Homogenization in non-convex Hencky plasticity and the limit of vanishing hardening in Hencky plasticity with non-convex potentials

Bernd Schmidt

Universität Augsburg, Germany

Topics in the Calculus of Variations: Recent Advances and New Trends

Banff, May 24th, 2017

joint work with Martin Jesenko¹ (Augsburg, now Freiburg)

¹ responsible for the hard work

Overview

- Introduction
- 2 Function spaces
- 3 Warm up: a regularized problem
- 4 Recovery sequence
- 6 liminf inequality
- 6 Main results

Overview

- Introduction
- 2 Function spaces
- 3 Warm up: a regularized problem
- 4 Recovery sequence
- liminf inequality
- 6 Main results

Modeling plastic deformations

Consider a solid material, occupying a region Ω , subject to a deformation $\Omega \ni x \mapsto x + u(x)$ with (small) displacement u, caused by some (small) loading.

$$\Omega \subset \mathbb{R}^d$$
, $d = 2,3$: ref'config.
 $y = \mathrm{id} + u : \Omega \to \mathbb{R}^d$: deformation.

Modeling plastic deformations

Consider a solid material, occupying a region Ω , subject to a deformation $\Omega \ni x \mapsto x + u(x)$ with (small) displacement u, caused by some (small) loading.

$$\Omega \subset \mathbb{R}^d$$
, $d = 2,3$: ref'config.
 $y = \mathrm{id} + u : \Omega \to \mathbb{R}^d$: deformation.

- For very small u, the body behaves elastically and will – after unloading – return to its original state u = 0.
- For larger values of u (small but not very small), the body behaves plastically. After unloading it is permanently deformed.

Atomistic explanation: Reorganized atomic bonds.

Hencky plasticity

Simplified static theory: Hencky plasticity (or 'pseudoelasticity').

- elastic regime with linear dependence,
- perfectly plastic regime (Hencky plasticity),
- plastic regime with linear hardening.

Elastic region K is determined by some yield criterion (von Mises, Tresca, . . .).

Hencky plasticity

Simplified static theory: Hencky plasticity (or 'pseudoelasticity').

- elastic regime with linear dependence,
- perfectly plastic regime (Hencky plasticity),
- plastic regime with linear hardening.

Elastic region K is determined by some yield criterion (von Mises, Tresca, . . .).

Draw back: Static theory does not keep track of the history.

- misses hysteresis effects
- can only apply to one-time loading.

Hencky energy functional at zero hardening

$$\mathfrak{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) \ dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\operatorname{tr} X)^2,$$

$$\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^T), X_{\text{dev}} = X - \frac{\operatorname{tr} X}{n}I$$
 and f_{dev} is convex with linear growth at ∞ .

Hencky energy functional at zero hardening

$$\mathfrak{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) \ dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\operatorname{tr} X)^2,$$

$$\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^{\mathsf{T}}), X_{\text{dev}} = X - \frac{\operatorname{tr} X}{n}I$$
 and f_{dev} is convex with linear growth at ∞ .

Caveat: *f* has mixed growth: linear in the deviatoric direction and quadratic in the trace.

Hencky energy functional at zero hardening

$$\mathfrak{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) \ dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\operatorname{tr} X)^2,$$

$$\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^T), X_{\text{dev}} = X - \frac{\operatorname{tr} X}{n}I$$
 and f_{dev} is convex with linear growth at ∞ .

Caveat: *f* has mixed growth: linear in the deviatoric direction and quadratic in the trace.

[Demengel, Qi '90]: Homogenization of densities $f(\frac{x}{\epsilon}, X)$, convex in X.

Hencky energy functional at zero hardening

$$\mathfrak{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) \ dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\operatorname{tr} X)^2,$$

$$\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^{\mathsf{T}}), X_{\text{dev}} = X - \frac{\operatorname{tr} X}{n}I$$
 and f_{dev} is convex with linear growth at ∞ .

Caveat: *f* has mixed growth: linear in the deviatoric direction and quadratic in the trace.

[Demengel, Qi '90]: Homogenization of densities $f(\frac{x}{\epsilon}, X)$, convex in X.

Main goals: In a nonlinear setting with non-convex (multi-well) energy densities study:

- homogenization and the
- influence of a small hardening parameter.

Hencky energy functional at zero hardening

$$\mathfrak{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) \ dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\operatorname{tr} X)^2,$$

$$\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^{\mathsf{T}}), X_{\text{dev}} = X - \frac{\operatorname{tr} X}{n}I$$
 and f_{dev} is convex with linear growth at ∞ .

Caveat: *f* has mixed growth: linear in the deviatoric direction and quadratic in the trace.

[Demengel, Qi '90]: Homogenization of densities $f(\frac{x}{\epsilon}, X)$, convex in X.

Main goals: In a nonlinear setting with non-convex (multi-well) energy densities study:

- homogenization and the
- influence of a small hardening parameter.

Note: Techniques completely different from [Demengel, Qi '90] who strongly use convex analysis tools (consider $f(\mu)$, $\mu \in M$).

Set-up: energy densities

Let $\Omega \subset \mathbb{R}^n$ be a domain with Lipschitz boundary and $f: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{\mathrm{sym}} \to \mathbb{R}$ a Carathéodory function that is \mathbb{I}^n -periodic, $\mathbb{I} = (0,1)$, in the first variable and satisfies

the growth condition of Hencky plasticity

$$\alpha(|X_{\text{dev}}| + (\operatorname{tr} X)^2) \le f(x, X) \le \beta(|X_{\text{dev}}| + (\operatorname{tr} X)^2 + 1)$$

for suitable $\alpha, \beta > 0$ for a.e. $x \in \Omega$ and every $X \in \mathbb{R}_{\mathrm{sym}}^{n \times n}$ and

• an asymptotic convexity assumption: $\forall \, \eta > 0$ there is $\beta_{\eta} > 0$ and a Carathéodory function $c: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{\mathrm{sym}} \to \mathbb{R}$ that is \mathbb{I}^n -periodic in the first variable and convex in the second such that for a.e. $x \in \mathbb{R}^n$ and all $X \in \mathbb{R}^{n \times n}_{\mathrm{sym}}$

$$|f(x,X)-c^{\eta}(x,X)|\leq \eta(|X_{\rm dev}|+(\operatorname{tr} X)^2)+\beta_{\eta}.$$

Set-up: energy densities

Let $\Omega\subset\mathbb{R}^n$ be a domain with Lipschitz boundary and $f:\mathbb{R}^n\times\mathbb{R}^{n\times n}_{\mathrm{sym}}\to\mathbb{R}$ a Carathéodory function that is \mathbb{I}^n -periodic, $\mathbb{I}=(0,1)$, in the first variable and satisfies

the growth condition of Hencky plasticity

$$\alpha(|X_{\text{dev}}| + (\operatorname{tr} X)^2) \le f(x, X) \le \beta(|X_{\text{dev}}| + (\operatorname{tr} X)^2 + 1)$$

for suitable $\alpha, \beta > 0$ for a.e. $x \in \Omega$ and every $X \in \mathbb{R}_{\mathrm{sym}}^{n \times n}$ and

• an asymptotic convexity assumption: $\forall \eta > 0$ there is $\beta_{\eta} > 0$ and a Carathéodory function $c: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{\operatorname{sym}} \to \mathbb{R}$ that is \mathbb{I}^n -periodic in the first variable and convex in the second such that for a.e. $x \in \mathbb{R}^n$ and all $X \in \mathbb{R}^{n \times n}_{\operatorname{sym}}$

$$|f(x,X) - c^{\eta}(x,X)| \le \eta(|X_{\text{dev}}| + (\operatorname{tr} X)^2) + \beta_{\eta}.$$

Example. Periodic mixtures of shape memory alloys subject to elastic and plastic deformation. Common (geometrically linear) model:

$$W(x,X) = \frac{1}{2} \min_{i=1,\ldots,N} Q(x,X-X_i(x)).$$

Main results (informal)

Let
$$f^{(\delta)}(x,X) = f(x,X) + \delta |X|^2$$
. We consider (each for suitable u):
$$\mathcal{F}_{\varepsilon}(u) = \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx \quad \text{(perfect plasticity)},$$

$$\mathcal{F}_{\varepsilon}^{(\delta)}(u) = \int_{\Omega} f^{(\delta)}\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx \quad \text{(with hardening)}.$$

Main results (informal)

Let
$$f^{(\delta)}(x,X) = f(x,X) + \delta |X|^2$$
. We consider (each for suitable u):
$$\mathcal{F}_{\varepsilon}(u) = \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx \quad \text{(perfect plasticity)},$$

$$\mathcal{F}_{\varepsilon}^{(\delta)}(u) = \int_{\Omega} f^{(\delta)}\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx \quad \text{(with hardening)}.$$

Theorem A. $\mathcal{F}_{\varepsilon}$ Γ -converges to \mathcal{F}_{hom} , where (for suitable u)

$$\mathcal{F}_{\mathrm{hom}}(u) = \int_{\Omega} f_{\mathrm{hom}}(\mathfrak{E}u(x)) \ dx + (f_{\mathrm{hom}})^{\#} (\mathrm{sing. \ part \ of \ } \frac{(Du)^{T} + Du}{2}).$$

Main results (informal)

Let
$$f^{(\delta)}(x,X) = f(x,X) + \delta |X|^2$$
. We consider (each for suitable u):
$$\mathcal{F}_{\varepsilon}(u) = \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx \quad \text{(perfect plasticity)},$$

$$\mathcal{F}_{\varepsilon}^{(\delta)}(u) = \int_{\Omega} f^{(\delta)}\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx \quad \text{(with hardening)}.$$

Theorem A. $\mathcal{F}_{\varepsilon}$ Γ -converges to \mathcal{F}_{hom} , where (for suitable u)

$$\mathcal{F}_{\mathrm{hom}}(u) = \int_{\Omega} f_{\mathrm{hom}}(\mathfrak{E}u(x)) \ dx + (f_{\mathrm{hom}})^{\#} (\mathrm{sing. \ part \ of \ } \frac{(Du)^{T} + Du}{2}).$$

Theorem B. The following diagrams commute:

Overview

- Introduction
- 2 Function spaces
- 3 Warm up: a regularized problem
- Recovery sequence
- liminf inequality
- 6 Main results

Requirements for the domain of $\mathfrak{F}_{arepsilon}\colon \mathit{Eu} = \frac{(Du)^{\emph{T}} + Du}{2}$ must satisfy

•
$$Eu \in L^1(\Omega; \mathbb{R}^{n \times n}_{\mathrm{sym}})$$
,

Requirements for the domain of $\mathfrak{F}_{arepsilon}\colon \mathit{Eu} = \frac{(Du)^{\emph{T}} + Du}{2}$ must satisfy

•
$$Eu \in L^1(\Omega; \mathbb{R}^{n \times n}_{\mathrm{sym}}), \to \text{consider}$$

 $LD(\Omega) := \{ u \in L^1(\Omega; \mathbb{R}^n) : Eu \in L^1(\Omega; \mathbb{R}^{n \times n}) \},$
 $\|u\|_{LD} = \|u\|_{L^1} + \|Eu\|_{L^1}.$

Requirements for the domain of $\mathfrak{F}_{arepsilon}\colon \mathit{Eu} = \frac{(Du)^{m{ au}} + Du}{2}$ must satisfy

- $Eu \in L^1(\Omega; \mathbb{R}^{n \times n}_{sym}), \rightarrow \text{consider}$ $LD(\Omega) := \{ u \in L^1(\Omega; \mathbb{R}^n) : Eu \in L^1(\Omega; \mathbb{R}^{n \times n}) \},$ $\|u\|_{LD} = \|u\|_{L^1} + \|Eu\|_{L^1}.$
- $\operatorname{tr} Eu = \operatorname{div} u \in L^2(\Omega)$,

Requirements for the domain of $\mathfrak{F}_{arepsilon}$: $\mathit{Eu} = \frac{(\mathit{Du})^{\mathsf{T}} + \mathit{Du}}{2}$ must satisfy

- $Eu \in L^1(\Omega; \mathbb{R}^{n \times n}_{\mathrm{sym}})$, \to consider $LD(\Omega) := \{ u \in L^1(\Omega; \mathbb{R}^n) : Eu \in L^1(\Omega; \mathbb{R}^{n \times n}) \}$, $\|u\|_{LD} = \|u\|_{L^1} + \|Eu\|_{L^1}$.
- tr $Eu = \operatorname{div} u \in L^2(\Omega)$, \to consider $LU(\Omega) := \{ u \in LD(\Omega) : \operatorname{div} u \in L^2(\Omega) \}$, $\|u\|_{LU} = \|u\|_{LD} + \|\operatorname{div} u\|_{L^2}$.

Requirements for the domain of $\mathfrak{F}_{arepsilon}$: $\mathit{Eu} = \frac{(\mathit{Du})^{\mathsf{T}} + \mathit{Du}}{2}$ must satisfy

- $Eu \in L^1(\Omega; \mathbb{R}^{n \times n}_{sym}), \rightarrow \text{consider}$ $LD(\Omega) := \{ u \in L^1(\Omega; \mathbb{R}^n) : Eu \in L^1(\Omega; \mathbb{R}^{n \times n}) \},$ $\|u\|_{LD} = \|u\|_{L^1} + \|Eu\|_{L^1}.$
- tr $Eu = \operatorname{div} u \in L^2(\Omega)$, \to consider $LU(\Omega) := \{ u \in LD(\Omega) : \operatorname{div} u \in L^2(\Omega) \}$, $\|u\|_{LU} = \|u\|_{LD} + \|\operatorname{div} u\|_{L^2}$.

Problem: $\mathcal{F}_{\varepsilon}$ is not coercive on LU.

Requirements for the domain of $\mathfrak{F}_{arepsilon}\colon \mathit{Eu} = \frac{(\mathit{Du})^{\mathcal{T}} + \mathit{Du}}{2}$ must satisfy

- $Eu \in L^1(\Omega; \mathbb{R}^{n \times n}_{sym}), \rightarrow \text{consider}$ $LD(\Omega) := \{ u \in L^1(\Omega; \mathbb{R}^n) : Eu \in L^1(\Omega; \mathbb{R}^{n \times n}) \},$ $\|u\|_{LD} = \|u\|_{L^1} + \|Eu\|_{L^1}.$
- tr $Eu = \operatorname{div} u \in L^2(\Omega)$, \to consider $LU(\Omega) := \{u \in LD(\Omega) : \operatorname{div} u \in L^2(\Omega)\}$, $\|u\|_{LU} = \|u\|_{LD} + \|\operatorname{div} u\|_{L^2}$.

Problem: $\mathcal{F}_{\varepsilon}$ is not coercive on LU.

General problems with linear growth: Pass from $LD(\Omega)$ to

$$BD(\Omega) = \left\{ u \in L^{1}(\Omega; \mathbb{R}^{n}) : Eu = \frac{(Du)^{T} + Du}{2} \in M(\Omega; \mathbb{R}^{n \times n}) \right\},$$

$$\|u\|_{BD} = \|u\|_{L^{1}} + \|Eu\|_{M}. \text{ (Decompose: } Eu = \mathfrak{E}u\mathcal{L}^{n} + E^{s}u.)$$

Requirements for the domain of $\mathfrak{F}_{arepsilon}$: $\mathit{Eu} = \frac{(\mathit{Du})^{\mathsf{T}} + \mathit{Du}}{2}$ must satisfy

- $Eu \in L^1(\Omega; \mathbb{R}^{n \times n}_{sym}), \rightarrow \text{consider}$ $LD(\Omega) := \{ u \in L^1(\Omega; \mathbb{R}^n) : Eu \in L^1(\Omega; \mathbb{R}^{n \times n}) \},$ $\|u\|_{LD} = \|u\|_{L^1} + \|Eu\|_{L^1}.$
- tr $Eu = \operatorname{div} u \in L^2(\Omega)$, \to consider $LU(\Omega) := \{u \in LD(\Omega) : \operatorname{div} u \in L^2(\Omega)\}$, $\|u\|_{LU} = \|u\|_{LD} + \|\operatorname{div} u\|_{L^2}$.

Problem: $\mathcal{F}_{\varepsilon}$ is not coercive on LU.

General problems with linear growth: Pass from $LD(\Omega)$ to

$$BD(\Omega) = \left\{ u \in L^{1}(\Omega; \mathbb{R}^{n}) : Eu = \frac{(Du)^{T} + Du}{2} \in M(\Omega; \mathbb{R}^{n \times n}) \right\},$$

$$\|u\|_{BD} = \|u\|_{L^{1}} + \|Eu\|_{M}. \text{ (Decompose: } Eu = \mathfrak{E}u\mathcal{L}^{n} + E^{s}u.)$$

Hencky plasticity setting: Pass from $LU(\Omega)$ to

$$U(\Omega) = \{u \in BD(\Omega) : \text{div } u \in L^{2}(\Omega)\},\ \|u\|_{U} = \|u\|_{BD} + \|\text{div } u\|_{L^{2}}. \text{ (Clearly, } E^{s}u = E^{s}_{\text{dev}}u.)$$

We will need a topology that is weak enough to allow for smooth functions being dense and strong enough to allow for good continuity properties.

We will need a topology that is weak enough to allow for smooth functions being dense and strong enough to allow for good continuity properties.

Suppose $c \ge 0$ is a convex function with linear upper bound, e.g. $c(X) = \langle X \rangle = \sqrt{1+|X|^2}$.

We will need a topology that is weak enough to allow for smooth functions being dense and strong enough to allow for good continuity properties.

Suppose
$$c \ge 0$$
 is a convex function with linear upper bound, e.g. $c(X) = \langle X \rangle = \sqrt{1 + |X|^2}$. (Then one can define $c(\text{measure})$.)

We will need a topology that is weak enough to allow for smooth functions being dense and strong enough to allow for good continuity properties.

Suppose $c \ge 0$ is a convex function with linear upper bound, e.g. $c(X) = \langle X \rangle = \sqrt{1 + |X|^2}$. (Then one can define c(measure).)

Definition. ([Demengel, Temam '84], [Temam '85]) We say $u_j \stackrel{c}{\rightharpoonup} u$ ('*c*-strictly') in U if

- $u_j \to u$ in $L^1(\Omega; \mathbb{R}^n)$,
- $|Eu_j|(\Omega) \rightarrow |Eu|(\Omega)$,
- $\operatorname{div} u_i \to \operatorname{div} u$ in $L^2(\Omega)$.
- $\int_{\Omega} c(E_{\text{dev}}u_j) \to \int_{\Omega} c(E_{\text{dev}}u)$,
- $\int_{\Omega} c(Eu_j) \to \int_{\Omega} c(Eu)$.

We will need a topology that is weak enough to allow for smooth functions being dense and strong enough to allow for good continuity properties.

Suppose $c \ge 0$ is a convex function with linear upper bound, e.g. $c(X) = \langle X \rangle = \sqrt{1 + |X|^2}$. (Then one can define c(measure).)

Definition. ([Demengel, Temam '84], [Temam '85]) We say $u_j \stackrel{c}{\rightharpoonup} u$ ('c-strictly') in U if

- $u_j \to u$ in $L^1(\Omega; \mathbb{R}^n)$,
- $|Eu_j|(\Omega) \rightarrow |Eu|(\Omega)$,
- $\operatorname{div} u_j \to \operatorname{div} u$ in $L^2(\Omega)$.
- $\int_{\Omega} c(E_{\mathrm{dev}}u_j) \to \int_{\Omega} c(E_{\mathrm{dev}}u)$,
- $\int_{\Omega} c(Eu_j) \rightarrow \int_{\Omega} c(Eu)$.

Theorem. (Density, [Temam '83]) $\forall u \in U(\Omega)$ $\exists (u_j)_{j \in \mathbb{N}} \subset C^{\infty}(\Omega; \mathbb{R}^n) \cap LU(\Omega)$ such that

$$u_j|_{\partial\Omega} = u|_{\partial\Omega}$$
 and $u_j \stackrel{c}{\rightharpoonup} u$ in $U(\Omega)$.

A technical but useful auxiliary result: improved integrability

Lemma. Let $\Omega \subset \mathbb{R}^n$ be an open bounded set with $C^{1,1}$ -boundary and let $(u_j)_{j\in\mathbb{N}}$ be a bounded sequence in $U(\Omega)$. There exist a subsequence $(u_{j_k})_{k\in\mathbb{N}}$ and a sequence $(\tilde{u}_k)_{k\in\mathbb{N}} \subset U(\Omega)$ such that

- $((\operatorname{div} \tilde{u}_k)^2)_{k \in \mathbb{N}}$ is equiintegrable,
- \bullet $(u_{j_k} \tilde{u}_k)_{k \in \mathbb{N}} \subset W^{1,2}(\Omega; \mathbb{R}^n)$ and therefore $E^s u_{j_k} = E^s \tilde{u}_k$,
- $\lim_{k\to\infty} \left| \left\{ \nabla (\tilde{u}_k u_{j_k}) \neq 0 \right\} \cup \left\{ \tilde{u}_k \neq u_{j_k} \right\} \right| = 0.$

Moreover, if $\{u_j\}_{j\in\mathbb{N}}$ converges weakly or c-strictly to u in $U(\Omega)$, then the \tilde{u}_k can be chosen in such a way that $\tilde{u}_k|_{\partial\Omega}=u|_{\partial\Omega}$ and $\{\tilde{u}_k\}_{k\in\mathbb{N}}$ converges to u in $U(\Omega)$ in the same manner.

A technical but useful auxiliary result: improved integrability

Lemma. Let $\Omega \subset \mathbb{R}^n$ be an open bounded set with $C^{1,1}$ -boundary and let $(u_j)_{j\in\mathbb{N}}$ be a bounded sequence in $U(\Omega)$. There exist a subsequence $(u_{j_k})_{k\in\mathbb{N}}$ and a sequence $(\tilde{u}_k)_{k\in\mathbb{N}} \subset U(\Omega)$ such that

- $((\operatorname{div} \tilde{u}_k)^2)_{k \in \mathbb{N}}$ is equiintegrable,
- $(u_{j_k} \tilde{u}_k)_{k \in \mathbb{N}} \subset W^{1,2}(\Omega; \mathbb{R}^n)$ and therefore $E^s u_{j_k} = E^s \tilde{u}_k$,
- $\lim_{k\to\infty} \left| \left\{ \nabla (\tilde{u}_k u_{j_k}) \neq 0 \right\} \cup \left\{ \tilde{u}_k \neq u_{j_k} \right\} \right| = 0.$

Moreover, if $\{u_j\}_{j\in\mathbb{N}}$ converges weakly or c-strictly to u in $U(\Omega)$, then the \tilde{u}_k can be chosen in such a way that $\tilde{u}_k|_{\partial\Omega}=u|_{\partial\Omega}$ and $\{\tilde{u}_k\}_{k\in\mathbb{N}}$ converges to u in $U(\Omega)$ in the same manner.

Proof uses a Helmholtz decomposition in U:

$$U(\Omega) = (\ker \operatorname{div}) \oplus (\operatorname{im} \nabla)$$

and the corresponding improved integrability result on $W^{1,2}$, cf [Fonseca, Müller, Pedregal '98].

Overview

- Introduction
- 2 Function spaces
- 3 Warm up: a regularized problem
- Recovery sequence
- liminf inequality
- 6 Main results

Nonzero hardening

For any $\delta \geq 0$ we set $f^{(\delta)}(x,X) := f(x,X) + \delta |X_{\mathrm{dev}}|^2$ and let

$$\mathfrak{F}_{\varepsilon}^{(\delta)}(u) := \left\{ \begin{array}{ll} \int_{\Omega} f^{(\delta)}(\frac{x}{\varepsilon},\mathfrak{E}u(x)) \ dx, & u \in W^{1,2}(\Omega;\mathbb{R}^n), \\ \infty, & \text{else}. \end{array} \right.$$

For $\delta>0$ the densities have a quadratic growth in $|X_{\rm sym}|$. With the help of Korn's inequality and standard homogenization results [Braides '85, Müller '87] we obtain

$$\Gamma(L^1)$$
- $\lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}^{(\delta)} = \mathcal{F}_{\mathrm{hom}}^{(\delta)}$,

where $\mathcal{F}_{\mathrm{hom}}^{(\delta)}$ has domain $W^{1,2}(\Omega;\mathbb{R}^n)$ and density

$$f_{\text{hom}}^{(\delta)}(X) = \inf_{k \in \mathbb{N}} \inf_{\varphi \in W_0^{1,2}(k\mathbb{I}^n, \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f^{(\delta)}(x, X + \mathfrak{E}\varphi(x)) \ dx.$$

Vanishing hardening

Vanishing hardening

$$\begin{array}{c} \mathcal{F}_{\varepsilon}^{(\delta)} & \xrightarrow{\quad \text{pt. falling} \quad \quad} \mathcal{F}_{\varepsilon}^{(0)} & & & \\ \downarrow & & & \downarrow \\ \Gamma(L^{1}) & & & \downarrow \\ \mathcal{F}_{\text{hom}}^{(\delta)} & & & \mathcal{F}_{\varepsilon}^{(\delta)} & = \operatorname{lsc} \mathcal{F}_{\varepsilon} \end{array}$$

Let

$$f_{\text{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_{\mathbf{c}}^{\infty}(k \mathbf{I}^{\mathbf{n}}; \mathbb{R}^{\mathbf{n}})} \frac{1}{k^{n}} \int_{k \mathbf{I}^{\mathbf{n}}} f(x, X + \mathfrak{C}\varphi(x)) \ dx.$$

Clearly

$$f_{\text{hom}}(X) = \inf_{\delta > 0} f_{\text{hom}}^{(\delta)}(X).$$

Define

$$\mathfrak{G}^{(0)}(u) := \left\{ \begin{array}{ll} \int_{\Omega} f_{\mathrm{hom}}\big(\mathfrak{E}u(x)\big), & u \in LU(\Omega;\mathbb{R}^n) \cap W^{1,2}(\Omega;\mathbb{R}^n), \\ \infty, & \mathrm{else}, \end{array} \right.$$

Vanishing hardening

Let

$$f_{\text{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_{\mathbf{c}}^{\infty}(k\mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f(x, X + \mathfrak{E}\varphi(x)) \ dx.$$

Clearly

$$f_{\text{hom}}(X) = \inf_{\delta > 0} f_{\text{hom}}^{(\delta)}(X).$$

Define

$$\mathfrak{G}^{(0)}(u) := \left\{ \begin{array}{ll} \int_{\Omega} f_{\mathrm{hom}}\big(\mathfrak{E}u(x)\big), & u \in LU(\Omega;\mathbb{R}^n) \cap W^{1,2}\big(\Omega;\mathbb{R}^n\big), \\ \infty, & \mathrm{else}, \end{array} \right.$$

Vanishing hardening

$$\begin{array}{c} \mathcal{F}_{\varepsilon}^{(\delta)} & \xrightarrow{\quad \text{pt. falling} \quad } \mathcal{F}_{\varepsilon}^{(0)} & \mathcal{F}_{\varepsilon}^{(\delta)} & \xrightarrow{\quad \Gamma(L^1) \quad } \operatorname{lsc} \mathcal{F}_{\varepsilon}^{(0)} = \operatorname{lsc} \mathcal{F}_{\varepsilon} \\ \\ \downarrow & & \downarrow \\ \Gamma(L^1) & & \downarrow \\ \mathcal{F}_{\text{hom}}^{(\delta)} & \xrightarrow{\quad \text{pt. falling} \quad } \mathcal{G}^{(0)} & \mathcal{F}_{\text{hom}}^{(\delta)} & \xrightarrow{\quad \Gamma(L^1) \quad } \operatorname{lsc} \mathcal{G}^{(0)} = \operatorname{lsc} \mathcal{G} \\ \end{array}$$

Let

$$f_{\text{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_{\boldsymbol{c}}^{\infty}(k\mathbb{I}^{n}; \mathbb{R}^{n})} \frac{1}{k^{n}} \int_{k\mathbb{I}^{n}} f(x, X + \mathfrak{C}\varphi(x)) dx.$$

Clearly

$$f_{\mathrm{hom}}(X) = \inf_{\delta>0} f_{\mathrm{hom}}^{(\delta)}(X).$$

Define

$$\mathfrak{G}^{(0)}(u) := \left\{ \begin{array}{ll} \int_{\Omega} f_{\mathrm{hom}}\big(\mathfrak{E}u(x)\big), & u \in LU(\Omega;\mathbb{R}^n) \cap W^{1,2}(\Omega;\mathbb{R}^n), \\ \infty, & \mathrm{else}, \end{array} \right.$$

Notice

$$\mathcal{F}_{\mathrm{hom}}^{(\delta)} \geq \Gamma\text{-}\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon} \quad \text{and therefore} \quad \mathop{\mathrm{lsc}}\nolimits \mathcal{G} \geq \Gamma\text{-}\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}.$$

Overview

- Introduction
- 2 Function spaces
- 3 Warm up: a regularized problem
- 4 Recovery sequence
- 6 liminf inequality
- 6 Main results

Basic ingredient

Theorem. (Reshetnyak continuity theorem, cf. [Kristensen, Rindler '10]). Let $f \in \mathbf{E}(\Omega; \mathbb{R}^N)$, and

$$\mu_j \stackrel{*}{\rightharpoonup} \mu$$
 in $M(\Omega; \mathbb{R}^N)$ and $\langle \mu_j \rangle(\Omega) \to \langle \mu \rangle(\Omega)$.

Then

$$\begin{split} &\lim_{j\to\infty}\left[\int_{\Omega}f\left(x,\frac{d\mu_{j}^{s}}{d\mathcal{L}^{n}}(x)\right)\,dx+\int_{\Omega}f^{\infty}\left(x,\frac{d\mu_{j}^{s}}{d|\mu_{j}^{s}|}(x)\right)\,d|\mu_{j}^{s}|(x)\right]=\\ &=\int_{\Omega}f\left(x,\frac{d\mu^{s}}{d\mathcal{L}^{n}}(x)\right)\,dx+\int_{\Omega}f^{\infty}\left(x,\frac{d\mu^{s}}{d|\mu^{s}|}(x)\right)\,d|\mu^{s}|(x). \end{split}$$

Here

- $\mathbf{E} = \{\text{functions extendable to } \infty\}$ (with linear growth)
- $A\rangle := \sqrt{1+|A|^2}$

$$\bullet \ f^{\infty}(x_0, X_0) = \limsup_{X \to X_0, \ t \to \infty} \frac{f(x_0, tX)}{t} = \lim_{\substack{x \to x_0 \\ X \to X_0, \ t \to \infty}} \frac{f(x, tX)}{t}$$

$\langle \cdot \rangle$ -strict continuity

Theorem. Let $f: \Omega \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ be a continuous function that

- is symmetric-rank-one-convex in the second variable,
- satisfies the Hencky growth condition.

Suppose that
$$(f_{\text{dev}})^{\infty}(\cdot, P_0) = (f|_{\Omega \times \mathbb{R}_{\text{dev}}^{n \times n}})^{\infty}(\cdot, P_0) = \limsup_{P \to P_0, t \to \infty} \frac{f_{\text{dev}}(\cdot, tP)}{t}$$
 is continuous for every fixed $P_0 \in \mathbb{R}_{\text{dev}}^{n \times n}$.

$\langle \cdot \rangle$ -strict continuity

Theorem. Let $f: \Omega \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ be a continuous function that

- is symmetric-rank-one-convex in the second variable,
- satisfies the Hencky growth condition.

Suppose that
$$(f_{\mathrm{dev}})^{\infty}(\cdot,P_0)=(f|_{\Omega\times\mathbb{R}^{{m n}\times{m n}}_{\mathrm{dev}}})^{\infty}(\cdot,P_0)=\limsup_{P o P_0,t o\infty}rac{f_{\mathrm{dev}}(\cdot,tP)}{t}$$
 is

continuous for every fixed $P_0 \in \mathbb{R}_{ ext{dev}}^{n \times n}$. Then the functional

$$\mathfrak{F}(u) = \int_{\Omega} f(x, \mathfrak{E}u(x)) \ dx + \int_{\Omega} (f_{\text{dev}})^{\infty} \left(x, \frac{dE^{s}u}{d|E^{s}u|}(x) \right) \ d|E^{s}u|(x)$$

is $\langle \cdot \rangle$ -strictly continuous on $U(\Omega; \mathbb{R}^n)$.

$\langle \cdot \rangle$ -strict continuity

Theorem. Let $f: \Omega \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ be a continuous function that

- is symmetric-rank-one-convex in the second variable,
- satisfies the Hencky growth condition.

Suppose that
$$(f_{\mathrm{dev}})^{\infty}(\cdot,P_0)=(f|_{\Omega\times\mathbb{R}_{\mathrm{dev}}^{\textbf{\textit{n}}\times\textbf{\textit{n}}}})^{\infty}(\cdot,P_0)=\limsup_{P\to P_0,t\to\infty}\frac{f_{\mathrm{dev}}(\cdot,tP)}{t}$$
 is

continuous for every fixed $\textit{P}_0 \in \mathbb{R}_{\mathrm{dev}}^{\textit{n} \times \textit{n}}.$ Then the functional

$$\mathcal{F}(u) = \int_{\Omega} f(x, \mathfrak{E}u(x)) \ dx + \int_{\Omega} (f_{\text{dev}})^{\infty} \left(x, \frac{dE^{s}u}{d|E^{s}u|}(x) \right) \ d|E^{s}u|(x)$$

is $\langle \cdot \rangle$ -strictly continuous on $U(\Omega; \mathbb{R}^n)$.

Ingredients of the proof:

- Careful Lipschitz estimate in the trace direction.
- Approximation of functions $\geq -\alpha(1+|X|)$ by functions from $\mathbf{E}(\Omega;\mathbb{R}^N)$ [Alibert, Bouchitté '97].
- Rank-one theorem [De Philippis, Rindler '16]: Let $u \in BD(\Omega; \mathbb{R}^n)$. Then, for $|E^s u|$ -a.e. $x \in \Omega$, there exist $a(x), b(x) \in \mathbb{R}^n \setminus \{0\}$ such that

$$\frac{dE^s u}{d|E^s u|} = a(x) \odot b(x) = \frac{1}{2} (a(x) \otimes b(x) + b(x) \otimes a(x)).$$

Recovery sequence

We now have

with

$$\mathfrak{F}_{\mathrm{hom}}(u)\!:=\!\begin{cases} \int_{\Omega} f_{\mathrm{hom}}\big(\mathfrak{E}u(x)\big)\; dx + \int_{\Omega} (f_{\mathrm{hom}})^{\#}\big(\frac{dE^{\sharp}u}{d|E^{\sharp}u|}(x)\big)\; d|E^{\sharp}u|(x), & u\in U(\Omega;\mathbb{R}^{n}),\\ \infty, & \mathrm{else}. \end{cases}$$

and

$$g^{\#}(X) := \limsup_{t \to \infty} \frac{g(tX)}{t}.$$

Overview

- Introduction
- 2 Function spaces
- 3 Warm up: a regularized problem
- Recovery sequence
- 6 liminf inequality
- 6 Main results

Regular points

Regular points

Lemma. (regular points) If
$$u \in U(\Omega)$$
, $u_j \to u$ in L^1 and $\varepsilon_j \searrow 0$, then
$$\liminf_{j \to \infty} \mathcal{F}_{\varepsilon_j}(u_j) \ge \int_{\Omega} f_{\mathrm{hom}}(\mathfrak{E}u(x)) \ dx.$$

Regular points

Lemma. (regular points) If
$$u \in U(\Omega)$$
, $u_j \to u$ in L^1 and $\varepsilon_j \searrow 0$, then
$$\liminf_{j \to \infty} \mathcal{F}_{\varepsilon_j}(u_j) \geq \int_{\Omega} f_{\mathrm{hom}}(\mathfrak{E}u(x)) \ dx.$$

Lemma. Every $u \in BD(\Omega; \mathbb{R}^n)$ is a.e. $L^{\frac{n}{n-1}}$ -differentiable: for a.e. $x_0 \in \Omega$

$$\lim_{r\to 0} \frac{1}{r^n} \int_{B_r(x_0)} \left| \frac{u(x) - u(x_0) - \nabla u(x_0)(x - x_0)}{r} \right|^{\frac{n}{n-1}} dx = 0.$$

(L^q -differentiability for $q < \frac{n}{n-1}$ shown by [Alberti, Bianchini, Crippa '14].)

Blow up

We may suppose $\liminf_{j \to \infty} \mathfrak{F}_{\varepsilon_j}(u_j) < \infty$. Let us fix some $1 < q < \frac{n}{n-1}$ and define the measures

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n.$$

Blow up

We may suppose $\liminf_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j) < \infty$. Let us fix some $1 < q < \frac{n}{n-1}$ and define the measures

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n.$$

Extracting subsequences we get

- $\lim_{j\to\infty} \mathfrak{F}_{\varepsilon_i}(u_j)$ equals the liminf above with all $u_j\in LU(\Omega;\mathbb{R}^n)$,
- $u_j \to u$ in $L^q(\Omega; \mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,
- and $\mu_j \stackrel{*}{\rightharpoonup} \mu$ in $M(\Omega; \mathbb{R}^n)$.

Let

$$\mu = g\mathcal{L}^n + \mu^s$$

Goal: $g(x) \ge f_{\text{hom}}(\mathfrak{E}u(x))$ for a.e. $x \in \Omega$.

Blow up

We may suppose $\liminf_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j) < \infty$. Let us fix some $1 < q < \frac{n}{n-1}$ and define the measures

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n.$$

Extracting subsequences we get

- $\lim_{j\to\infty} \mathfrak{F}_{\varepsilon_i}(u_j)$ equals the lim inf above with all $u_j\in LU(\Omega;\mathbb{R}^n)$,
- $u_j \to u$ in $L^q(\Omega; \mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,
- and $\mu_j \stackrel{*}{\rightharpoonup} \mu$ in $M(\Omega; \mathbb{R}^n)$.

Let

$$\mu = g\mathcal{L}^n + \mu^s$$

Goal: $g(x) \ge f_{\text{hom}}(\mathfrak{E}u(x))$ for a.e. $x \in \Omega$.

Need to show: For a.e. $x_0 \in \Omega$

$$\lim_{\rho\to 0}\lim_{j\to\infty}\frac{\mu_j(B_\rho(x_0))}{|B_\rho(x_0)|}\geq f_{\text{hom}}(\mathfrak{E}u(x_0)).$$

Fix any x_0 where u is approximately differentiable, let

$$\tilde{u}(x) := u(x_0) + \nabla u(x_0) (x - x_0).$$

Localize to suitable B_1, \ldots, B_{ν} with cut-off functions φ_i ($\equiv 1$ on B_{i-1} , $\equiv 0$ on B_i^c):

$$\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).$$

Fix any x_0 where u is approximately differentiable, let

$$\tilde{u}(x) := u(x_0) + \nabla u(x_0) (x - x_0).$$

Localize to suitable B_1, \ldots, B_{ν} with cut-off functions φ_i ($\equiv 1$ on B_{i-1} , $\equiv 0$ on B_i^c):

$$\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).$$

Problem: No L^2 -control on the last term in

$$\operatorname{div} \tilde{u}_{j,i} = (1 - \varphi_i) \operatorname{div} \tilde{u} + \varphi_i \operatorname{div} u_j + \nabla \varphi_i \cdot (u_j - \tilde{u})$$

Fix any x_0 where u is approximately differentiable, let

$$\tilde{u}(x) := u(x_0) + \nabla u(x_0) (x - x_0).$$

Localize to suitable B_1, \ldots, B_{ν} with cut-off functions φ_i ($\equiv 1$ on B_{i-1} , $\equiv 0$ on B_i^c):

$$\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).$$

Problem: No L^2 -control on the last term in

$$\operatorname{div} \tilde{u}_{j,i} = (1 - \varphi_i) \operatorname{div} \tilde{u} + \varphi_i \operatorname{div} u_j + \nabla \varphi_i \cdot (u_j - \tilde{u})$$

Let $\zeta_{j,i} := \text{average of } \nabla \varphi_i \cdot (u_j - \tilde{u}) \text{ in } B_i \setminus B_{i-1}$. Bogovskii's operator yields $z_{j,i} \in W_0^{1,q}(B_i \setminus \overline{B_{i-1}})$ such that

$$\operatorname{div} z_{j,i} = -\nabla \varphi_i \cdot (u_j - \tilde{u}) + \zeta_{j,i}$$

with

$$||z_{j,i}||_{W^{1,q}(B_i\setminus\overline{B_{i-1}})}\leq \frac{c_{\nu}}{(1-\lambda)\rho}||u_j-\tilde{u}||_{L^q(B_i\setminus\overline{B_{i-1}})}.$$

Now define
$$u_{j,i}:=\tilde{u}_{j,i}+z_{j,i}\in LU(\Omega;\mathbb{R}^n)$$
. Notice that
$$u_{j,i}-\tilde{u}=\varphi_i(u_j-\tilde{u})+z_{j,i}\in LU_0(B_\rho(x_0);\mathbb{R}^n).$$

Now define
$$u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega; \mathbb{R}^n)$$
. Notice that
$$u_{i,i} - \tilde{u} = \varphi_i(u_i - \tilde{u}) + z_{i,i} \in LU_0(\mathcal{B}_o(x_0); \mathbb{R}^n).$$

Then

$$\begin{array}{ll} f_{\mathrm{hom}}(\mathfrak{E}u(x_{0})) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_{0}(B_{\rho}(x_{0}),\mathbb{R}^{n})} \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u(x_{0}) + \mathfrak{E}\varphi(x)\right) dx \\ & \leq & \lim_{j \to \infty} \inf \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u_{j,i}(x)\right) dx \end{array}$$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega; \mathbb{R}^n)$. Notice that $u_{i,i} - \tilde{u} = \varphi_i(u_i - \tilde{u}) + z_{i,i} \in LU_0(\mathcal{B}_o(x_0); \mathbb{R}^n).$

Then

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_0)) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)) \ dx \\ & \leq & \lim_{j \to \infty} \inf \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)) \ dx \end{array}$$

 $\text{Averaging:} \quad f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) \ dx.$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega; \mathbb{R}^n)$. Notice that

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

Then

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_{0})) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_{0}(B_{\rho}(x_{0}),\mathbb{R}^{n})} \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u(x_{0}) + \mathfrak{E}\varphi(x)\right) dx \\ & \leq & \lim_{j \to \infty} \inf \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u_{j,i}(x)\right) dx \end{array}$$

$$\text{Averaging:} \quad f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) \ dx.$$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega; \mathbb{R}^n)$. Notice that

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

Then

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_{0})) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_{0}(B_{\rho}(x_{0}),\mathbb{R}^{n})} \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u(x_{0}) + \mathfrak{E}\varphi(x)\right) dx \\ & \leq & \lim_{j \to \infty} \inf \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u_{j,i}(x)\right) dx \end{array}$$

Averaging:
$$f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.$$

● First term: √

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega; \mathbb{R}^n)$. Notice that

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

Then

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_{0})) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_{0}(B_{\rho}(x_{0}),\mathbb{R}^{n})} \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u(x_{0}) + \mathfrak{E}\varphi(x)\right) dx \\ & \leq & \lim_{j \to \infty} \inf \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u_{j,i}(x)\right) dx \end{array}$$

 $\text{Averaging:} \quad f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) \ dx.$

- First term: √
- Third term: $\lambda \nearrow 1$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega; \mathbb{R}^n)$. Notice that

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

Then

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_{0})) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_{0}(B_{\rho}(x_{0}),\mathbb{R}^{n})} \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u(x_{0}) + \mathfrak{E}\varphi(x)\right) dx \\ & \leq & \lim_{j \to \infty} \inf \frac{1}{|B_{\rho}(x_{0})|} \int_{B_{\rho}(x_{0})} f\left(\frac{x}{\varepsilon_{j}}, \mathfrak{E}u_{j,i}(x)\right) dx \end{array}$$

- First term: √
- Third term: $\lambda \nearrow 1$
- Second term: L^q-differentiability

Singular points: asymptotic convexity

Recall

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n \stackrel{*}{\rightharpoonup} \mu = g\mathcal{L}^n + \mu^s.$$

Need to show:

$$\mu^s \ge (f_{\mathrm{hom}})^\# (\frac{dE^s u}{d|E^s u|}) |E^s u|.$$

Singular points: asymptotic convexity

Recall

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n \stackrel{*}{\rightharpoonup} \mu = g\mathcal{L}^n + \mu^s.$$

Need to show:

$$\mu^s \geq (f_{\text{hom}})^\# (\frac{dE^s u}{d|E^s u|}) |E^s u|.$$

Here (and only here) we need the asymptotic convexity assumption. Recall:

$$|f(x,X)-c^{\eta}(x,X)| \leq \eta(|X_{\text{dev}}|+(\operatorname{tr} X)^2)+\beta_{\eta}.$$

Singular points: asymptotic convexity

Recall

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n \stackrel{*}{\rightharpoonup} \mu = g\mathcal{L}^n + \mu^s.$$

Need to show:

$$\mu^s \ge (f_{\text{hom}})^\# (\frac{dE^s u}{d|E^s u|}) |E^s u|.$$

Here (and only here) we need the asymptotic convexity assumption. Recall:

$$|f(x,X)-c^{\eta}(x,X)|\leq \eta(|X_{\mathrm{dev}}|+(\mathrm{tr}\,X)^2)+\beta_{\eta}.$$

We may suppose $(|\mathfrak{E}_{\text{dev}}u_j| + (\text{div }u_j)^2)\mathcal{L}^n \stackrel{*}{\rightharpoonup} \sigma$ in $M(\Omega)$. Results in [Demengel, Qi 90] for the convex case and asymptotic convexity give

$$\begin{split} \mu^{s} &\geq \lim_{\eta \to 0} \left[(c_{\text{hom}}^{\eta})^{\#} (\frac{dE^{s}u}{d|E^{s}u|}) |E^{s}u| - \eta \sigma^{s} \right] \\ &= (f_{\text{hom}})^{\#} (\frac{dE^{s}u}{d|E^{s}u|}) |E^{s}u|. \end{split}$$

Overview

- Introduction
- 2 Function spaces
- 3 Warm up: a regularized problem
- Recovery sequence
- liminf inequality
- 6 Main results

Homogenization

Theorem A. Suppose $f: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ is a Carathéodory function which

- is Iⁿ-periodic in the first variable,
- has Hencky plasticity growth,
- and is asymptotically convex.

Let

$$\mathfrak{F}_{\varepsilon}(u) := \left\{ \begin{array}{cc} \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx, & u \in LU(\Omega; \mathbb{R}^n), \\ \infty, & \text{else}, \end{array} \right.$$

and

$$\mathfrak{F}_{\mathrm{hom}}(u)\!:=\!\begin{cases} \int_{\Omega} f_{\mathrm{hom}}\big(\mathfrak{E}u(x)\big) \; dx + \int_{\Omega} (f_{\mathrm{hom}})^{\#}\big(\frac{dE^{\mathbf{s}}u}{d|E^{\mathbf{s}}u|}(x)\big) \; d|E^{\mathbf{s}}u|(x), & u \in U(\Omega;\mathbb{R}^{n}), \\ \infty, & \mathrm{else}. \end{cases}$$

Then

$$\Gamma(L^1)$$
- $\lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon} = \mathcal{F}_{\text{hom}},$

Homogenization

Theorem A. Suppose $f: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ is a Carathéodory function which

- is Iⁿ-periodic in the first variable,
- has Hencky plasticity growth,
- and is asymptotically convex.

Let

$$\mathfrak{F}_{\varepsilon}(u) := \left\{ \begin{array}{cc} \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx, & u \in LU(\Omega; \mathbb{R}^n), \\ \infty, & \text{else}, \end{array} \right.$$

and

$$\mathcal{F}_{\mathrm{hom}}(u)\!:=\!\begin{cases} \int_{\Omega} f_{\mathrm{hom}}\big(\mathfrak{E}u(x)\big)\,dx + \int_{\Omega} (f_{\mathrm{hom}})^{\#}\big(\frac{dE^{\mathfrak{s}}u}{d|E^{\mathfrak{s}}u|}(x)\big)\,d|E^{\mathfrak{s}}u|(x), & u\in U(\Omega;\mathbb{R}^{n}),\\ \infty, & \mathrm{else}. \end{cases}$$

Then

$$\Gamma(L^1)$$
- $\lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon} = \mathcal{F}_{\text{hom}},$

Remark. Without the asymptotic convexity assumption we still have

$$\Gamma(L^1)$$
- $\lim_{\varepsilon \to 0} \mathfrak{F}_{\varepsilon} = \mathfrak{F}_{\mathrm{hom}}$ on $LU(\Omega)$

(and $\Gamma(L^1)$ - $\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon} \leq \mathcal{F}_{hom}$ in general).

Homogenization and vanishing hardening

Theorem B. Under the same assumptions the following diagrams commute:

(All Γ -limits are with respect to the L^1 -norm.)

Thanks

Thank you for your attention!

References:

M. Jesenko, B. Schmidt:

Homogenization and the limit of vanishing hardening in Hencky plasticity with non-convex potentials,

Calc. Var. Partial Differential Equations 57 (2018), no. 1, Art. 2, 43 pp.