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Graphene and carbon nanotubes

Carbon nanostructures:

Graphene Carbon nanotube

@ 2010 Nobel Prize in Physics to Geim and Novoselov for
production of isolated graphene sheets.

@ Remarkable electro-mechanical and optical properties.
@ Applications in chemistry, nano-electronics, optics, mechanics.

@ Rigorous mathematical results mostly unavailable.



Ripples in graphene

Introduction: Carbon nanostructures

Ripples in graphene

@ Suspended graphene sheets are not flat but gently rippled!
[Meyer et al. '07]



Ripples in graphene

Introduction: Carbon nanostructures

Ripples in graphene

@ Suspended graphene sheets are not flat but gently rippled!
[Meyer et al. '07]

@ Waves of approximately 100 atom spacings,
sample-size independent wavelength.



Ripples in graphene

Introduction: Carbon nanostructures

Ripples in graphene

A

-
e S

‘%{% N ;

5% ;ggﬁ‘%i%}‘%%%’g}
3‘}&%}5{‘;’*\%\3 e
N 3

%%
sEanaiiacaany
$hl\ R
SEEii LRy

Eiitesss 3
http://chaos.utexas.

@ Suspended graphene sheets are not flat but gently rippled!
[Meyer et al. '07]

@ Waves of approximately 100 atom spacings,
sample-size independent wavelength.

e Tendency to unidirectional waves (under stretching).
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@ Suspended graphene sheets are not flat but gently rippled!
[Meyer et al. '07]

@ Waves of approximately 100 atom spacings,
sample-size independent wavelength.

e Tendency to unidirectional waves (under stretching).

o Free graphene sheets tend to roll-up ~» nanotubes/nanoscrolls.



Ripples in graphene

Introduction: Carbon nanostructures

Ripples in graphene

QN
D
i 5 ig;,:@’ i

Suspended graphene sheets are not flat but gently rippled!
[Meyer et al. '07]

@ Waves of approximately 100 atom spacings,
sample-size independent wavelength.

Tendency to unidirectional waves (under stretching).

Free graphene sheets tend to roll-up ~~ nanotubes/nanoscrolls.

Reasons: Stabilization at finite temperatures, quantum
fluctuations, randomly attached impurities, ...



Ripples in graphene
Introduction: Carbon nanostructures

Goals and outline

Our goal:

@ Analytical validation of experimental/computational findings.



Ripples in graphene
Introduction: Carbon nanostructures
Goals and outline

Our goal:

@ Analytical validation of experimental/computational findings.
@ Approach via Molecular Mechanics, i.e.,

interaction of atoms are described by classical interaction
potentials between atomic positions.



Ripples in graphene
Introduction: Carbon nanostructures

Goals and outline

Our goal:

@ Analytical validation of experimental/computational findings.

@ Approach via Molecular Mechanics, i.e.,
interaction of atoms are described by classical interaction
potentials between atomic positions.

@ Rigorous, variational approach, not computational.
o Cross-validation of different modeling choices.



Ripples in graphene
Introduction: Carbon nanostructures

Goals and outline

Our goal:
@ Analytical validation of experimental/computational findings.

@ Approach via Molecular Mechanics, i.e.,
interaction of atoms are described by classical interaction
potentials between atomic positions.

@ Rigorous, variational approach, not computational.

o Cross-validation of different modeling choices.

Outline:
@ Phenomenological energies.
Global vs. local minimization.
Modeling choices ensuring nonflatness of graphene.

Periodicity in one direction, unidirectional waves.

Wave patterning with sample-size-independent wavelength.
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Phenomenological energies

Basic phenomenological energies:
X = (x;); atomic positions,
Ok angle formed by x;, x;, . z 2
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@ Hexagonal lattice a strict local minimizer of E:
E(X") > E(X),
where X' = (x/); with |x; — x/| <n, n > 0 small.

o Fullerene Ggp and nanotubes a strict local minimizers of E

[F., Piovano, Stefanelli '16] [F., Mainini, Piovano, Stefanelli '17]
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Local/global minimization

Local/global minimization:

@ Hexagonal lattice a strict local minimizer of E:
E(X") > E(X),
where X' = (x/); with |x; — x/| <n, n > 0 small.

o Fullerene Ggp and nanotubes a strict local minimizers of E

@ Structures are not ground states:

Bravais lattices in R3

are energetically favorable!
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Local and global minimization

Intermediate point of view

Intermediate point of view:

@ H (infinite) hexagonal lattice is reference configuration, in
particular all neighbors are kept fix.

@ Restrict admissible configurations to deformations y : H — R3.
~» Lagrangian viewpoint.

o Characterize global minimizers among all deformations y.

Y3 €1

Y2

@ Deformation ground state < energy of every cell optimal.

o Flat hexagonal lattice unique ground state.
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Refined model:

Ever = E+p > iennn v2(IXi—xi]),  p small.

o Cells with optimal energy are not flat.
@ bond length /* < 1, angle ¢* < 27/3.

Two optimal cell geometries:

eg €3

Z cell C cell

Z cell ﬁ m C cell
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Characterization of ground states

Characterization of ground states: [F., Stefanelli '18]

O Roll-up structures: All cells are of type C.

@ Rippled structures: Types are constant along one direction.

-

....c,¢,c,¢,c,¢,... ....z.C.z.C,...

Proof via geometric compatibility.
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Characterization of ground states
Reduction to 1D-to-2D model

@ Previous result shows unidirectionality of ground states.
@ For convenience: Visualization of geometry by a section.
o Effective description of a section of the rippled structure:
.b*/©\./\.
(p*

Example for ..., C,C,C,C,C,C,...

Variety of minimizers! /

Suspended samples:
Specific wavelengths?
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Ground-state "waves" with atomic period & = 6 and length L,,.

Mean projected bond length A\ = L,/ ~ Ag = [
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Basic effective 1D-to-2D model

Effective 1D-to-2D model:

@ Admissible configurations y : {1,..., n} € R? with
bonds b; = |y; — yi+1], angles p; = <(yit1 — i, Yi—1 — ¥i)-

o Energy: E¥"(y) = >, v§"(bi) + v (i) + p 32 vs™ (yiv2 — yil)
minimized for bond lengths b* and angles ¢*

~» same ground states as before with energy (n — 2)ecqp.
@ Boundary conditions A(u) ={y: (ya—y1) e = (n—1)u}.

@ Boundary effects: Study almost minimizers y with E(y) < Epnin + C.

smaller «, larger A\,

larger o, smaller )\,

mixed «

(Almost) same energy! ¢
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Refinement of the energy

Further refinement of energy: Third neighbors!

EN(y) = EM(y) + 5> v (|lyigs — yil), P small.

larger refined energy

large energy

small energy

intermediate energy
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Effective 1D-to-2D model

Characterization of minimizers

Minimal energy: [F., Stefanelli' 18]

For <1 let Emin(p) = %minyeA(#) E*%(y) normalized minimal energy.
Then
Emin(,Uf) = €cell + ﬁerange(,u') + 0(52)

where the function e;ange satisfies:
@ related to wavenumber.
@ increasing, convex, and piecewise affine.

@ not smooth for € M,es resonance lengths:
1 = A\q for some atomic period «.

Characterization of almost minimizers: [F., Stefanelli’ 18]
Up to small portion of size O(p), almost minimizers satisfy:
@ 1 € Myes: Composed of waves with atomic period o where A\, = pu.

o p e[, u”]: Composed of waves with two atomic periods o, o .
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Summary:

e Characterization of ground states of the hexagonal lattice.
@ Second neighbors induce nonflatness.
@ Roll-up or rippled structures: unidirectionality.

@ Third neighbors induce wave patterning with
sample-size-independent wavelength.

e Cross-validation of modeling choices:
Range of interaction matters!

Thank you for your attention!



