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"Euclidean” Elasticity

The (simplest?) elastostatic problem:
minimize, over all valid contigurations f:Q-R",
the energy

Ba(f) = | Wia.df:)do

Energy density W(x, df,) > 0 measures how much df; is
far from an isometry:

W(A) = 0 iff A € SO(n)
Typically, W(x, A) > Cdist*(A,SO(n))



"Euclidean” Elasticity

The inclusion map fp:Q-R", fo(x)=x, satisties Eq(fo) = 0.
Reference configuration of the body (=stress-free)

The existence of a reference configuration is an
underlying assumption in most elastic models.

owever, many elastic bodies do not have a
reference configuration!



Pre-stressed bodies

e Pre-stressed bodies — Elastic bodies w/o a reference
configuration.

e Exhibit stress (positive elastic energy) even in the
absence of boundary conditions / external forces.

e Incompatible/Non-Euclidean elasticity — elastic
theory for pre-stressed bodies.



A stressed (non-Euclidean) carrot
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Non-Euclidean elasticity

Elastic body: Riemannian manifold (M",g)
Ambient space: Riemannian manifold (N*,h)

Configuration: f:M">N"

Energy density W(df,) = 0 ift dfy: Tx\M—TsN is an
orientation-preserving isometry: dfx € SO(gxhsx)).

Prototypical elastic energy:

Ean(f) = / dist?(df, SO(ga, hy(a)))dVol,
M
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Two notions of incompatibility

Ear w(f) = /M dist?(df, SO(gs, h(a))dVol,

Theorem (Kupferman-M.-Shachar =2018):
inf Eyn >0 itf M is not isometrically immersible N.

Slightly stronger formulation:

Theorem (Kupferman-M.-Shachar =2018):
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then fi—f in W'r, and f is a smooth iso. immersion.
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Rigidity
Theorem (Kupferman-M.-Shachar =2018):

It fi-M"—N" satisty dist(dfi, SO(g,h))—0 in L),
then fi—f in WP, and f is a smooth iso. immersion.

This is a Riemannian version of Reshetnyak’s rigidity thm:

Theorem (Reshetnyak 1967):
If fi:Q—R" satisfy dist(dfi, SO(1))—0in Ly,
then fi—f =Ax + b, AeSO(n).

Note that we do not assume a-priori that M"oN" iso.

Technical difterence: W'r(M;N) is more complicated than
wirQ:R").
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Theorem (Kupferman-M.-Shachar 2017):
It fi-M"—N" satisty dist(dfi, SO(g,h))—0 in L),
then fi—f in WP, and f is a smooth iso. immersion.

o A=SO(n) iff det(4)=1 and cof(4)=A.

e Similarly, dfeSO(g,h) ift det(df)=1 and cofzn(df)=df.
e Allows usto use Young measures to prove:

fi—f, dfeSO(gh) a.e.

o dfeS0O(gh) a.e.
= f'weakly-harmonic and continuous

= f'is smooth = f is an isometric immersion.
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Sketch ot proof

df € SO(g,h) a.e. = fweakly-harmonic and continuous

e In Euclidean settings:
div(cof(df))=0, cof(df)=df a.e. = div(df)=0

e |n general:
fe Wtr(M;N), p>2(n-1), i:N-RPiso.embedding

div,(di o cof, pdf ) + tr,IL;(cof, pdf,df) = 0O

o If cofyn(df)=df a.e. this equation implies that fis weakly

narmonic, and continuous, hence smooth.
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Happy Victoria Day!



