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Introduction
Modeling plastic deformations

Consider a solid material, occupying a region €, subject to a deformation
Q > x — x+ u(x) with (small) displacement u, caused by some (small) loading.

Y <> Q CRY d =2,3: ref'config.
Q m y =id+ u: Q — RY: deformation.
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Introduction

Modeling plastic deformations

Consider a solid material, occupying a region €, subject to a deformation
Q > x — x+ u(x) with (small) displacement u, caused by some (small) loading.

Q

stress

Y <> Q CRY d =2,3: ref'config.
m y =id + u: Q — R?: deformation.

@ For very small u, the body

. behaves elastically and will —
after unloading — return to its

original state u = 0.

@ For larger values of u (small
but not very small), the body
behaves plastically. After
unloading it is permanently

elastic region

plastic region strain deformed

Atomistic explanation: Reorganized atomic bonds.
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Introduction

Hencky plasticity

Simplified static theory: Hencky plasticity (or ‘pseudoelasticity’).

7 jonin ) regime with linear dependence,
incar hardoning
pertecily plastic @ perfectly plastic regime (Hencky
plasticity),

@ plastic regime with linear hardening.

Elastic region K is determined by some yield
criterion (von Mises, Tresca, ... ).
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Introduction

Hencky plasticity

Simplified static theory: Hencky plasticity (or ‘pseudoelasticity’).

7 jonin ) regime with linear dependence,
incar hardoning
pertecily plastic @ perfectly plastic regime (Hencky
plasticity),

@ plastic regime with linear hardening.

Elastic region K is determined by some yield
criterion (von Mises, Tresca, ... ).

Draw back: Static theory does
not keep track of the history.

@ misses hysteresis effects

@ can only apply to one-time
loading.
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Introduction

Energy functionals and homogenization

Hencky energy functional at zero hardening
F(u) = / f(Cu(x)) dx with f(X) = faev(Xaev) + g(trX)z,
Q

Cu(x) = H(Vu(x) + Vu(x)"), Xaev = X — 2%/ and
fiev is convex with linear growth at oco.
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Energy functionals and homogenization

Hencky energy functional at zero hardening
F(u) = / f(Cu(x)) dx with f(X) = faev(Xaev) + g(trX)z,
Q

Cu(x) = H(Vu(x) + Vu(x)"), Xaev = X — 2%/ and
fiev is convex with linear growth at oco.

Caveat: f has mixed growth: linear in the deviatoric direction and
quadratic in the trace.
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Energy functionals and homogenization

Hencky energy functional at zero hardening
F(u) = / f(Cu(x)) dx with f(X) = faev(Xaev) + g(trX)z,
Q
Cu(x) = H(Vu(x) + Vu(x)"), Xaev = X — 2%/ and
fiev is convex with linear growth at oco.

Caveat: f has mixed growth: linear in the deviatoric direction and
quadratic in the trace.

[Demengel, Qi '90]: Homogenization of densities (%, X), convex in X.
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Introduction

Energy functionals and homogenization

Hencky energy functional at zero hardening
F(u) = / f(Cu(x)) dx with f(X) = faev(Xaev) + g(trX)z,
Q
Cu(x) = H(Vu(x) + Vu(x)"), Xaev = X — 2%/ and
fiev is convex with linear growth at oco.

Caveat: f has mixed growth: linear in the deviatoric direction and
quadratic in the trace.

[Demengel, Qi '90]: Homogenization of densities (%, X), convex in X.

Main goals: In a nonlinear setting with non-convex (multi-well) energy
densities study:

@ homogenization and the

@ influence of a small hardening parameter.
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Introduction

Energy functionals and homogenization

Hencky energy functional at zero hardening
F(u) = / f(Cu(x)) dx with f(X) = faev(Xaev) + g(trX)z,
Q
Cu(x) = H(Vu(x) + Vu(x)"), Xaev = X — 2%/ and
fiev is convex with linear growth at oco.

Caveat: f has mixed growth: linear in the deviatoric direction and
quadratic in the trace.

[Demengel, Qi '90]: Homogenization of densities (%, X), convex in X.

Main goals: In a nonlinear setting with non-convex (multi-well) energy
densities study:

@ homogenization and the
@ influence of a small hardening parameter.

Note: Techniques completely different from [Demengel, Qi '90] who strongly
use convex analysis tools (consider f(u), u € M).
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Introduction
Set-up: energy densities

Let Q C R” be a domain with Lipschitz boundary and f : R” x Ri;;) — R a
Carathéodory function that is I"-periodic, I = (0, 1), in the first variable and
satisfies

@ the growth condition of Hencky plasticity

([ Xaee] + (6 X)2) < £, X) < B(Xaee] + (tr X) + 1)

nXxn

for suitable o, 5 > 0 for a.e. x € Q and every X € Rg\ and

@ an asymptotic convexity assumption: V7 > 0 there is 5, > 0 and a
Carathéodory function ¢ : R" x R{\/ — R that is I"-periodic in the first
variable and convex in the second such that for a.e. x € R" and all
X € Riym

[F(x, X) = " (x, X)| < 0| Xaev| + (trX)?) + By.
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Introduction
Set-up: energy densities

Let Q C R” be a domain with Lipschitz boundary and f : R” x Ri;;) — R a
Carathéodory function that is I"-periodic, I = (0, 1), in the first variable and
satisfies

@ the growth condition of Hencky plasticity

([ Xaee] + (6 X)2) < £, X) < B(Xaee] + (tr X) + 1)

nXxn

for suitable o, 5 > 0 for a.e. x € Q and every X € Rg\ and

@ an asymptotic convexity assumption: V7 > 0 there is 5, > 0 and a
Carathéodory function ¢ : R" x R{\/ — R that is I"-periodic in the first
variable and convex in the second such that for a.e. x € R" and all
X € Riym

[F(x, X) = " (x, X)| < 0| Xaev| + (trX)?) + By.

Example. Periodic mixtures of shape memory alloys subject to elastic and
plastic deformation. Common (geometrically linear) model:

W(x, X) = % i:rlr?'i'r'\’N Q(x, X — Xi(x)).
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Introduction

Main results (informal)

Let £O)(x, X) = f(x, X) 4 6|X|?>. We consider (each for suitable u):
Fe(u) = / f(%,€u(x)) dx (perfect plasticity),
Q

?ga)(u):/f(é)(i,eu(x)) dx (with hardening).
Q
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Introduction

Main results (informal)

Let £O)(x, X) = f(x, X) 4 6|X|?>. We consider (each for suitable u):
Fe(u) = / f(%,€u(x)) dx (perfect plasticity),
Q
?ga)(u):/f(é)(i,eu(x)) dx  (with hardening).
Q

Theorem A. F. T-converges to Fnom, Where (for suitable u)

From (1) = / from (€u(x)) dx + (fuom)™ (sing. part of %).
Q
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Introduction

Main results (informal)

Let £O)(x, X) = f(x, X) 4 6|X|?>. We consider (each for suitable u):
Fe(u) = / f(%,€u(x)) dx (perfect plasticity),
Q

?ga)(u):/f(é)(i,eu(x)) dx (with hardening).
Q

Theorem A. F. T-converges to Fnom, Where (for suitable u)

From (1) = / from (€u(x)) dx + (fuom)™ (sing. part of %).
Q

Theorem B. The following diagrams commute:

pt. falling T
3 g T ————— 15T = Isc 7.
r I and r r
() (8)
Thom T Thom Thom Thom
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Spaces

Overview

@ Function spaces
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Spaces

Domain of &, and its closure

Requirements for the domain of F.: Eu = w

@ Fue YR,

must satisfy
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Spaces
Domain of &, and its closure

Requirements for the domain of F.: Eu = w

@ Eue L*Q;RI%T), — consider
LD(Q) := {u € LY(Q;R") : Eu € L}(Q;R™"},

lulleo = llullx + [1Eu][ 12

must satisfy
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Spaces
Domain of &, and its closure

Requirements for the domain of F.: Eu = w

@ Eue L*Q;RI%T), — consider
LD(Q) := {u € LY(Q;R") : Eu € L}(Q;R™"},
lulleo = llullx + [1Eu][ 12

@ tr Eu=divu € [*(Q),

must satisfy
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Spaces
Domain of &, and its closure

Requirements for the domain of F.: Eu = w

@ Eue L*Q;RI%T), — consider
LD(Q) := {u € LY(Q;R") : Eu € L}(Q;R™"},

lulleo = llullx + [1Eu][ 12

must satisfy

@ tr Eu = divu € L*(Q), — consider
LU(Q) == {u € LD(Q) : divu € L3(Q)},

llulleu = llulleo + [ div ul| 2.
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Spaces
Domain of &, and its closure

Requirements for the domain of F.: Eu = w

@ Eue L*Q;RI%T), — consider
LD(Q) := {u € LY(Q;R") : Eu € L}(Q;R™"},

lulleo = llullx + [1Eu][ 12

must satisfy

@ tr Eu = divu € L*(Q), — consider
LU(Q) == {u € LD(Q) : divu € L3(Q)},

llulleu = llulleo + [ div ul| 2.

Problem: . is not coercive on LU.
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Spaces
Domain of &, and its closure

Requirements for the domain of F.: Eu = w

@ Eue L*Q;RI%T), — consider
LD(Q) := {u € LY(Q;R") : Eu € L}(Q;R™"},

lulleo = llullx + [1Eu][ 12

must satisfy

@ tr Eu = divu € L*(Q), — consider
LU(Q) == {u € LD(Q) : divu € L*(Q)},
lullev = llulleo + || div uf 2.
Problem: . is not coercive on LU.
General problems with linear growth: Pass from LD(Q) to
BD(Q) = {u € LY R") : Eu = PuI+Du ¢ pp(@; R},
llulleo = ||ulli2 + ||Eullm. (Decompose: Eu = Eul"” + E°u.)
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Spaces
Domain of &, and its closure

Requirements for the domain of F.: Eu = w

@ Eue L*Q;RI%T), — consider
LD(Q) := {u € LY(Q;R") : Eu € L}(Q;R™"},

lulleo = llullx + [1Eu][ 12

must satisfy

@ tr Eu = divu € L*(Q), — consider
LU(Q) = {u € LD(Q) : divu € [2(Q)},
lullev = llulleo + || div uf 2.

Problem: . is not coercive on LU.

General problems with linear growth: Pass from LD(Q) to
BD(Q) = {u € LY R") : Eu = PuI+Du ¢ pp(@; R},
llulleo = ||ulli2 + ||Eullm. (Decompose: Eu = Eul"” + E°u.)

Hencky plasticity setting: Pass from LU() to
U(Q) = {u e BD(Q) : divu € L*(Q)},

lullv = llullep + || div ul| 2. (Clearly, E®u = Ede,u.)
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Spaces

Strict/intermediate topology

We will need a topology that is weak enough to allow for smooth functions
being dense and strong enough to allow for good continuity properties.
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Spaces

Strict/intermediate topology

We will need a topology that is weak enough to allow for smooth functions
being dense and strong enough to allow for good continuity properties.

Suppose ¢ > 0 is a convex function with linear upper bound, e.g.

c(X) = (X) = I+ X
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Spaces
Strict/intermediate topology

We will need a topology that is weak enough to allow for smooth functions
being dense and strong enough to allow for good continuity properties.

Suppose ¢ > 0 is a convex function with linear upper bound, e.g.

c(X) = (X) = /14 |X]2. (Then one can define c(measure).)
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Spaces
Strict/intermediate topology

We will need a topology that is weak enough to allow for smooth functions
being dense and strong enough to allow for good continuity properties.

Suppose ¢ > 0 is a convex function with linear upper bound, e.g.

c(X) = (X) = /14 |X]2. (Then one can define c(measure).)

Definition. ([Demengel, Temam '84], [Temam '85]) We say u; — u
(‘c-strictly’) in U if
@ u; — uin L*(R"),
|Ewi[(Q) — |Eu[(2),
div u; — divu in L2(Q).
Sy (Esevts) = [y c(Euevu),
Jq c(Euj) = [, c(Eu).
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Spaces
Strict/intermediate topology

We will need a topology that is weak enough to allow for smooth functions
being dense and strong enough to allow for good continuity properties.

Suppose ¢ > 0 is a convex function with linear upper bound, e.g.

c(X) = (X) = /14 |X]2. (Then one can define c(measure).)

Definition. ([Demengel, Temam '84], [Temam '85]) We say u; — u
(‘c-strictly’) in U if

@ u; — uin L*(R"),
|Euj|(€2) — |Eul(),

div u; — divu in L2(Q).
fn c(Eqevuj) — fQ c(Edevu),
Jq c(Euj) = [, c(Eu).

Theorem. (Density, [Temam '83]) Vu € U(Q)
3 (uj)jen C C®(LR") N LU(Q) such that

ujloa = ulae and u; = uin U(Q).
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Spaces

A technical but useful auxiliary result: improved integrability

Lemma. Let Q C R" be an open bounded set with C1'*-boundary and let
(uj)jen be a bounded sequence in U(Q). There exist a subsequence (uj, Jken
and a sequence (@ix)ken C U(Q2) such that

@ ((div @ig)?)ken is equiintegrable,
@ (uj, — U)ken C WH?(Q;R") and therefore E%uj, = E*iiy,
O limooo |[{V (i — uj,) # 0} U {ik # uj }| = 0.

Moreover, if {u;}jen converges weakly or c-strictly to u in U(2), then the @y
can be chosen in such a way that @k |so = ulse and {Tk }ken converges to u in
U(Q2) in the same manner.
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Spaces

A technical but useful auxiliary result: improved integrability

Lemma. Let Q C R" be an open bounded set with C1'*-boundary and let
(uj)jen be a bounded sequence in U(Q). There exist a subsequence (uj, Jken
and a sequence (@ix)ken C U(Q2) such that

@ ((div @ig)?)ken is equiintegrable,
@ (uj, — U)ken C WH?(Q;R") and therefore E%uj, = E*iiy,
O limooo |[{V (i — uj,) # 0} U {ik # uj }| = 0.
Moreover, if {u;}jen converges weakly or c-strictly to u in U(2), then the @y

can be chosen in such a way that @k |so = ulse and {Tk }ken converges to u in
U(Q2) in the same manner.

Proof uses a Helmholtz decomposition in U:
U(Q2) = (kerdiv) & (im V)

and the corresponding improved integrability result on W?*2, cf [Fonseca,
Miiller, Pedregal '98].
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Overview

© Warm up: a regularized problem
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Warm up
Nonzero hardening

For any § > 0 we set f(x, X) := f(x, X) 4 6| Xaev|? and let

(8)(x 1,2((). pon
59(“)::{ ggf (%, €u(x)) dx, leee.W (2R,

For § > 0 the densities have a quadratic growth in [Xsym|. With the help of
Korn's inequality and standard homogenization results [Braides '85, Miiller '87]

we obtain )
1y g gl0) _
r(L ) slino EFE 3’h0m’
where ?fi)m has domain W'2(Q; R") and density
O X)=inf  inf = [ FD0X 4 Ep(x)) dx.

keN WEWg’z(kH";R") kn kIn
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Warm up

Vanishing hardening

pt. falling (Ll

3% 70 FO) ——————— 15 7 = 1sc T,
rLh) (Ll
(5) ()
:Thom :Thom
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Vanishing hardening

rLh)

g 50 FO 1 O _ e T
r(Ll) Lt
Thom Thom
Let 1
from(X) = /:rg\l wecoén/fnn &n) kN / Fx X+ €p(x)) dx
Clearly
from (X) = inf £ (X).
Define
GOy = { Jofrom (€0(), u € LUQRINW (@),
0, else,
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Warm up

Vanishing hardening

pt. falling
Q)

FO

rct)

g g0

hom pt. falling

Let
from (X) := inf inf
kEN @e € (KIm;Rn)
Clearly
fhom (X) =
Define

Jo faom (€u(x)),

o0,

Bernd Schmidt (Universitdt Augsburg)

inf £

r(cly
3-?) _—

Isc ITS]) = lscF-

rLt)

FO) 0 15c5® =1sc§
r(rly

%/ f(x, X + €p(x)) dx

nom (X)-

u € LU RMNW3(Q; R"),

else,
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Warm up

Vanishing hardening

pt. falling

fTéé) :Tg(])
r(Ll)
:T](qi)m pt. falling e
Let
from (X) := inf inf
kEN e €2 (KIn;Rm)
Clearly
fhom(X) =
Define
G0 = { o (840,
0,
Notice

r(cly

7 lsc 7 = lsc 7.

rLt)

FO) 0 15c5® =1sc§
r(rly

%/ f(x, X + €p(x)) dx

inf £00,(X).

u € LU RMNW3(Q; R"),
else,

?ﬁim >T-limsupJ. and therefore IscG > I-limsup F..

e—0

Bernd Schmidt (Universitdt Augsburg)
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limsup

Overview

@ Recovery sequence
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limsup
Basic ingredient

Theorem. (Reshetnyak continuity theorem, cf. [Kristensen, Rindler '10]).
Let f € E(Q;RM), and

pi= o in M(QRY) and  (1)(Q) = (1)(Q).

Jim [ [ (x gme0) acs [ (x g 00) duilc )] -
:/Qf< ZZ (x )) dx+/ﬂf°°<x, d‘?Zﬂ(X)) d]| ().

Then

Here
@ E = {functions extendable to co} (with linear growth)

o (A):=/1+]|AP

@ (x0,Xo) = limsup

X—Xp, t—o0

oo tX) _ o FxtX)

- xX—rXxQ
t X—+Xg, t—oo t

Homogenization in non-convex Hencky plasticity
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limsup

(-)-strict continuity

Theorem. Let f: Q x R\ — R be a continuous function that
@ is symmetric-rank-one-convex in the second variable,
@ satisfies the Hencky growth condition.
Suppose that (fev)™ (-, Po) = (f|Qng:vn)°°(~, Po) = limsup M is

P—Pg,t—oc0
nxn
dev -

continuous for every fixed Py € R
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limsup

(-)-strict continuity

Theorem. Let f: Q x R\ — R be a continuous function that
@ is symmetric-rank-one-convex in the second variable,
@ satisfies the Hencky growth condition.

Suppose that (fev)™ (-, Po) = (f|Qng:vn)°°(~, Po) = limsup

P—Pg,t—oc0

faev (5tP) o
t

continuous for every fixed Py € R %", Then the functional

F(u) :/Qf(x,eu(x)) dx-|—/ﬂ(fdev)°° Q,%(@) d|E*u|(x)

is (-)-strictly continuous on U(€;R").
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limsup

(-)-strict continuity

Theorem. Let f: Q x R\ — R be a continuous function that
@ is symmetric-rank-one-convex in the second variable,
@ satisfies the Hencky growth condition.
Suppose that (fev)™ (-, Po) = (f|Qng:vn)°°(~, Po) = limsup M is

P—Pg,t—oc0
continuous for every fixed Py € R %", Then the functional

dev
F(u) = / f(x, €u(x)) dx + /(fdev)oo (X, 7;7255' (X)) d|E?u|(x)
Q Q
is (-)-strictly continuous on U(€;R").
Ingredients of the proof:
@ Careful Lipschitz estimate in the trace direction.
@ Approximation of functions > —a(1 + |X|) by functions from E(Q;R")
[Alibert, Bouchitté '97].
@ Rank-one theorem [De Philippis, Rindler '16]: Let u € BD(2; R"). Then,
for |E°ul-a.e. x € Q, there exist a(x), b(x) € R" \ {0} such that
STy = 2) © bx) = 3(a( © b{x) + b(x) @ a(x).
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limsup
Recovery sequence

We now have

r¢rl)
:Tg) Isc ¥,
I
I
|
T(Ll) :
I
I
L
Tiom Fhom > Isc§ > I-limsupT.
\_/ -
rccly

with

S from (€u(x)) dx+ o (rom)* (15 (%)) dIE®ul(x), u € U(Q;R"),
Fhom (u): 00 else.
and

X
g”(X) := limsup M
t— o0 t
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liminf

Overview

@ liminf inequality
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liminf

Regular points

géci) Isc Fe
1
1
|
(Ll :
1
1
|
v ?
F Fhom > lsc§ > I-limsupFe > I-liminfFe > Fnom
\_/ o -
T(LY)
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liminf

Regular points

ffé‘s) Isc Fe
1
1
|
T(Ll) :
1
1
|
v ?
F Fhom > lsc§ > I-limsupFe > I-liminfFe > Fnom
\_/ o -
r(rh)

Lemma. (regular points) If u € U(Q), uj — uin L' and &; \, 0, then
liminf I, (u;) > / fhom (€u(x)) dx.
Jj—oo Q
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liminf

Regular points

) Isc F.
1
1
|
1
INEAS) |
1
1
:
s * 4
F hom 2 lsc§ > I-limsupTe > [-liminfFe > Tnom
E—r

\_/ o

rcth)

Lemma. (regular points) If u € U(Q), uj — uin L' and &; \, 0, then
liminf I, (u;) > / fhom (€u(x)) dx.
Jj—oo Q

Lemma. Every u € BD(;R") is a.e. L7 differentiable: for a.e. xp € Q

_n_
n—1

u(x) — u(x0) — Vu(xo)(x — xo)

dx = 0.

(L-differentiability for ¢ < -5 shown by [Alberti, Bianchini, Crippa '14].)
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liminf

Blow up

n

— and

We may suppose liminfj_ o Ie;(uj) < 0o. Let us fix some 1 < g <
define the measures

wi = (5 €ui(4))L"
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liminf

Blow up

n

— and

We may suppose liminfj_ o Ie;(uj) < 0o. Let us fix some 1 < g <
define the measures

wi = (5 €ui(4))L"

Extracting subsequences we get

@ limj_ o S"Ej(uj) equals the liminf above with all uj € LU(C; R"),

@ u; — uin L9(2;R") due to the lower bound on f and since LU is

compactly embedded in L9,

@ and p; = g in M(S;R™).

Let
p=gLl"+p°

Goal: g(x) > from(€u(x)) for a.e. x € Q.
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liminf
Blow up

We may suppose liminfj_ o I, (uj) < co. Let us fix some 1 < g < 75
define the measures
K = f( s €u;(1))L"

Extracting subsequences we get

@ limj_ o S"Ej(uj) equals the liminf above with all uj € LU(C; R"),

@ u; — uin L9(2;R") due to the lower bound on f and since LU is
compactly embedded in L9,

@ and p; = g in M(S;R™).
Let
_ g[/n + MS
Goal: g(x) > from(€u(x)) for a.e. x € Q.

Need to show: For a.e. xo € Q

i 1(Bo(x0)) o
Jimy i B )] 2 Theom(ulxe)).
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liminf

De Giorgi's slicing method and Bogovskii's operator

Fix any xo where u is approximately differ-
entiable, let

i(x) :== u(x0) + Vu(xo) (x — x0).

~ Localize to suitable By, ..., B, with cut-off
. functions ¢; (=1 on B;_;, =0 on Bf):

Ui =0+ @iy — @) € LY(QR").
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liminf

De Giorgi's slicing method and Bogovskii's operator

Fix any xo where u is approximately differ-
entiable, let

i(x) :== u(x0) + Vu(xo) (x — x0).

~ Localize to suitable By, ..., B, with cut-off

. functions ¢; (=1 on B;_;, =0 on Bf):

‘ flj’,' =0+ <p;(uj — fl) S Ll(Q;R").
25 Problem: No [2-control on the last term in

div @i = (1 — ¢i) div i + ¢; div uj+
+ Vi (4 — 1)
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liminf

De Giorgi's slicing method and Bogovskii's operator

Fix any xo where u is approximately differ-
entiable, let

i(x) :== u(x0) + Vu(xo) (x — x0).
~ Localize to suitable By, ..., B, with cut-off
. functions ¢; (=1 on B;_;, =0 on Bf):

Ui =0+ @iy — @) € LY(QR").

Problem: No [2-control on the last term in

div @i = (1 — ;) div it + @i div uj+
+ Vi (uj— 1)
Let (j,; := average of V; - (u; — @) in B; \ B;_1. Bogovskii's operator yields
z;i € Wy 9(Bi \ Bi—1) such that
divzi = Vi - (4 = 8) + G
with

llzj.il wia(B\B ;) = aT—xp x [|uj — a“l_w(s,-\s,-,ly
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liminf

De Giorgi's slicing method and Bogovskii's operator

Now define uj; := Tj ;i + z;,; € LU(;R"). Notice that

uji— o= cp,-(u,- — L~l) +z,i € LUo(Bp(Xo);Rn).
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liminf

De Giorgi's slicing method and Bogovskii's operator

Now define uj; := Tj ;i + z;,; € LU(;R"). Notice that
uji— o= cp,-(u,- — L~l) +z,i € LUo(Bp(Xo);Rn).
Then

faom(€u(x0)) = lim inf (Xo |/ o E X, €u(xo) + Ep(x)) dx

J—00 peLUo(By(x0),E") | B,

1
< liminf ————— f(=,Cuji(x)) dx
T mee [Bo(x0)l /B, (x0) (Ef 1)
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liminf

De Giorgi's slicing method and Bogovskii's operator

Now define uj; := Tj ;i + z;,; € LU(;R"). Notice that
uji— o= cp,-(u,- — L~l) +z,i € LUo(Bp(Xo);Rn).

Then
= lim inf / X Cu(xo) + Ep(x)) dx
(Xo | /B, (x0) e

fom =
hom (€u(x0)) j—00 oELU(By(x0).E") | B,(x0)|

1
< liminf ——— f(=,Cuji(x)) dx
i=oo |Bo(x0)| /B, (x) (EJ 1)

f(fj, €uj~,,~(x)) dx.

B, (xo0)

A ing:  fuom(€ ) < liminf =
veraging:  fhom(Cu(xo0)) m;ln Z|B

Homogenization in non-convex Hencky plasticity

Bernd Schmidt (Universitdt Augsburg)



liminf

De Giorgi's slicing method and Bogovskii's operator

Now define uj; := Tj ;i + z;,; € LU(;R"). Notice that
uji— o= cp,-(u,- — L~l) +z,i € LUo(Bp(Xo);Rn).

Then
= lim inf / X Cu(xo) + Ep(x)) dx
(Xo | /B, (x0) e

fom =
hom (€u(x0)) j—00 oELU(By(x0).E") | B,(x0)|

1
< liminf ——— f(=,Cuji(x)) dx
i=oo |Bo(x0)| /B, (x) (EJ 1)

Averaging:  from(Cu(x0)) < ||r2|nf Z |B f(fj,@uh(x)) dx.

B, (xo0)
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liminf

De Giorgi's slicing method and Bogovskii's operator

Now define uj; := Tj ;i + z;,; € LU(;R"). Notice that
uji— o= cp,-(u,- — L~l) +z,i € LUo(Bp(Xo);Rn).

Then
= lim inf / X Cu(xo) + Ep(x)) dx
(Xo | /B, (x0) e

fom =
hom (€u(x0)) j—00 oELU(By(x0).E") | B,(x0)|

1
< liminf ——— f(=,Cuji(x)) dx
i=oo |Bo(x0)| /B, (x) (EJ 1)

Averaging:  from(Cu(x0)) < ||r2|nf Z |B f(fj,@uh(x)) dx.

B, (xo0)

| @ First term: v/
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De Giorgi's slicing method and Bogovskii's operator

Now define uj; := Tj ;i + z;,; € LU(;R"). Notice that
uji— o= cp,-(u,- — L~l) +z,i € LUo(Bp(Xo);Rn).

Then
= lim inf / X Cu(xo) + Ep(x)) dx
(Xo | /B, (x0) e

fom =
hom (€u(x0)) j—00 oELU(By(x0).E") | B,(x0)|

1
< liminf ——— f(=,Cuji(x)) dx
i=oo |Bo(x0)| /B, (x) (EJ 1)

Averaging:  fuom(€u(x0)) < liminf = (X, Cu;i(x)) dx.
(€l < limind 3~ (o [ (5 et

el - (En)‘\ @ First term: v

‘ @ Third term: A "1
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liminf

De Giorgi's slicing method and Bogovskii's operator

Now define uj; := Tj ;i + z;,; € LU(;R"). Notice that

uji— o= cp,-(u,- — L~l) +z,i € LUo(Bp(Xo);Rn).

Then

fon(@u0a) = Jim i TG euto) + €0t) o
< IDrELrgf |B;>27Xﬂ| oo f(fj, Cuji(x)) dx

Averaging:  fhom (€u(xo)) < ||r2|nf Z |B oo f(fj,@uh(x)) dx.

GLJ- w(z0) @ First term: v/

“ ‘ @ Third term: X\ 71
‘ @ Second term: L9-differentiability
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liminf

Singular points: asymptotic convexity

Recall
= (5 Cu())L" = = gL" +p°.

Need to show:

12 (From) ™ (FEesy ) Eul.
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liminf

Singular points: asymptotic convexity

Recall
= (5 Cu())L" = = gL" +p°.

Need to show:

12 (From) ™ (FEesy ) Eul.

Here (and only here) we need the asymptotic convexity assumption. Recall:

[F(x, X) = €"(x, X)| < 0| Xaew| + (60 X)%) + By
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liminf

asymptotic convexity

Recall
= (5 Cu())L" = = gL" +p°.

Need to show:

12 (From) ™ (FEesy ) Eul.

Here (and only here) we need the asymptotic convexity assumption. Recall:

[F(x, X) = €"(x, X)| < 0| Xaew| + (60 X)%) + By

*

We may suppose (|€qevu;j| + (div u;)?)L" = o in M(R). Results in [Demengel,
Qi 90] for the convex case and asymptotic convexity give
; #(_dE®
timy | (el ) * (et ) E*ul = o

= (foom)™ (FErey )| E7ul.

s

I

Y
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Results

Overview

@ Main results
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Results
Homogenization

Theorem A. Suppose f : R” x R — R is a Carathéodory function which
@ is ["-periodic in the first variable,
@ has Hencky plasticity growth,
@ and is asymptotically convex.

Let
Fe(u) :={ o f(z, 2’7(X) X, :lsee’LU(Q;R),
and
— Lo from (€u(x)) -t [ (from)” (G () dIE%ul(x). u € U(QR?),
- > else.
Then

F(LY)- lim Fo = From,
e—0
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Results
Homogenization

Theorem A. Suppose f : R” x R — R is a Carathéodory function which
@ is ["-periodic in the first variable,
@ has Hencky plasticity growth,
@ and is asymptotically convex.

Let
Fe(u) :={ o f(z, 2’7(X) X, :lsee’LU(Q;R),
and
fronlt)= {fﬂ from (€u(x)) dx+ o (from)* (fEesy (x) dIEZul(x), v € U(QR"),
o o else.
Then

F(LY)- lim Fo = From,
e—0

Remark. Without the asymptotic convexity assumption we still have
F(LY)- lim F. = From on LU(Q)
e—0

(and F(LY)-limsup, o Fe < Fhom in general).
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Results

Homogenization and vanishing hardening

Theorem B. Under the same assumptions the following diagrams commute:

pt. falling r
Fio) F0) FO) ———————— 15e 7O = 1se T,
T T and r r
() . (8) ‘
‘Thom T Ihom ‘rhom T Ihom

(All T-limits are with respect to the L'-norm.)
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Results

Thanks

Thank you for your attention!
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