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V; = normal velocity of the boundary I'; of the evolving set E;
H; = sum of the principal curvatures of I';
Ar, = Laplace-Beltrami operator on I';

Mullins (1957,1958,1960), Davi-Gurtin (1990)

Evolution of a two phase interface controlled by mass diffusion within
the surface
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Vi = Ar,H;  (surface diffusion, H~"-gradient flow)
Vi = —H; (mean curvature flow, L?-gradient flow)

Surface diffusion is volume preserving

dﬂ|Ft|: VidH"™ ! = Ar,HidH™ ' =0
t OF; OF;

Surface diffusion (and mean curvature flow) reduce the perimeter

d
EH’H (OF;) = H; Vi dH" 1 = H; Ar, Hy d#"™!
OF; OF;

= —/ |Vr H2dH™ 1 <0
OF;

Surface diffusion does not preserve convexity

Mean curvature flow preserves convexity and shrinks a convex set
to a point in finite time, so that by rescaling the evolving sets to the
original volume, they converge to a ball (Huisken, 1984)
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e Existence for small times (Escher-Mayer-Simonett, 1998)
Fy € C>* = h e C°%([0, T); C®>*(I,)) N C>=((0, T); C=(Iy))

e n =2 Ifthe flow exists for all times — F; converges to a circle
(Elliott-Garcke, 1997)

e N>2
F, is C>* closeto B, = F; — o+ B, in C*ast — oo forallk
(Escher-Mayer-Simonett, 1998)
e Nn=3

F, close to an infinite cylinder (LeCrone, Simonett, 2016)
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Evolution of periodic structures (pattern formation)

n=3 Periodic sets with constant mean curvature boundary

For F c T" we set
J(F) = PTn(F)

F is a critical point for the perimeter with the respect to variations
with the same volume if
Hyr = const.

Recall that for a critical point F and for ¢ € H'(0F) we have

PJ(F)le] = / (1V6P ~ 1Bor2?) amn
OF
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Theorem (Acerbi-F.-Morini 2013)

Let F be a strictly stable C? critical configuration.
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Theorem (Acerbi-F.-Morini 2013)

Let F be a strictly stable C? critical configuration.
Then, F is a strict local minimizer, i.e., there exists ¢, Cy > 0, s.t. if
min. |[FA(T + G)| < ¢, then

J(G) > J(F) + Comin |FA(T + G)|?
The local minimality w.r.t. L* perturbations (B.White, 1994)

or w.r.t. L' perturbations (n < 7, Morgan-Ros, 2010)
In both cases there was no quantitative estimate



Theorem (Acerbi, F., Julin, Morini, JDG to appear)

Let G C T® be a smooth strictly stable critical set. For every M > 0
there exists 6 > 0 s.t.:

If 9F, = {x + ho(x)r, : x € G, | hol| < M},

H3(8G) —
Rl=16l, |RAGI<s, and [ [VHPdi <o,
JOFR

then the unique classical solution (F;); to the surface diffusion flow
with initial datum F, exists for all t > 0.

Moreover, F; — G+ o in H® as t — +oo, for some o € R3.
The convergence is exponentially fast, i.e., there existn, cg > 0 such
that for all t > 0, writing

OF: = {X + ot(X)vs.. () : x € DG+ 0},

G+o

we have

mef”,ﬁ(aeﬂ,) < necht :

Both |o| and n vanish as § — 0*.
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Idea of the proof

a (1/ |VTH,|2dx> —  PU(F) (A H] —/ By [V-H A, Hy dH?
at \ 2 oF; OFt
41 Hi| V- Hi 2D, Hy dH?
2 Jor,

But if F; is sufficiently close to the stable critical point G then

0PJ(Fr) [ArH > col | A Hil2 s,

J

d (/1 C

a9 <§ /aF V- Hi? de) < —EOHArHtwa(aF,) < —ci|V-Hillzor,
U

/ |V, Hi? dH2 < e_c‘t/ |V, Hg, [> dH? = Cpe !
OF; OFy
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Evolution of material voids

Material void inside a stressed elastic material

(Siegel-Miksis-Voorhees 2004)
Q = the container

Q\ F = the region occupied by the material
F = the void

u. : Q\ F — R? = the elastic equilibrium

Q

u. = argmin{ W(E(u))dx: u=u,on 89}
Q\F
T
E(u) = w the symmetric gradient of u

Note Up=0 — J(F):/ o(v)
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JF) = [ W(EW)+ / ()

Q\F oF
We shall assume thatif Ae M™" (n=2,3)

W(A) = %(CA CA
where Cis atensor suchthat CA: A>0Oforall A#0 Thus

divCE(u.)=0 inQ\F
UF = Uo on 89
CE(u.)[v.] =0 ondF

min{.Q\F W(E(UF))JF/M__W(VF) cFCcQ |Fl=m< |Q|}

Existence and regularity in 2D (Fonseca-F-Leoni-Millot, 2011)
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Morphology evolution: surface diffusion

J(F):/Q\F W(E(u,)) dx—l—/aF@(F) dH™

/\'
"r[:({‘)F[

Einstein-Nernst law: surface flux of atoms o« Vr, 1

u= chemical potential ~» Vi=krAru

p= first variation of energy = div, Vi (vr) — W(E(ur)) + A
divrtho(l/t) := H,; = anisotropic curvature

Vi = K/AF,(H@,[ - W(E(Uf)))
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Vi = Ar,(Hy e — W(E(w)))

e Thisisthe H~' flow of J(F)
e The flow is volume preserving (no information on the perimeter)

o No existence results available!

If n=2, then
Hap,t = g(l/t)kt

where
ki = curvature of 9F;,  g(v) = (D?p(v)r,7) forall v,7eS" v ir
The equation becomes

Vi = 0o0 (Q(Vt)kt - W(E(ut)))



Theorem (F.-Julin-Morini, 2017)

Let G cc Q cc R? smooth. For every M > 0 there exists >0, T > 0
s.t. if

OF, = {X + ho(X)y, : X € DG, |[ho|

G

< M}, |GAFR| <6,

H3(8G)

then there exists a unique classical solution classical solution (F;);,
t € (0, T). More precisely

OF; = {x + h(x, i, (x) : x € IG}
where for every o € (0,1/2)

h e C([0, T]; C>*(dG)) N C=((0, T); C=*(9G))



Long time existence

Theorem (F-Julin-Morini, 2017)

Let G cC Q be a smooth strictly stable critical point and let M > 0.
There exists § > 0 with the following property:

Let R, bes.t. 0F ={x+ho(x)y,: x € 0G, ||hol|

G "

< Mj,

H3(0G) —
IRAG| < 5, / 10, (9 )k, — W(E(u,))) [P dH! <5,
oF

Then the unique solution (F;)~o of the flow with initial datum F; is
defined for all times t > 0.

Moreover F; — G H®-exponentially fast.



Long time existence

Theorem (F-Julin-Morini, 2017)

Let G cC Q be a smooth strictly stable critical point and let M > 0.
There exists § > 0 with the following property:

Let R, bes.t. 0F ={x+ho(x)y,: x € 0G, ||hol| < M},

H3(0G) —
IRAG| < 5, /F 10, (9 )k, — W(E(u,))) [P dH! <5,
Ik

Then the unique solution (F;)~o of the flow with initial datum F; is
defined for all times t > 0.

Moreover F; — G H®-exponentially fast.

But we can say more.......
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Denote by T4,...,In the connected components of OF
and by O4,...0Opn the open sets enclosed by the T;

F is stationary if
9(v)k. — W(E(u,)) = ki onl;, i=1,....m

0G has m connected components, G strictly stable stationary
- 0F,, OF: have m connected components
Moreover
|0 ¢l =100l Vi=1,...,m and Vt>0

then Ft — Foo in H3
where F., is the only stationary point H3-close to G s.t.
|O/,00[:‘Oi,o| Vi:1,...,m



THANK YOU FOR YOUR ATTENTION!
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