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H−1− Gradient Flow of energies of the type

P(E) + Volume term (nonlocal)

The simplest example

Vt = κ∆Γt Ht (κ > 0, surface diffusion)

Vt = normal velocity of the boundary Γt of the evolving set Et

Ht = sum of the principal curvatures of Γt

∆Γt = Laplace-Beltrami operator on Γt

Mullins (1957,1958,1960), Davì-Gurtin (1990)

Evolution of a two phase interface controlled by mass diffusion within
the surface
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Vt = ∆Γt Ht (surface diffusion, H−1-gradient flow)

Vt = −Ht (mean curvature flow, L2-gradient flow)

• Surface diffusion is volume preserving

d
dt
|Ft | =

∫
∂Ft

Vt dHn−1 =

∫
∂Ft

∆Γt Ht dHn−1 = 0

• Surface diffusion (and mean curvature flow) reduce the perimeter

d
dt
Hn−1(∂Ft ) =

∫
∂Ft

Ht Vt dHn−1 =

∫
∂Ft

Ht ∆Γt Ht dHn−1

= −
∫
∂Ft

|∇Γt Ht |2 dHn−1 ≤ 0

• Surface diffusion does not preserve convexity
Mean curvature flow preserves convexity and shrinks a convex set
to a point in finite time, so that by rescaling the evolving sets to the
original volume, they converge to a ball (Huisken, 1984)

Preliminary version – May 20, 2018 – 17:22



Vt = ∆Γt Ht (surface diffusion, H−1-gradient flow)

Vt = −Ht (mean curvature flow, L2-gradient flow)

• Surface diffusion is volume preserving

d
dt
|Ft | =

∫
∂Ft

Vt dHn−1 =

∫
∂Ft

∆Γt Ht dHn−1 = 0

• Surface diffusion (and mean curvature flow) reduce the perimeter

d
dt
Hn−1(∂Ft ) =

∫
∂Ft

Ht Vt dHn−1 =

∫
∂Ft

Ht ∆Γt Ht dHn−1

= −
∫
∂Ft

|∇Γt Ht |2 dHn−1 ≤ 0

• Surface diffusion does not preserve convexity
Mean curvature flow preserves convexity and shrinks a convex set
to a point in finite time, so that by rescaling the evolving sets to the
original volume, they converge to a ball (Huisken, 1984)

Preliminary version – May 20, 2018 – 17:22



Vt = ∆Γt Ht (surface diffusion, H−1-gradient flow)

Vt = −Ht (mean curvature flow, L2-gradient flow)

• Surface diffusion is volume preserving

d
dt
|Ft | =

∫
∂Ft

Vt dHn−1 =

∫
∂Ft

∆Γt Ht dHn−1 = 0

• Surface diffusion (and mean curvature flow) reduce the perimeter

d
dt
Hn−1(∂Ft ) =

∫
∂Ft

Ht Vt dHn−1 =

∫
∂Ft

Ht ∆Γt Ht dHn−1

= −
∫
∂Ft

|∇Γt Ht |2 dHn−1 ≤ 0

• Surface diffusion does not preserve convexity
Mean curvature flow preserves convexity and shrinks a convex set
to a point in finite time, so that by rescaling the evolving sets to the
original volume, they converge to a ball (Huisken, 1984)

Preliminary version – May 20, 2018 – 17:22



Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

• Existence for small times (Escher-Mayer-Simonett, 1998)

Fo ∈ C2,α =⇒ h ∈ C0([0,T ); C2,α(Γo)) ∩ C∞((0,T ); C∞(Γo))

• n = 2 If the flow exists for all times =⇒ Ft converges to a circle
(Elliott-Garcke, 1997)

• n ≥ 2

Fo is C2,α close to Bo =⇒ Ft → σ + Bo in Ck as t →∞ for all k
(Escher-Mayer-Simonett, 1998)

• n = 3

Fo close to an infinite cylinder (LeCrone, Simonett, 2016)
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Evolution of periodic structures (pattern formation)

n = 3 Periodic sets with constant mean curvature boundary

For F ⊂ Tn we set
J(F ) := PTn (F )

F is a critical point for the perimeter with the respect to variations
with the same volume if

H∂F = const .

Recall that for a critical point F and for ϕ ∈ H1(∂F ) we have

∂2J(F )[ϕ] =

∫
∂F

(
|∇ϕ|2 − |B∂F |2ϕ2

)
dHn−1
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H̃1(∂F ) :=

{
ϕ ∈ H1(∂F ) :

∫
∂F
ϕ = 0︸ ︷︷ ︸

volume pres.

,

∫
∂F
ϕνF = 0︸ ︷︷ ︸

translation inv.

}

Then we say that a C2 critical point F is strictly stable if

∂2J(F )[ϕ] > 0 for all ϕ ∈ H̃1(∂F ) \ {0}

Theorem (Acerbi-F.-Morini 2013)
Let F be a strictly stable C2 critical configuration.

Then, F is a strict local minimizer, i.e., there exists δ,C0 > 0, s.t. if
minτ |F∆(τ + G)| < δ, then

J(G) ≥ J(F ) + C0 min
τ
|F∆(τ + G)|2

The local minimality w.r.t. L∞ perturbations (B.White, 1994)
or w.r.t. L1 perturbations (n ≤ 7, Morgan-Ros, 2010)
In both cases there was no quantitative estimate
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Theorem (Acerbi, F., Julin, Morini, JDG to appear)

Let G ⊂ T3 be a smooth strictly stable critical set. For every M > 0
there exists δ > 0 s.t.:

If ∂Fo =
{

x + ho(x)νG : x ∈ ∂G, ‖ho‖H3(∂G)
≤ M

}
,

|Fo| = |G| , |Fo∆G| ≤ δ , and
∫
∂Fo

|∇H
∂Fo
|2 dH2 ≤ δ ,

then the unique classical solution (Ft )t to the surface diffusion flow
with initial datum Fo exists for all t > 0.

Moreover, Ft → G + σ in H3 as t → +∞, for some σ ∈ R3.

The convergence is exponentially fast, i.e., there exist η, cG > 0 such
that for all t > 0, writing

∂Ft = {x + ψσ,t (x)νG+σ
(x) : x ∈ ∂G + σ} ,

we have
‖ψσ,t‖H3(∂G+σ)

≤ ηe−cG t .

Both |σ| and η vanish as δ → 0+.
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Idea of the proof

d
dt

(
1
2

∫
∂Ft

|∇τHt |2 dx
)

=− ∂2J(Ft ) [∆τHt ]−
∫
∂Ft

Bt [∇τHt ] ∆τHt dH2

+
1
2

∫
∂Ft

Ht |∇τHt |2∆τHt dH2 ,

But if Ft is sufficiently close to the stable critical point G then

∂2J(Ft ) [∆τHt ] ≥ c0‖∆τHt‖2
H1(Ft )

⇓
d
dt

(
1
2

∫
∂Ft

|∇τHt |2 dH2
)
≤ −c0

2
‖∆τHt‖2

H1(∂Ft )
≤ −c1‖∇τHt‖2

L2(∂Ft )
,

⇓∫
∂Ft

|∇τHt |2 dH2 ≤ e−c1t
∫
∂F0

|∇τHE0 |2 dH2 = C0e−c1t
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Evolution of material voids

Material void inside a stressed elastic material
(Siegel-Miksis-Voorhees 2004)

F

Ω

Ω = the container

Ω \ F = the region occupied by the material

F = the void

uF : Ω \ F 7→ R2 = the elastic equilibrium

uF = argmin
{∫

Ω\F
W (E(u)) dx : u = uo on ∂Ω

}

E(u) =
Du + DT u

2
the symmetric gradient of u

J(F ) =

∫
Ω\F

W (E(uF )) +

∫
∂F
ϕ(νF )

Note uo = 0 =⇒ J(F ) =

∫
∂F
ϕ(νF )
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J(F ) =

∫
Ω\F

W (E(uF )) +

∫
∂F
ϕ(νF )

We shall assume that if A ∈Mn×n (n = 2,3)

W (A) =
1
2
CA : A

where C is a tensor such that CA : A > 0 for all A 6= 0 Thus
div CE(uF ) = 0 in Ω \ F
uF = uo on ∂Ω

CE(uF )[νF ] = 0 on ∂F

min
{∫

Ω\F
W (E(uF )) +

∫
∂F
ϕ(νF ) : F ⊂ Ω, |F | = m < |Ω|

}
Existence and regularity in 2D (Fonseca-F-Leoni-Millot, 2011)
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Morphology evolution: surface diffusion

J(F ) =

∫
Ω\F

W (E(uF )) dx +

∫
∂F
ϕ(F ) dHn−1

Γt = ∂Ft

Einstein-Nernst law: surface flux of atoms ∝ ∇Γtµ

µ= chemical potential ; Vt = κ∆Γtµ

µ= first variation of energy = div
Γt
∇ϕ(νt )−W (E(ut )) + λ

div
Γt
∇ϕ(νt ) := Hϕ,t = anisotropic curvature

Vt = κ∆Γt

(
Hϕ,t −W (E(ut ))

)
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Vt = ∆Γt

(
Hϕ,t −W (E(ut ))

)

• This is the H−1 flow of J(F )

• The flow is volume preserving (no information on the perimeter)

• No existence results available!

If n = 2, then
Hϕ,t = g(νt )kt

where

kt = curvature of ∂Ft , g(ν) = 〈D2ϕ(ν)τ, τ〉 for all ν, τ ∈ S1, ν ⊥ τ

The equation becomes

Vt = ∂σσ
(
g(νt )kt −W (E(ut ))

)
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Theorem (F.-Julin-Morini, 2017)

Let G ⊂⊂ Ω ⊂⊂ R2 smooth. For every M > 0 there exist δ > 0, T > 0
s.t. if

∂Fo =
{

x + ho(x)νG : x ∈ ∂G, ‖ho‖H3(∂G)
≤ M

}
, |G∆Fo| ≤ δ,

then there exists a unique classical solution classical solution (Ft )t ,
t ∈ (0,T ). More precisely

∂Ft = {x + h(x , t)νG (x) : x ∈ ∂G}

where for every α ∈ (0,1/2)

h ∈ C([0,T ]; C2,α(∂G)) ∩ C∞((0,T ); C∞(∂G))

Preliminary version – May 20, 2018 – 17:22



Long time existence

Theorem (F-Julin-Morini, 2017)

Let G ⊂⊂ Ω be a smooth strictly stable critical point and let M > 0.

There exists δ > 0 with the following property:

Let Fo be s.t. ∂Fo = {x + ho(x)νG : x ∈ ∂G, ‖ho‖H3(∂G)
≤ M},

|Fo∆G| < δ,

∫
∂Fo

∣∣∂σ(g(νFo
)kFo
−W (E(uFo

))
)∣∣2 dH1 < δ,

Then the unique solution (Ft )t>0 of the flow with initial datum Fo is
defined for all times t > 0.

Moreover Ft → G H3-exponentially fast.

But we can say more. . . . . .
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Denote by Γ1, . . . , Γm the connected components of ∂F

and by O1, . . .Om the open sets enclosed by the Γi

F is stationary if

g(νF )kF −W (E(uF )) = κi on Γi , i = 1, . . . ,m

. . . . . . . . .

∂G has m connected components, G strictly stable stationary

=⇒ ∂Fo, ∂Ft have m connected components

Moreover

|Oi,t | = |Oi,o| ∀i = 1, . . . ,m and ∀t > 0

then Ft → F∞ in H3

where F∞ is the only stationary point H3-close to G s.t.

|Oi,∞| = |Oi,o| ∀i = 1, . . . ,m
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THANK YOU FOR YOUR ATTENTION!
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