Cy Maor University of Toronto

Topics in Calculus of Variations BIRS, May 2018

"Euclidean" Elasticity

• The (simplest?) elastostatic problem: minimize, over all valid configurations $f:\Omega \to \mathbb{R}^n$, the energy

$$E_{\Omega}(f) = \int_{\Omega} W(x, df_x) dx$$

- Energy density $W(x, df_x) \ge 0$ measures how much df_x is far from an isometry:
- $W(A) = 0 \text{ iff } A \in SO(n)$
- Typically, $W(x,A) \ge C \operatorname{dist}^2(A,\operatorname{SO}(n))$

"Euclidean" Elasticity

- The inclusion map $f_0: \Omega \to \mathbb{R}^n$, $f_0(x) = x$, satisfies $E_{\Omega}(f_0) = 0$.
- Reference configuration of the body (=stress-free)
- The existence of a reference configuration is an underlying assumption in most elastic models.
- However, many elastic bodies do not have a reference configuration!

Pre-stressed bodies

- Pre-stressed bodies Elastic bodies w/o a reference configuration.
- Exhibit stress (positive elastic energy) even in the absence of boundary conditions / external forces.
- Incompatible/Non-Euclidean elasticity elastic theory for pre-stressed bodies.

A stressed (non-Euclidean) carrot

• Elastic body: Riemannian manifold (M^n,g)

- Elastic body: Riemannian manifold (M^n,g)
- Configuration: $f:M^n \to \mathbb{R}^n$ (same dimension!)

- Elastic body: Riemannian manifold (M^n,g)
- Configuration: $f:M^n \rightarrow \mathbb{R}^n$ (same dimension!)
- Energy density $W(df_x) = 0$ iff $df_x : T_xM \rightarrow \mathbb{R}^n$ is an orientation-preserving isometry: $df_x \in SO(g_x)$.

- Elastic body: Riemannian manifold (M^n,g)
- Configuration: $f:M^n \to \mathbb{R}^n$ (same dimension!)
- Energy density $W(df_x) = 0$ iff $df_x : T_xM \rightarrow \mathbb{R}^n$ is an orientation-preserving isometry: $df_x \in SO(g_x)$.
- Simplest elastic energy:

- Elastic body: Riemannian manifold (M^n,g)
- Configuration: $f:M^n \to \mathbb{R}^n$ (same dimension!)
- Energy density $W(df_x) = 0$ iff $df_x : T_xM \rightarrow \mathbb{R}^n$ is an orientation-preserving isometry: $df_x \in SO(g_x)$.
- Simplest elastic energy:

$$E_M(f) := \int_M \operatorname{dist}^2(df_x, \operatorname{SO}(g_x)) \operatorname{dVol}_g$$

- Elastic body: Riemannian manifold (M^n,g) Ambient space: Riemannian manifold (N^n,h)
- Configuration: $f:M^n \rightarrow N^n$
- Energy density $W(df_x) = 0$ iff $df_x : T_xM \rightarrow T_{f(x)}N$ is an orientation-preserving isometry: $df_x \in SO(g_x,h_{f(x)})$.
- Prototypical elastic energy:

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

Geometric incompatibility:

there is no isometric immersion $f:M^n \to N^n$ (no reference configuration)

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

- Geometric incompatibility:
 - there is no isometric immersion $f:M^n \to N^n$ (no reference configuration)
- Energetic incompatibility: $\inf E_{M,N} > 0$.

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

- Geometric incompatibility:
 - there is no isometric immersion $f:M^n \to N^n$ (no reference configuration)
- Energetic incompatibility: $\inf E_{M,N} > 0$.
- Are they equivalent?

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

Theorem (Lewicka-Pakzad 2011):

 $\inf E_M > 0$ iff g is not flat.

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

Theorem (Lewicka-Pakzad 2011):

 $\inf E_M > 0$ iff g is not flat.

Theorem (Kupferman-M.-Shachar ≥2018):

 $\inf E_{M,N} > 0$ iff M is not isometrically immersible N.

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

Theorem (Kupferman-M.-Shachar ≥2018):

inf $E_{M,N} > 0$ iff M is not isometrically immersible N.

$$E_{M,N}(f) := \int_{M} \operatorname{dist}^{2}(df_{x}, \operatorname{SO}(g_{x}, h_{f(x)})) \operatorname{dVol}_{g}$$

Theorem (Kupferman-M.-Shachar ≥2018):

inf $E_{M,N} > 0$ iff M is not isometrically immersible N.

Slightly stronger formulation:

Theorem (Kupferman-M.-Shachar ≥2018):

Rigidity

Theorem (Kupferman-M.-Shachar ≥2018):

Rigidity

Theorem (Kupferman-M.-Shachar ≥2018):

If $f_k:M^n \to N^n$ satisfy $\operatorname{dist}(df_k,\operatorname{SO}(g,h)) \to 0$ in L_p , then $f_k \to f$ in $W^{1,p}$, and f is a smooth iso. immersion.

This is a Riemannian version of Reshetnyak's rigidity thm:

Theorem (Reshetnyak 1967):

If $f_k: \Omega \to \mathbb{R}^n$ satisfy dist $(df_k, SO(n)) \to 0$ in L_p , then $f_k \to f = Ax + b$, $A \in SO(n)$.

Rigidity

Theorem (Kupferman-M.-Shachar ≥2018):

If $f_k:M^n \to N^n$ satisfy $\operatorname{dist}(df_k,\operatorname{SO}(g,h)) \to 0$ in L_p , then $f_k \to f$ in $W^{1,p}$, and f is a smooth iso. immersion.

This is a Riemannian version of Reshetnyak's rigidity thm:

Theorem (Reshetnyak 1967):

If $f_k: \Omega \to \mathbb{R}^n$ satisfy dist $(df_k, SO(n)) \to 0$ in L_p , then $f_k \to f = Ax + b$, $A \in SO(n)$.

Note that we do not assume a-priori that $M^n \hookrightarrow N^n$ iso.

Technical difference: $W^{1,p}(M;N)$ is more complicated than $W^{1,p}(\Omega;\mathbf{R}^n)$.

Theorem (Kupferman-M.-Shachar 2017):

If $f_k:M^n \to N^n$ satisfy dist $(df_k, SO(g,h)) \to 0$ in L_p , then $f_k \to f$ in $W^{1,p}$, and f is a smooth iso. immersion.

Theorem (Kupferman-M.-Shachar 2017):

If $f_k:M^n \to N^n$ satisfy $\operatorname{dist}(df_k,\operatorname{SO}(g,h)) \to 0$ in L_p , then $f_k \to f$ in $W^{1,p}$, and f is a smooth iso. immersion.

• $A \in SO(n)$ iff det(A) = 1 and cof(A) = A.

Theorem (Kupferman-M.-Shachar 2017):

- $A \in SO(n)$ iff det(A) = 1 and cof(A) = A.
- Similarly, $df \in SO(g,h)$ iff det(df)=1 and $cof_{g,h}(df)=df$.

Theorem (Kupferman-M.-Shachar 2017):

- $A \in SO(n)$ iff det(A) = 1 and cof(A) = A.
- Similarly, $df \in SO(g,h)$ iff det(df)=1 and $cof_{g,h}(df)=df$.
- Allows us to use Young measures to prove: $f_k \rightarrow f$, $df \in SO(g,h)$ a.e.

Theorem (Kupferman-M.-Shachar 2017):

- $A \in SO(n)$ iff det(A) = 1 and cof(A) = A.
- Similarly, $df \in SO(g,h)$ iff det(df)=1 and $cof_{g,h}(df)=df$.
- Allows us to use Young measures to prove: $f_k \rightarrow f$, $df \in SO(g,h)$ a.e.
- $df \in SO(g,h)$ a.e. $\Rightarrow f$ weakly-harmonic and continuous
 - $\Rightarrow f$ is smooth $\Rightarrow f$ is an isometric immersion.

 $df \in SO(g,h)$ a.e. $\Rightarrow f$ weakly-harmonic and continuous

 $df \in SO(g,h)$ a.e. $\Rightarrow f$ weakly-harmonic and continuous

• In Euclidean settings: $\operatorname{div}(\operatorname{cof}(df))=0$, $\operatorname{cof}(df)=df$ a.e. $\Rightarrow \operatorname{div}(df)=0$

 $df \in SO(g,h)$ a.e. $\Rightarrow f$ weakly-harmonic and continuous

- In Euclidean settings: $\operatorname{div}(\operatorname{cof}(df)) = 0$, $\operatorname{cof}(df) = df$ a.e. $\Rightarrow \operatorname{div}(df) = 0$
- In general: $f \in W^{1,p}(M;N), p>2(n-1), i:N \to \mathbb{R}^D$ iso. embedding

 $df \in SO(g,h)$ a.e. $\Rightarrow f$ weakly-harmonic and continuous

- In Euclidean settings: $\operatorname{div}(\operatorname{cof}(df)) = 0$, $\operatorname{cof}(df) = df$ a.e. $\Rightarrow \operatorname{div}(df) = 0$
- In general:

$$f \in W^{1,p}(M;N), p > 2(n-1), i:N \rightarrow \mathbb{R}^D$$
 iso. embedding

$$\operatorname{div}_{g}(di \circ \operatorname{cof}_{g,h}df) + \operatorname{tr}_{g}\operatorname{II}_{i}(\operatorname{cof}_{g,h}df, df) = 0$$

 $df \in SO(g,h)$ a.e. $\Rightarrow f$ weakly-harmonic and continuous

- In Euclidean settings: $\operatorname{div}(\operatorname{cof}(df))=0$, $\operatorname{cof}(df)=df$ a.e. $\Rightarrow \operatorname{div}(df)=0$
- In general:

$$f \in W^{1,p}(M;N)$$
, $p > 2(n-1)$, $i:N \rightarrow \mathbb{R}^D$ iso. embedding

$$\operatorname{div}_g(di \circ \operatorname{cof}_{g,h} df) + \operatorname{tr}_g \operatorname{II}_i(\operatorname{cof}_{g,h} df, df) = 0$$

• If $cof_{g,h}(df)=df$ a.e. this equation implies that f is weakly harmonic, and continuous, hence smooth.

Curvature-based lower-bounds for the elastic energy

- Curvature-based lower-bounds for the elastic energy
- Dimension reduction in non-Euclidean elasticity (Lewicka et al., Kupferman-Solomon, Kohn-O'Brien, M.-Shachar, ...)

- Curvature-based lower-bounds for the elastic energy
- Dimension reduction in non-Euclidean elasticity (Lewicka et al., Kupferman-Solomon, Kohn-O'Brien, M.-Shachar, ...)
- Dislocation theory

- Curvature-based lower-bounds for the elastic energy
- Dimension reduction in non-Euclidean elasticity (Lewicka et al., Kupferman-Solomon, Kohn-O'Brien, M.-Shachar, ...)
- Dislocation theory

Happy Victoria Day!