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Mean curvature flow

Mean curvature flow arises in a variety of physical applications
I Related to surface tension
I A model for the formation of grain boundaries in crystal growth

Some ideas for numerical computation:
I we could parameterize the surface and compute

H = −1
2
∇ · n̂

I If the surface is implicitly defined by the equation F(x, y, z) = 0, then mean curvature can
be computed

H = −1
2
∇ ·
( ∇F
|∇F|

)
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MBO diffusion generated method
In 1992, Merriman, Bence, and Osher (MBO) developed an iterative method for evolving an
interface by mean curvature.

Repeat:

Step 1. Solve the Cauchy problem for the diffusion equation (heat equation)

ut = ∆u

u(x, t = 0) = χD,

with initial condition given by the indicator function χD of a domain D until time τ to obtain
the solution u(x, τ).

Step 2. Obtain a domain Dnew by thresholding:

Dnew =

{
x ∈ Rd : u(x, τ) ≥ 1

2

}
.
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How to understand the MBO diffusion generated method?
From pictures, one can easily see:
I diffusion quickly blunts sharp points on the boundary and
I diffusion has little effect on the flatter parts of the boundary.

Formally, consider a point P ∈ ∂D. In local polar
coordinates with the origin at P, the diffusion equation is
given by

∂u
∂t

=
1
r
∂u
∂r

+
∂2u
∂r2

+
1
r2

∂2u
∂θ2

.

Considering local symmetry, we have

∂u
∂t

=
1
r
∂u
∂r

+
∂2u
∂r2

= H
∂u
∂r

+
∂2u
∂r2

.

The 1
2 level set will move in the normal direction with

velocity given by the mean curvature, H.
Initial

t = 0.0025

t = 0.005

t = 0.01

t = 0.02

4/ 31



A variational point of view: Modica+Mortola, Allen+Cahn, Ginzburg+Landau
Define the energy

Jε(u) =

∫
Ω

1
2
|∇u(x)|2 +

1
ε2

W (u(x)) dx

where W(u) = 1
4

(
u2 − 1

)2 is a double well potential.

Theorem (Modica+ Mortola, 1977) A minimizing sequence (uε) converges (along a
subsequence) to χD − χΩ\D in L1 for some D ⊂ Ω. Furthermore,

εJε(uε)→
2
√

2
3
Hd−1(∂D) as ε→ 0.

Gradient flow. The L2 gradient flow of Jε gives the Allen-Cahn equation:

ut = ∆u− 1
ε2

W′(u) in Ω.

Operator/energy splitting. Repeat the following two steps:
I Step 1. Solve the diffusion equation until time τ with initial condition u(x, t = 0) = χD

∂tu = ∆u

I Step 2. Solve the (pointwise defined!) equation until time τ :

φt = −W′(φ)/ε2, φ(x, 0) = u(x, τ), in Ω.

I Step 2*. Rescaling t̃ = ε−2t, we have as ε→ 0, ε−2τ →∞. So, Step 2 is equivalent to
thresholding:

φ(x,∞) =

{
1 if φ(x, 0) > 1/2
0 if φ(x, 0) < 1/2

.
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Analysis, extensions, applications, connections, and computation

I Proof of convergence of the MBO method to mean curvature flow [Evans1993, Barles and
Georgelin 1995, Chambolle and Novaga 2006, Laux and Swartz 2017, Swartz and Yip
2017].

I Multi-phase problems with arbitrary surface tensions [Esedoglu and Otto 2015, Laux and
Otto 2016]

I Numerical algorithms [Ruuth 1996, Ruuth 1998]
I Adaptive methods based on NUFFT [Jiang et. al. 2017]

I Micromagnetics [Wang et. al. 2001]
I Volume preserving interface motion [Ruuth 2003] auction dynamics [Jacobs et. al. 2017]
I Image processing [Esedoglu et al. 2006, Merkurjev et al. 2013, Wang et. al. 2017]
I Problems of anisotropic interface motion [Merriman et al. 2000, Ruuth et al. 2001,

Bonnetier et al. 2010, Elsey et al. 2016]
I Diffusion generated method using signed distance function [Esedoglu et al. 2009]
I High order geometric flows [Esedoglu 2008]
I Nonlocal threshold dynamics method [Caffarelli and Souganidis 2010]
I Wetting problem on solid surfaces [Xu et. al. 2017],
I Graph partitioning and data clustering [van Gennip et. al. 2013]
I Centroidal Voronoi Tessellation [Du 1999]
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Target-valued maps
Let Ω ⊂ Rd be a bounded domain with smooth boundary.
Let T ⊂ Rk be the “target set”.
We consider maps u : Ω→ T .

Examples:
I S1

I RP1

I SPD(3)
I Σ5

548 J. Gu et al. / Pattern Recognition 37 (2004) 543–553

Fig. 3. The results of each step in our implement scheme of the modeling: (a) original !ngerprint with singular points marked; (b) the
coarse orientation matrix O; (c) the reconstructed orientation matrix by the combination model; (d) the reliability W ; (e) cos(2O) and (f)
sin(2O) are the transformed images of the coarse orientation matrix O; (g, h) transformed images of the reconstructed orientation matrix.

plain arch without singular points. It should be noted that the
other two models couldn’t deal with plain arch !ngerprints.
The reconstructed orientation !elds are shown as unit vectors
upon the original !ngerprint. We can see that the result is
rather accurate and robust to noise.
Figs. 5 and 6 give two examples for comparison. (a)

is the input !ngerprint; (b) is the original orientation !eld
for approximation obtained by gradient-based method [14];
(c) is the orientation !eld by Gabor !lter-bank (64 !lters)
method [16]; while (d–f) are the orientation !elds recon-
structed, respectively, by the zero-pole model, the piecewise
linear model and our own combination model. From the
results, we can see that: (1) For poor-quality !ngerprints, the
gradient-based method (see Figs. 5(b) and 6(b)) can only
extract the orientation !eld coarsely with much noise. The
Gabor !lter-bank based method (see Figs. 5(c) and 6(c)) is

better, however, it is still heavily in"uenced by noise such
as creases and scars. The combination model, though based
on the coarse orientation !eld, can reconstruct the orienta-
tion !eld smoothly and accurately against the noise. Thus it
can be used to improve the orientation !eld estimation. (2)
Among these three models, the zero-pole model can only
roughly describe the orientation (see Figs. 5(d) and 6(d)).
The piecewise linear model does better near the singular
points, but it fails in places far from them, as can easily be
observed at the right bottom part in Fig. 5(e) and the top part
and bottom part in Fig. 6(e). By contrast, the combination
model can describe the orientation of the whole !ngerprint
image smoothly and precisely, whether the region is near or
far from the singular points.
In our experiments, the combination model has a sat-

isfying performance for most !ngerprint images. But the

A MINIMAL SURFACE CRITERION FOR GRAPH PARTITIONING 17

k = 3 k = 5

o = 7.8061 ·10�7 o = 3.9625 ·10�6 4.0147 ·10�6

k = 7

o = 9.2171 ·10�6 9.3031 ·10�6 9.3037 ·10�6 9.3124 ·10�6

FIGURE 4. Locally optimal partitions (top) and the associated ground
state composites (bottom) for the square lattice graph for various values
of k. Here b = 2, q = 1 for all k and a = 5 ·10�7 for k = 3, and a = 10�6

for k = 5,7. See §5.2.

5.2. Square lattice graph. We consider a square domain with free boundary conditions.
To this end we construct a 120⇥ 120 square grid and a graph where each (non-boundary)
vertex is connected to its four nearest neighbors; vertices at the edge are connected to their
three nearest neighbors, and the four corner vertices are connected to their two nearest
neighbors. Edge weights w are taken to be constant. For this graph, the optimal partitions
are non-trivial. In Figure 4, we show some (locally) optimal partitions for k 2 {3,5,7},
computed with our algorithm. We use constant b = 4 and q = 1 for all k, while the param-
eter a increases with the number of partitions.

These results can be compared to the numerical experiments conducted in [4, 27] for
optimal spectral partitions (limb ! 0). Interestingly, we find that the partitions obtained
for finite b are very similar to the optimal spectral partitions. Namely, for k = 3, there
appears to be a continuous family of 3-partitions with all components meeting at a triple-
junction with similar values of energy. The partition for k = 5 with smallest energy is
similar to a spectral partition in [27]. Some of the obtained partitions also bear striking
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Harmonic target-valued maps
Let Ω ⊂ Rd be a bounded domain with smooth boundary.
Let T ⊂ Rk be the “target set”.

Consider the general variational problem,

inf
u : Ω→T

E(u) where E(u) =
1
2

∫
Ω
|∇u|2 dx

Energy relaxation via penalization.
Let L : Rk → R+ be a smooth function such that T = L−1(0).
=⇒ T is the set of global minimizers of the non-negative function L.

Roughly, we want L(x) ≈ dist2(x, T).

Relax the energy to obtain:

min
u∈H1(Ω;Rk)

Eε(u) where Eε(u) =
1
2

∫
Ω
|∇u|2 dx +

1
ε2

∫
Ω

L (u(x)) dx.

Examples.

k T L(x) comment
1 {±1} 1

4 (x2 − 1)2 Allen-Cahn
2 S1 1

4 (|x|2 − 1)2 Ginzburg-Landau
n2 O(n) 1

4‖xtx− In‖2
F orthogonal matrix-valued field

k convex set T ⊂ Rk 1
2 d2(x, T)

k coordinate axes, Σk
1
4

∑
i 6=j x2

i x2
j Dirichlet partitions

RP1 line field
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A diffusion generated method for the Ginzburg-Landau model

Eε(u) =

∫
Ω

1
2
|∇u(x)|2 +

1
4ε2

(
|u(x)|2 − 1

)2
dx.

k T L(x) comment
2 S1 1

4 (|x|2 − 1)2 Ginzburg-Landau

The closest-point map, ΠT : R2 → T , for T = S1 is given by

ΠT x =
x
|x| .

I S. J. Ruuth, B. Merriman, J. Xin, and S. Osher, Diffusion-Generated Motion by Mean
Curvature for Filaments, J. Nonlinear Sci. 11 (2001).

Diffusion generated method. For i = 1, 2, . . .,
I Step 1. Solve the diffusion equation until time τ

∂tu = ∆u

u(x, t = 0) = φi

I Step 2. Point-wise, apply the closest-point map:

φi+1(x) = ΠT u(x, τ).
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Application: Quad meshing
— joint work with Ryan Viertel (U. Utah)

Theorem [ Viertel + O. (2017)] If no separatrix of u converges to a limit cycle, then the
separatrices of U, along with ∂D partition D into a 4 sided partition.
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Examples of quad meshes
QUAD MESHING, CROSS FIELDS, AND THE GINZBURG-LANDAU THEORY 23

Fig. 12. For several di↵erent geometries (rows), we plot the (left) representation field obtained
via the MBO method (Algorithm 2), (center) the cross field and quad layout obtained from the
separatrices of the cross field, and (right) quad mesh with skeleton drawn in red.
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Orthogonal matrix valued fields
— joint work with Dong Wang (U. Utah)

Let On ⊂ Mn = Rn×n be the group of orthogonal matrices.

inf
A : Ω→On

E(A), where E(A) :=
1
2

∫
Ω
‖∇A‖2

F dx.

Relaxation:

min
A∈H1(Ω;Mn)

Eε(A), where Eε(A) := E(A) +
1

4ε2

∫
Ω
‖AtA− In‖2

F dx.

The penalty term can be written:

1
4ε2
‖AtA− In‖2

F =
1
ε2

n∑
i=1

W (σi(A)) , where W(x) =
1
4

(
x2 − 1

)2
.

Gradient Flow. The gradient flow of Eε is

∂tA = −∇AEε(A) = ∆A− ε−2A(AtA− In).

Special cases.
I For n = 1, we recover Allen-Cahn equation.
I For n = 2, if the initial condition is taken to be in SO(2) ∼= S1, we recover the complex

Ginzburg-Landau equation.
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Diffusion generated method for On valued fields

Eε(A) :=

∫
Ω

1
2
‖∇A‖2

F +
1

4ε2
‖AtA− In‖2

F dx.

k T L(x) comment
n2 O(n) 1

4‖xtx− In‖2
F orthogonal matrix valued fields

Lemma. The closest-point map, ΠT : Rn×n → T , for T = On is given by

ΠT A = A(AtA)−
1
2 = UV t,

where A has the singular value decomposition, A = UΣV t .

Diffusion generated method. For i = 1, 2, . . .,
I Step 1. Solve the diffusion equation until time τ

∂tu = ∆u

u(x, t = 0) = φi

I Step 2. Point-wise, apply the closest-point map:

φi+1(x) = ΠT u(x, τ).
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Lyapunov function for MBO iterates
Let Ω be a closed surface.
Motivated by (Esedoglu + Otto, 2015), we define the functional Eτ : L2(Ω; Mn)→ R, given by

Eτ (A) :=
1
τ

∫
Ω

n− 〈A, e∆τA〉F dx

Here, eτ∆A denotes the solution to the diffusion equation at time τ with initial condition at
time t = 0 given by A = A(x).

Denoting the spectral norm by ‖A‖2 = σmax(A), the convex hull of On is

Kn = conv On = {A ∈ Mn : ‖A‖2 ≤ 1}.

Lemma. The functional Eτ has the following elementary properties.

(i) For A ∈ L2(Ω; On), Eτ (A) = E(A) + O(τ).

(ii) Eτ (A) is concave.

(iii) We have
min

A∈L2(Ω;On)
Eτ (A) = min

A∈L2(Ω;Kn)
Eτ (A).

(iv) Eτ (A) is Fréchet differentiable with derivative LτA : L∞(Ω; Mn)→ R at A in the direction
B given by

LτA (B) = − 2
τ

∫
Ω
〈e∆τA,B〉F dx.
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Stability

The sequential linear programming approach to minimizing Eτ (A) subject to A ∈ L∞(Ω; Kn)
is to consider a sequence of functions {As}∞s=0 which satisfies

As+1 = arg min
A∈L∞(Ω;Kn)

LτAs
(A), A0 ∈ L∞(Ω; On) given.

Lemma. If e∆τAs = UΣV t , the solution to the linear optimization problem,

min
A∈L∞(Ω;Kn)

LτAs
(A).

is attained by the function A? = UV t ∈ L∞(Ω; On).

Thus, As ∈ L∞(Ω; On) for all s ≥ 0 and these are precisely the iterations in the generalized
MBO diffusion generated method!

Theorem (Stability). [O. + Wang, 2017] The functional Eτ is non-increasing on the iterates
{As}∞s=1, i.e., Eτ (As+1) ≤ Eτ (As).

Proof. By the concavity of Eτ and linearity of LτAs
,

Eτ (As+1)− Eτ (As) ≤ LτAs
(As+1 − As) = LτAs

(As+1)− LτAs
(As).

Since As ∈ L∞(Ω; Kn), LτAs
(As+1) ≤ LτAs

(As) which implies Eτ (As+1) ≤ Eτ (As). �
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Convergence
We consider a discrete grid Ω̃ = {xi}|Ω̃|i=1 ⊂ Ω and a standard finite difference approximation of
the Laplacian, ∆̃, on Ω̃. For A : Ω̃→ On, define the discrete functional

Ẽτ (A) =
1
τ

∑
xi∈Ω̃

1− 〈Ai, (e∆̃τA)i〉F

and its linearization by

L̃τA (B) = − 2
τ

∑
xi∈Ω̃

〈Bi, (e∆̃τA)i〉F.

Theorem (Convergence for n = 1.) [O. + Wang, 2017]
Let n = 1. Non-stationary iterations of the generalized MBO diffusion generated method
strictly decrease the value of Ẽτ and since the state space is finite, {±1}|Ω̃|, the algorithm
converges in a finite number of iterations. Furthermore, for m := e−‖∆̃‖τ , each iteration
reduces the value of J by at least 2m, so the total number of iterations is less than Ẽτ (A0)/2m.

Theorem (Convergence for n ≥ 2.) [O. + Wang, 2017]
Let n ≥ 2. The non-stationary iterations of the generalized MBO diffusion generated method
strictly decrease the value of Ẽτ . For a given initial condition A0 : Ω̃→ On, there exists a
partition Ω̃ = Ω̃+ q Ω̃− and an S ∈ N such that for s ≥ S,

det As(xi) =

{
+1 xi ∈ Ω̃+

−1 xi ∈ Ω̃−
.

Lemma. dist
(
SO(n), SO−(n)

)
= 2.
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Dirichlet partitions
A collection of k disjoint open sets, U1, . . . ,Uk ⊆ Ω is a
Dirichlet k-partition of Ω if it attains

inf
U`⊂Ω

U`∩Um=∅

k∑
`=1

λ1(U`) where λ1(U) := min
u∈H1

0(Ω)

‖u‖L2(Ω)
=1

E(u).

=⇒ λ1(Ω) is the first Dirichlet e.val. of −∆ on Ω. 3-partition of Ω ⊂ R2

Mapping formulation
Consider the target set given by the coordinate axes,

T = Σk :=
{

x ∈ Rk :
∑k

i6=j x2
i x2

j = 0
}
.

The Dirichlet partition problem for Ω is equivalent to the mapping problem

min

{
E(u) : u ∈ H1

0(Ω; Σk),

∫
Ω

u2
`(x) dx = 1 for all ` ∈ [k]

}
,

where E is the Dirichlet energy and H1
0(Ω; Σk) = {u ∈ H1

0(Ω;Rk) : u(x) ∈ Σk a.e.}.
We refer to minimizers u as ground states and WLOG take u ≥ 0 and quasi-continuous.

u is a ground state
⇐⇒

Ω = q`U` with U` = u−1
`

(
(0,∞)

)
for ` ∈ [k] is a Dirichlet partition.

Cafferelli and Lin (2007) used reformulation to prove regularity results, such as
C1,α-smoothness of the partition interfaces away from a set of codimension two.17/ 31



Diffusion generated method for computing Dirichlet partitions
— joint work with Dong Wang (U. Utah)

k T L(x) comment
k coordinate axes, Σk

1
4

∑
i 6=j x2

i x2
j Dirichlet partitions

Relaxed energy: Eε(u) = 1
2

∫
Ω |∇u|2 dx + 1

4ε2

∫
Ω

∑
i6=j u2

i (x)u2
j (x) dx

Relaxed problem:

min
u∈H1(Ω;Rk)

Eε(u)

s.t. ‖uj‖L2(Ω) = 1

The closest-point map, ΠT : Rk → T , for T = Σk is given by

(ΠT x)i =

{
xi xi = maxj xj

0 otherwise
.

Diffusion generated method. For i = 1, 2, . . .,
I Step 1. Solve the diffusion equation until time τ

∂tu = ∆u

u(x, t = 0) = φi

I Step 2. Point-wise, apply the closest-point map:

φ̃(x) = ΠT u(x, τ).

I Step 3. Normalize:

φi+1(x) =
φ̃(x)

‖φ̃‖L2(Ω)

.
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Results for 2D flat tori, k = 3–9,11,12,15,16, and 20

Figure 1: From left to right and top to bottom: Dirichlet partitions on the [�1, 1]2 periodic

domain discretized by 2562 uniform grid points with k =3–9,11,12,15,16, and 20. The last

one is computed using ⌧ = 0.0625 while others are all computed using ⌧ = 0.125. The average

CPU time for each case is 3.02, 1.89, 5.09, 3.49, 6.89, 6.36, 9.89, 11.02, 8.42, 16.18, 21.45, and

35.38 seconds respectively.

17
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Results for 3D flat tori, k = 2
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Results for 3D flat tori, k = 4, tessellation by rhombic dodecahedra
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Results for 3D flat tori, k = 12, Kelvin’s structure composed of truncated
octahedra

Figure 6: (left) A type–one Weaire-Phelan structure, (center) a vertical view, and (right)

a front view. The side view is same as the front view.

Figure 7: (left) A type–two Weaire-Phelan structure, (center) a vertical view, and (right)

a front view. The side view is same as the vertical view.

Figure 8: (left) A k = 12 Dirichlet partition of the periodic cube, [�1, 1]3, by equal trun-

cated octahedra, similar to Kelvin’s structure. The partition has been periodically extended.

(center) A vertical view. (right) A side view. The front view is same as the vertical view.

In this experiment, the cube is discretized by 1283 uniform grid points and ⌧ = 0.0625. The

CPU time for this experiment is 3556 seconds.

21
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Results for 3D flat tori, k = 8, Weaire-Phelan structure

Figure 5: A k = 8 Dirichlet partition of the periodic cube, [�1, 1]3, which is similar to the

Weaire-Phelan structure. The di↵erent panels show a 3d view (top left), a vertical view

(top right), a front view (bottom left), and a side view (bottom right). There are 6 type–

one Weaire-Phelan structures and 2 type–two Weaire-Phelan structures in the partition; see

Figures 6 and 7 for plots of these structures. In each panel, we have extended the partition

periodically, so that it is easier to see how the structures fit together. In this experiment,

the cube is discretized by 1283 uniform grid points and ⌧ = 0.0625. The CPU time for this

experiment is 1200 seconds.

20

23/ 31



Results for 4D flat tori, k = 8, 24-cell honeycomb

Figure 9: A k = 8 Dirichlet partition of the periodic tesseract, [�1, 1]4, by 24-cells. The

four columns correspond to the slides perpendicular to the x1�, x2�, x3�, and x4�axis

respectively. The eight rows correspond to the slices at xj =-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5,

0.75, respectively. The CPU time was 9803 seconds.
22
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Consistency of Dirichlet partitions
— joint work with Todd Reeb (U. Utah)

(U, ⌫)
continuum
partition

discrete
partition

sample and
construct graph

compare

Figure 1. Illustration of consistency for the partitioning problem.

partitions for (U, ⌫) in the large sample limit, n ! 1. There are several ingredients for a statistical
consistency statement:

(a) the continuum and discrete partitioning methods,
(b) the construction of the weighted graphs, Gn, and
(c) the method of comparison between the discrete and continuum partitions.

An important consequence for applications is that the partitions obtained using a consistent method
will asymptotically stabilize and so the collection of more data will yield diminishing returns. A
variety of consistency results have been proven, which we briefly survey in Section 2.2.

In this paper, we prove a consistency statement for Dirichlet partitions, which arise in the study
of Bose-Einstein condensates [Bao04; BD04; Cha+04] and models for interacting agents [CTV02;
CTV03; Cha+04; CBH05; CH08]. The method of comparison between discrete and continuum
partitions used here depends on a metric defined using optimal transport theory, as developed by
Garćıa Trillos and Slepčev [GS15; GS16a]. This analysis yields practical information about how the
graph weights can be constructed and suggests subsampling strategies for extremely large datasets.

1.1. Continuum Dirichlet partitions. Let U ✓ Rd with d � 2 be an open bounded domain
with Lipschitz boundary. Let ⇢ : U ! R be a continuous function such that there exist constants
M > m > 0 with m  ⇢(x)  M for all x 2 U . The weighted Dirichlet k-partition problem for
U ✓ Rd is to choose a k-partition, i.e., k disjoint quasi-open sets U1, U2, . . . , Uk ✓ U , that minimize

(1)

kX

`=1

�1(U`)

2

I Uses the TL2(Ω) framework developed by N. Garcia Trillos and D. Slepčev.
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Image processing and inverse problems
— joint work with Dong Wang (U. Utah)

For τ > 0, λ ∈ (0, 1), and a target-valued image, f ∈ L∞(Ω; T)

min
u∈L2(Ω;T)

Eλ,τ (u),

where

Eλ,τ (u) = −1
2
〈u, (e∆τ − Iu〉 +

λ

2
〈u− f , e∆τ (u− f )〉.

Algorithm 1: A di↵usion generated method for approximating minimizers of the energy in
(2).

Input: Let ⌧,� > 0. Set ⌦ 2 Rd, the target space as T 2 Rk, the image as f 2 H1(⌦, T ) and
the initial guess as u0 2 H1(⌦, T ).

Output: A matrix-valued function un 2 H1(⌦, T ) that approximately minimizes (2).
Set s = 1

while not converged do
1. Di↵usion Step. Solve the initial value problem for the di↵usion equation until time ⌧
with initial value given by us�1(x):

@tu(t, x) = �u(t, x)

u(0, x) = �us�1(x) + (1 � �)f.

Let ũ(x) = u(⌧, x)
2. Projection Step. Project ũ(x) to T ,

us = ⇧T ũ.

Set s = s + 1

4. Convergence when the target set a sphere

BO: This is when we use Esedoglu-Otto [EO15] .

We consider the set

T = {x : kxk = 1}.

In this case,we can write

hu,��ui ⇡ 1

⌧
kuk � 1

⌧
hu, e�⌧ui

BO: You might think we can generalize to other norms here, but we need an inner-product space and the only

finite dimensional one is the Euclidean one.

So the problem becomes

max
uN2T N

hu, e⌧�ui.

Denoting

B = {x : kxk  1},

so that T = @B, this is equivalent to

max
uN2BN

hu, e⌧�ui.

Solving the linearized problem, we should again get Algorithm 1.
3

Stability and convergence results for:
I T ⊂ Rk is a closed convex set
I T ⊂ Rk is a closed subset of the unit sphere, Sk−1, such that the closest-point mapping,

ΠT , is defined almost everywhere
26/ 31



Example: T = S2 valued signal

(a) Original (blue) and noisy data (red) (b) Denoised data with � = 0.05 and ⌧ = 10�3

(c) Denoised data with � = 0.1 and ⌧ = 10�3 (d) Denoised data with � = 0.15 and ⌧ = 10�3

Figure 1. Results of the denoising an obstructed lemniscate of Bernoulli on the
sphere, S2, with � = 0.05, 0.1 and 0.15, respectively. In this simulation, ⌧ is fixed
as 10�3. See Section 4.1.

In this example, we take the target set, T , to be S2 = {x 2 R3 : |x| = 1}. Then, we have
N = {x 2 R2 : x = 0} and ⇧T (x) = x

|x| if x 6= 0. Applying Algorithm 1, we get the denoised results

shown in Figures 1(b)–1(d) with a fixed ⌧ = 10�3 and � = 0.05, 0.1, and 0.15, respectively. Since
the original image is periodic, we solve the di↵usion equation in Algorithm 1 with the periodic
boundary condition.

We observe that the denoised results very closely match the original data and that the results
are relatively insensitive to the parameter �. All of these simulations were completed within 0.01
seconds.

4.2. Example: a synthetic S2-valued image. Again, following [Bač+16, §5.1], we define an
S2-valued vector-field by

G(t, s) = Rx(t)+y(s)Sx(t)�y(s)e3, t 2 [0, 8⇡], s 2 [0, 8⇡]

where

x(t) = t +
⇡

2

�
t

2⇡

⌫
, y(t) = t +

⇡

2

�
t

2⇡

⌫
,

14

compare to Bačák et al. A Second Order Nonsmooth Variational Model for Restoring
Manifold-Valued Images. SISC (2016).
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Example: Image of peppers in HSV space, T = S1 × R× R

Original image Noisy image

λ = 0.85, τ = 10−4, PSNR= 28.38. λ = 0.9, τ = 10−4, PSNR= 28.41.

Denoising the ”Peppers” image which is distorted with Gaussian noise on each of the red,
green, and blue (RGB) channels with σ = 0.1 in hue, saturation, value (HSV) color space.
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Example: Diffusion tensor MRI data, T = SPD(3)

Denoising Camino DT-MRI data.
Left column: Slice 28 of the original data and a ’zoomed-in’ subset.
Right column: Denoised data with λ = 0.3 and τ = 10−4 and the same subset.
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Example: Fingerprint image, T = RP1

(a) Original fingerprint. (b) Noisy orientation field on the
fingerprint (a).

(c) ⌧ = 10�2 and � = 0.15.

(d) Original fingerprint. (e) Noisy orientation field on the
fingerprint (d).

(f) ⌧ = 10�2 and � = 0.15.

Figure 12. Denoising results for two fingerprint images with ⌧ = 10�2 and � =
0.15. See Section 4.7.

The closest comparison for our numerical results can be found in [Wei+14; Bač+16]. The models
developed in these papers are nonsmooth variational models which include total variation or second
order di↵erences in the regularization term. While we expect that these methods preserve edges
better than the proposed method, the results in the numerical experiments are visually very similar.
However, due to the simplicity of viewing the target set in an ambient Euclidean space, our methods
should be faster. As with any inverse problem, the ‘best’ method depends on the structure of the
image and the noise as well as the size of the data. More work should be done to understand the
statistical framework for which these methods are consistent and robust estimators.

In this method, we have taken the domain, ⌦, to be a Euclidean set. It would be very interesting
to consider the case when ⌦ is a graph and the energy (4) is formulated using the analogous graph
operators [Gen+14; BT18].

22
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Discussion and future directions for generalized MBO methods
I We considered a single matrix-valued field that has two “phases” given by when the

determinant is positive or negative. It would be very interesting to extend this work to the
multi-phase problem as was accomplished for n = 1 in [Esedoglu+Otto, 2015].

I For O(n) valued fields with n ≥ 2, the motion law for the interface is unknown.
I For the inverse problems considered, understand better the assumed noise model.
I Consider other image analysis tasks for target-valued maps: inpainting, segmentation, and

registration

Thanks! Questions? Email: osting@math.utah.edu
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