computation:
> we could parameterize the surface and compute
| —
H=--V-n
2

> If the surface is implicitly defined by the equation F(x,y, z) = 0, then mean curvature can

be computed
1
H=_ly. (E)
2 |VF|
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MBO diffusion generated method
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In 1992, Merriman, Bence, and Osher (MBO) developed an iterative method for evolving an
interface by mean curvature.

Repeat:

Step 1. Solve the Cauchy problem for the diffusion equation (heat equation)
w = Au
u(x,t =0) = xp,

with initial condition given by the indicator function xp of a domain D until time 7 to obtain
the solution u(x, 7).

Step 2. Obtain a domain Dpeyw by thresholding:

1
Dhew = {xERd: u(x,7) > 5}




How to understand the MBO diffusion generated method?
From pictures, one can easily see:
> diffusion quickly blunts sharp points on the boundary and
> diffusion has little effect on the flatter parts of the boundary.

Formally, consider a point P € 0D. In local polar
coordinates with the origin at P, the diffusion equation is

given by i =1
ou 10u Ou 1 0%u
Ou _10u Ow 106w =0
ot ror + or? + r2 062 Ap
rap
A8
Considering local symmetry, we have )
Ou _10u &%u
8t - r ar 8,.2 Circle of curvature at point P.
_ H@u " 0u
or = ort’

The % level set will move in the normal direction with
velocity given by the mean curvature, H.
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A variational point of view: Modica+Mortola, Allen+Cahn, Ginzburg+Landau
Define the energy

) = [ SIVaGOP + W (ut)ds

where W(u) = % (u? - 1)2 is a double well potential.

Theorem (Modica+ Mortola, 1977) A minimizing sequence (u¢) converges (along a
subsequence) to xp — xq\p In L' for some D C Q. Furthermore,

eJe(ue) — %H‘i*'(BD) ase — 0.

Gradient flow. The L? gradient flow of J. gives the Allen-Cahn equation:
1
u = Au— E—ZW/(u) in Q.

Operator/energy splitting. Repeat the following two steps:
> Step 1. Solve the diffusion equation until time 7 with initial condition u(x,t = 0) = xp
O = Au
> Step 2. Solve the (pointwise defined!) equation until time 7:

o = fW'(fb)/sz, ¢(x,0) = u(x,7), in Q.

> Step 2*. Rescaling 7 = e~ 2t,we have as e — 0, e 27 — o0. So, Step 2 is equivalent to
thresholding:

1 if(x,0) > 1/2

$(x, 00) = {0 if p(x,0) < 1/2°
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Analysis, extensions, applications, connections, and computation
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Proof of convergence of the MBO method to mean curvature flow [Evans1993, Barles and
Georgelin 1995, Chambolle and Novaga 2006, Laux and Swartz 2017, Swartz and Yip
2017].

Multi-phase problems with arbitrary surface tensions [Esedoglu and Otto 2015, Laux and
Otto 2016]

Numerical algorithms [Ruuth 1996, Ruuth 1998]
Adaptive methods based on NUFFT [Jiang et. al. 2017]

Micromagnetics [Wang et. al. 2001]
Volume preserving interface motion [Ruuth 2003] auction dynamics [Jacobs et. al. 2017]
Image processing [Esedoglu et al. 2006, Merkurjev et al. 2013, Wang et. al. 2017]

Problems of anisotropic interface motion [Merriman et al. 2000, Ruuth et al. 2001,
Bonnetier et al. 2010, Elsey et al. 2016]

Diffusion generated method using signed distance function [Esedoglu et al. 2009]
High order geometric flows [Esedoglu 2008]

Nonlocal threshold dynamics method [Caffarelli and Souganidis 2010]

Wetting problem on solid surfaces [Xu et. al. 2017],

Graph partitioning and data clustering [van Gennip et. al. 2013]

Centroidal Voronoi Tessellation [Du 1999]



Target-valued maps
Let Q C R? be a bounded domain with smooth boundary.
Let T C R* be the “target set”.
We consider maps u: 2 — T.

Examples: il
> st il
> RP! NN )

> SPD(3 N,

> 3 ) 7,777

LIRS \\/\\({(’E
ANV (7
AT N7

7/ 31



Harmonic target-valued maps
Let Q C R? be a bounded domain with smooth boundary.
Let T C R¥ be the “target set”.

Consider the general variational problem,

1
inf  E(u) where E(u) = 7/ |Vul? dx
u: QT 2 Ja

Energy relaxation via penalization.

Let L: R — R be a smooth function such that T = L~1(0).

= T is the set of global minimizers of the non-negative function L.
Roughly, we want L(x) = dist?(x, T).

Relax the energy to obtain:

1 1
min  E.(u) where E.(u) = - / |Vul? dx + — / L (u(x)) dx.
u€H' (Q;RK) 2 Ja €2 Q
Examples.
k T L(x) comment
1 {1} 162 —1)? Allen-Cahn
2 st %(\x|2 —1)2  Ginzburg-Landau
2 0(n) 3llx'x — I,]|%  orthogonal matrix-valued field
k convex set T C RF L1dP(x,T)
k coordinate axes, > 1 Zi# xizx_% Dirichlet partitions

RP! line field

/31



A diffusion generated method for the Ginzburg-Landau model

E.(u) :/Q %\Vu(xﬂz + 5 (P - 1)2 d.

e

k T L(x) comment
2 SU 1(xP-1)> Ginzburg-Landau

The closest-point map, II7: R? — T, for T = S' is given by

HTX =

o

> S.J. Ruuth, B. Merriman, J. Xin, and S. Osher, Diffusion-Generated Motion by Mean
Curvature for Filaments, J. Nonlinear Sci. 11 (2001).

Diffusion generated method. Fori=1,2,...,

> Step 1. Solve the diffusion equation until time 7

O = Au
M()C, = 0) = d)i

> Step 2. Point-wise, apply the closest-point map:

¢,‘+1 (x) = HTM(X, T).
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Application: Quad meshing
— joint work with Ryan Viertel (U. Utah)
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F1G. 2. Overview of the cross field based meshing methods. (top left) The domain
s shown with outward pointing normals. (top right) A 4-aligned boundary condition is assigned
(see Definition 3.12) and a representation vector field is found by approzimately minimizing the
Ginzburg-Landaw energy. (bottom left) The representation field is mapped to a smooth cross field
and separatrices of the cross field are traced to partition the domain inte ¢ quad layout. (bottom
right) A regular mesh is mapped into each region.

Theorem [ Viertel + O. (2017)] If no separatrix of u converges to a limit cycle, then the
separatrices of U, along with D partition D into a 4 sided partition.
10/ 31



Examples of quad meshes
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Orthogonal matrix valued fields

— joint work with Dong Wang (U. Utah)
Let 0, C M, = R"*" be the group of orthogonal matrices.

inf  E(A here E(A) Al d
L infE(A), where E(4) = 5 [ [VAJ} dx
Relaxation:
1
min  E.(A), where E.(A) := E(A)+—/ lA'A — L ||% dx
A€H! (M, 4e2 Jq

The penalty term can be written:

1, , 1 1/, 2
@HAA—InHF:a—Zi:Z]W(a,»(A)), where W(x):Z<x —1) .

Gradient Flow. The gradient flow of E¢ is

DA = —VAE-(A) = AA — e 2A(A'A — ).

Special cases.
» For n = 1, we recover Allen-Cahn equation.

> For n = 2, if the initial condition is taken to be in SO(2) = S', we recover the complex
Ginzburg-Landau equation.
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Diffusion generated method for O,, valued fields

1 1
Ee) = [ SIVAIR + 14 = b ax.

k T L(x) comment

2 0(n) %Hx’x —IL||%  orthogonal matrix valued fields

Lemma. The closest-point map, Iy : R"*" — T, for T = O, is given by
II7A = A(A'A)"2 = UV,

where A has the singular value decomposition, A = UXV".

Diffusion generated method. Fori=1,2,...,

> Step 1. Solve the diffusion equation until time 7

O = Au
u(x7 t= 0) = d)i

> Step 2. Point-wise, apply the closest-point map:

Gir1(x) = yu(x, 7).
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Lyapunov function for MBO iterates
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Let €2 be a closed surface.
Motivated by (Esedoglu + Otto, 2015), we define the functional ET : L? (£2; M) — R, given by

ET(A) := l/Qn— (A, AT A)p dx

T

Here, T2 A denotes the solution to the diffusion equation at time 7 with initial condition at
time = 0 given by A = A(x).

Denoting the spectral norm by ||A||2 = o'max(A), the convex hull of O, is

Ky =conv 0, = {A € My: ||A]|» < 1}.

Lemma. The functional E7 has the following elementary properties.
(i) ForA € L2(9;0,), ET(A) = E(A) + O(7).
(ii) ET(A) is concave.
(iii) We have
min  E"(A) = min E"(A).
AEL2(Q;0,) AEL2(Q%Ky)
(iv) ET(A) is Fréchet differentiable with derivative L} : L* (€; M,) — R at A in the direction
B given by

2
m=-2 /ﬂ(eATA,B)F dx.



Stability
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The sequential linear programming approach to minimizing E™ (A) subjectto A € L°°(€; Ky,)
is to consider a sequence of functions {A;} 22 which satisfies

Agq) = arg L} (A), Ay € L°°(£2; 0,) given.

min
AEL® (2;Ky)

Lemma. If eA7A; = UL V', the solution to the linear optimization problem,

min LT (A).
ACL® (QK,,) A, @)

is attained by the function A* = UV’ € L>®(); O,).

Thus, Ay € L*°(£2; 0,) for all s > 0 and these are precisely the iterations in the generalized
MBO diffusion generated method!

Theorem (Stability). [O. + Wang, 2017] The functional E” is non-increasing on the iterates
{AS};’;, i.e., ET(Agq1) < E7(Ay).

Proof. By the concavity of E” and linearity of Ly,
ET(Asp1) — ET(Ay) S Lf (Ag1 — As) = L (A1) — L3 (As).

Since Ay € L%°(; Kn), L} (As4+1) < L} (As) which implies E7 (Ag41) < E7 (As). O



Convergence
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We consider a discrete grid Q= {x,}‘Q C  and a standard finite difference approximation of
the Laplacian, A, on Q. ForA: Q — 0,, define the discrete functional

Z 1~ (Ai, (ATA))r

x,EQ

and its linearization by

=-= Z (Bi, (ATA))r

x,EQ

Theorem (Convergence for n = 1.) [O. + Wang, 2017]

Let n = 1. Non-stationary iterations of the generalized MBO diffusion generated method
strictly decrease the value of E™ and since the state space is finite, { :I:l}‘m , the algorithm
converges in a finite number of iterations. Furthermore, for m := e~ A “T, each its:ration
reduces the value of J by at least 2m, so the total number of iterations is less than E™ (Ag) /2m.

Theorem (Convergence for n > 2.) [O. + Wang, 2017]

Let n > 2. The non-stationary iterations of the generalized MBO diffusion generated method
strictly decrease the value of E7. Fora given initial condition Ay : Q- Oy, there exists a
partition Q= Q+ I1Q_ and an S € N such that for s > S,

+1 x; €Q+

det As(x;) = {1 v e

Lemma. dist (SO(n), SO~ (n)) =2



Dirichlet partitions

A collection of k disjoint open sets, Uj, ..., Uy C Qisa
Dirichlet k-partition of Q if it attains

inf Z)\] Uyp) where A\(U):= min E(u).
UpCQ =1 u€H(I)(Q)
UeNUn=0 el 2 ¢y =1
= \(Q) is the first Dirichlet e.val. of —A on Q. 3-partition of Q C R?

Mapping formulation
Consider the target set given by the coordinate axes,

7= = {xreR: Th, 2¢ =0},
The Dirichlet partition problem for €2 is equivalent to the mapping problem
min {E(u): u € HY( Ek),/ u3(x) dx = 1forall £ € [k]} ,
Q

where E is the Dirichlet energy and H} (€ ) = {u € H{ (4 R¥): u(x) € Sy ae}.
‘We refer to minimizers u as ground states and WLOG take u > 0 and quasi-continuous.

u is a ground state
<~
Q = I, U, with Uy = u, ' ((0, 00)) for £ € [k] is a Dirichlet partition.
Cafferelli and Lin (2007) used reformulation to prove regularity results, such as
i Cl_smoothness of the partition interfaces away from a set of codimension two.



Diffusion generated method for computing Dirichlet partitions
— joint work with Dong Wang (U. Utah)

kT L(x) comment

k  coordinate axes, X % Zi ” )cizxA2 Dirichlet partitions
Relaxed energy: Ec (u) = 1 [, [Vul?> dx + = LS i ulz(x)ujz(x) dx
Relaxed problem:

min  E:(u)
u€H' (Q;Rk)

st lujll 2 =1
The closest-point map, II7: R¥ — T, for T = X is given by
Xi  Xi = max; X;j
Il7rx); = .
(I7x) {0 otherwise

Diffusion generated method. Fori=1,2,...,

> Step 1. Solve the diffusion equation until time 7

Ou = Au

u(x,t =0) = ¢;
> Step 2. Point-wise, apply the closest-point map:

é(x) = Myu(x, 7).

> Step 3. Normalize:
$(x)

bi
H= ||¢HL2(Q)
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Results for 2D flat tori, kK = 3-9,11,12,15,16, and 20

rxa
b iFike
A
e

19/ 31



Results for 3D flat tori, k = 2
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Results for 3D flat tori, k = 4, tessellation by rhombic dodecahedra
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Results for 3D flat tori, k = 12, Kelvin’s structure composed of truncated
octahedra
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Results for 3D flat tori, K = 8, Weaire-Phelan structure
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Consistency of Dirichlet partitions
— joint work with Todd Reeb (U. Utah)

continuum
—_—
partition
sample and compare
construct graph

discrete
partition

FIGURE 1. Illustration of consistency for the partitioning problem.

> Uses the TL?(Q) framework developed by N. Garcia Trillos and D. Slep&ev.
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Image processing and inverse problems

— joint work with Dong Wang (U. Utah)
For 7 > 0, A € (0, 1), and a target-valued image, f € L>°(;T)

min E u
uel?(4;T) A (1),

where : N
Ex.(u) = —E(M, (€A™ — Iu) + 5(14 — 1,27 (u—f)).

Algorithm 1: A diffusion generated method for approximating minimizers of the energy in
2).
Input: Let 7, A > 0. Set Q € RY, the target space as T € R¥, the image as f € HY(Q,T) and
the initial guess as ug € HY(Q,T).
Output: A matrix-valued function u, € H'(Q,T) that approximately minimizes (2).
Set s =1
while not converged do
1. Diffusion Step. Solve the initial value problem for the diffusion equation until time 7
with initial value given by us_;(z):
Oyu(t,z) = Au(t, z)
u(0,2) = Nty (&) + (1= N) .

Let a(z) = u(r, x)
2. Projection Step. Project u(z) to T,

us = Hpi.
Set s=s+1

Stability and convergence results for:
> T C R¥is aclosed convex set
> T C R¥is aclosed subset of the unit sphere, S¥~!, such that the closest-point mapping,

II7, is defined almost everywhere
6l 31



Example: T = S? valued signal

(a) Original (blue) and noisy data (red) (b) Denoised data with A = 0.05 and 7 = 10~

(¢) Denoised data with A = 0.1 and 7 = 10~ (d) Denoised data with A = 0.15 and 7 = 10~°

FIGURE 1. Results of the denoising an obstructed lemniscate of Bernoulli on the
sphere, §2, with A\ = 0.05,0.1 and 0.15, respectively. In this simulation, 7 is fixed
as 1073, See Section 4.1.

compare to Bacdk et al. A Second Order Nonsmooth Variational Model for Restoring
Manifold-Valued Images. SISC (2016).
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Example: Image of peppers in HSV space, T = S! x R x R

- -

Kt

A =085 7=10"% PSNR=28.38. A= 0.9, 7 = 10~*, PSNR= 28.41.

G-

Denoising the "Peppers” image which is distorted with Gaussian noise on each of the red,
green, and blue (RGB) channels with o = 0.1 in hue, saturation, value (HSV) color space.
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Example: Diffusion tensor MRI data, T = SPD(3)

Denoising Camino DT-MRI data.

Left column: Slice 28 of the original data and a *zoomed-in’ subset.

Right column: Denoised data with A = 0.3 and 7 = 10~* and the same subset.
270/ 31



= RP!

Example: Fingerprint image, T
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(b) Noisy

a) Original fingerprint.

(

a).
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fingerprint

field on the

1
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(e) Noisy
fingerprint (d).

(d) Original fingerprint.
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Discussion and future directions for generalized MBO methods

>
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We considered a single matrix-valued field that has two “phases” given by when the
determinant is positive or negative. It would be very interesting to extend this work to the
multi-phase problem as was accomplished for n = 1 in [Esedoglu+Otto, 2015].

For O(n) valued fields with n > 2, the motion law for the interface is unknown.
For the inverse problems considered, understand better the assumed noise model.

Consider other image analysis tasks for target-valued maps: inpainting, segmentation, and
registration

Thanks! Questions? Email: osting@math.utah.edu
B. Osting and D. Wang, Diffusion generated methods for denoising target-valued images, submiteed,
arXiv:1806.06956 (2018).

R. Viertel and B. Osting, An approach to quad meshing based on harmonic cross-valued maps and the
Ginzburg-Landau theory, submitted, arXiv:1708.02316 (2017).

B. Osting and D. Wang, A generalized MBO diffusion generated motion for orthogonal matrix valued
fields, submitted, arXiv:1711.01365 (2017).

D. Wang and B. Osting, A diffusion generated method for computing Dirichlet partitions, submitted,
arXiv:1802.02682 (2018).

B. Osting and T. H. Reeb, Consistency of Dirichlet Partitions, SIAM J. Math. Analysis (2017).

Y. van Gennip, N. Guillen, B. Osting, and A. Bertozzi, Mean curvature, threshold dynamics, and phase
field theory on finite graphs, Milan J. Mathematics 82 (2014).

Thanks to support by NSF DMS 16-19755 and 17-52202.



