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Probing small mass/length scales is key to 
determine the particle properties of DM

Calabrese et al. (2011)
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Dark matter physics affects small-scale structure

Vogelsberger, Zavala, Cyr-Racine +, arXiv:1512.05349
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Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well
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parameters that control the shape of the linear power spectrum are
related to more familiar scales in the initial power spectrum: the co-
moving diffusion (Silk) damping scale (rSD) and the DM comov-
ing sound horizon (rDAO). These are generic scales, which occur
in models where DM is coupled to relativistic particles in the early
Universe, i.e., they are not only a consequence of the specific parti-
cle physics scenario used here. Currently, or simulations only cover
the regime for which rDAO & rSD (“weak” DAOs); for an exam-
ple of a simulation in the strong DAOs regime, with rDAO � rSD,
see Buckley et al. (2014).

As a reference, the left panel of Fig. 1 also shows three WDM
power spectra for thermal relics, which are described by a sharp
cut-off (we follow Bode et al. 2001, with ⌫ = 1):

PWDM(k) = T 2
(k)PCDM(k), T (k) = (1 + (↵k)2)�5, (4)

where the ↵ parameter defines the cutoff scale in the initial power
spectrum and is related to the free-streaming of WDM particles.
The ↵ value can be associated with a generic thermal relic WDM
particle mass, mWDM, using the relation (Bode et al. 2001):
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where ⌦WDM is the WDM contribution to the density parameter,
and gWDM the number of degrees of freedom. It is conventional to
use 1.5 as the fiducial value for gWDM for the WDM particle. The
left panel of Fig. 1 shows also the WDM particle masses for the
three cases, which were chosen by eye to match the initial power
decline of the ETHOS models as well as the FoF halo mass function
(see Fig. 3 and discussion further down).

We note that the Lyman-↵ forest is sensitive to any sort of
small-scale cutoffs in the power spectrum; a feature that puts, for
example, tight constraints on the mass of thermal-relic-WDM parti-
cles (Viel et al. 2013). The acoustic oscillation (rDAO) and damping
(rSD) scales can therefore, in principle, be constrained via Lyman-
↵ forest data as well. Since the shape of the cutoff in our models
is very different from the exponential cutoff in WDM models, it is
thus necessary to perform detailed hydrodynamical simulations for
the models presented here in order to obtain appropriate Lyman-
↵ forest constraints. We will discuss this in a forthcoming work
(Zavala et al., in prep).

3 SIMULATIONS

We generate initial conditions at z = 127 within a 100h�1
Mpc

periodic box (our parent simulation) from which we select a MW-
size halo to be resimulated with a zoom technique. The transfer
functions for all DM models were generated with a modified ver-
sion of the CAMB code (Seljak & Zaldarriaga 1996; Lewis &
Challinor 2011), as described in Cyr-Racine et al. (2015). All ini-
tial conditions were generated with the MUSIC code (Hahn & Abel
2011). The uniform parent simulation is performed at a resolu-
tion of 10243 particles yielding a DM particle mass resolution of
7.8 ⇥ 10

7 h�1
M� and a spatial resolution (Plummer-equivalent

softening length) of ✏ = 2h�1
kpc. This is sufficient to resolve

haloes down to ⇠ 2.5 ⇥ 10

9 h�1
M� with about 32 particles. We

note that the mass and spatial resolution of this parent simulation
is slightly better than the simulations presented in Buckley et al.
(2014), which have a smaller simulation volume. The parent sim-
ulation presented here has therefore better statistics and also in-

Name mDM [M�] ✏ [pc] Nhr

level-1 2.756⇥ 104 72.4 444, 676, 320
level-2 2.205⇥ 105 144.8 55, 451, 880
level-3 1.764⇥ 106 289.6 7, 041, 720

Table 2. Simulation parameters of the selected MW-size halo. We list the
DM particle mass (mDM), the Plummer-equivalent softening length (✏),
and the number of high resolution particles (Nhr). The softening length is
kept fixed in physical units for z < 9. The number of high resolution parti-
cles refers to the CDM case and slightly varies for the other DM models.

Name M200,crit R200,crit Vmax Rmax Nsub

[1010 M�] [kpc] [km s�1] [kpc]

CDM 161.28 244.05 176.82 68.29 16108
ETHOS-1 160.47 243.64 178.12 62.58 590
ETHOS-2 164.70 245.75 181.49 63.72 971
ETHOS-3 163.36 245.09 180.60 64.37 1080
ETHOS-4 163.76 245.30 178.78 69.18 1366

Table 3. Basic characteristics of the MW-size halo formed in the different
DM models. We list the mass (M200,crit), radius (R200,crit), maximum
circular velocity (Vmax), radius where the maximum circular velocity is
reached (Rmax), and the number of resolved subhaloes within 300 kpc
(Nsub).

cludes more massive clusters. It contains 10 haloes with a virial
mass (M200,crit) above 10

14 h�1
M� at z = 0.

The galactic halo for resimulation was randomly selected from
a sample of haloes that have masses between 1.58⇥ 10

12
M� and

1.61 ⇥ 10

12
M�, which is in the upper range of current estimates

for the mass of the MW halo (see Fig. 1 of Wang et al. 2015).
This sample was created using only those MW-size haloes which do
not have another halo more massive than half their masses within
2h�1

Mpc (this is a criterion for isolation). We stress that we do
not consider a local group analog here in this first study. We have
simulated the selected halo at three different resolutions, level-3 to
level-1, which are summarised in Table 2. For these resimulations,
the softening length is fixed in comoving coordinates until z = 9,
and is then fixed in physical units until z = 0. The latter value is
quoted in Table 2. The number of high resolution particles refers to
the CDM simulation only; the other DM models produce slightly
different numbers. The most basic characteristics of the halo are
presented in Table 3 for the highest resolution simulations.

Self-scattering of DM particles was implemented into the
AREPO code (Springel 2010) following the probabilistic approach
described in Vogelsberger et al. (2012), which assumes that scat-
tering is elastic and isotropic. This implementation has previously
been used, in the context of standard SIDM (i.e. with the same
power spectrum as CDM), to constrain the self-interaction cross
section at the scale of the MW dwarf spheroidals (Zavala et al.
2013), predict direct detection signatures of self-interactions (Vo-
gelsberger & Zavala 2013), and study the impact on lensing sig-
nals (Vegetti & Vogelsberger 2014). It was also used to find
that self-interactions can leave imprints in the stellar distribution
of dwarf galaxies by performing the first SIDM simulation with
baryons presented in Vogelsberger et al. (2014a).

MNRAS 000, 1–17 (2015)

4 M. Vogelsberger et al.

Figure 1. Properties of the effective DM models relevant for structure formation. Left: Linear initial matter power spectra (�linear(k)2 = k3Plinear(k)/2⇡2)
for the different models (CDM and ETHOS models ETHOS-1 to ETHOS-4) as a function of comoving wavenumber k. The ETHOS models differ in the
strength of the damping and the dark acoustic oscillations at small scales. As a reference, we also include thermal-relic-WDM models, which are close to each
model in ETHOS. Right: Velocity dependence of the transfer cross-section per units mass (�T /m) for the different ETHOS models. Models ETHOS-1 to
ETHOS-3 have �T /m / v�4

rel for large relative velocities. For low velocities the cross sections can be as high as 100 cm2 g�1.

the outstanding small-scale problems of the MW satellites. Finally,
we present our summary and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are sum-
marised in Table 1. For all simulations we use the following cos-
mological parameters: ⌦m = 0.302, ⌦⇤ = 0.698, ⌦b = 0.046,
h = 0.69, �8 = 0.839 and ns = 0.967, which are consistent
with recent Planck data (Planck Collaboration et al. 2014; Spergel
et al. 2015). We study mainly five different DM models, which we
label CDM and ETHOS-1 to ETHOS-4. In the parameter space of
ETHOS, these models are represented by a specific transfer func-
tion (see left panel of Fig. 1 for the resulting linear dimensionless
power spectra), and a specific velocity-dependent transfer cross-
section for DM (see right panel of Fig. 1). Our discussion will
mostly focus on ETHOS-1 to ETHOS-3, which demonstrate the ba-
sic features of our ETHOS models. ETHOS-4 is a tuned model that
was specifically set up to address the small-scale issues of CDM
(the MS problem and the TBTF problem). We discuss this model
towards the end of the paper.

These models arise within the effective framework of ETHOS,
described in detail in ?, which we summarise in the following.
ETHOS provides a mapping between the intrinsic parameters (cou-
plings, masses, etc.) defining a given DM particle physics model,
and (i) the effective parameters controlling the shape of the linear
matter power spectrum, and (ii) the effective DM transfer cross sec-
tion (h�T i/m�); both at the relevant scales for structure formation.

Schematically:
n

m�, {gi}, {hi}, ⇠
o

!
n

{an,↵l}, {bn,�l}, {dn,m�, ⇠}
o

! Pmatter(k)

n

m�, {mi}, {gi}
o

!
(

h�T i30
m�

,
h�T i220
m�

,
h�T i1000

m�

)

,(1)

where the parameters on the left are the intrinsic parameters of the
dark matter model: m� is the mass of the dark matter particle, {gi}
represents the set of coupling constants, {hi} is a set of other inter-
nal parameters such as mediator mass {mi} and number of degrees
of freedom, and ⇠ = (TDR/TCMB)|z=0 is the present day DR to
CMB temperature ratio.

The effective parameters of the framework are on the right of
Eq. 1, which in all generality include the doublet {bn,�l} char-
acterising the evolution of dark radiation perturbations, while the
triplet {dn,m�, ⇠} determines the adiabatic sound speed of dark
matter. The latter is very small for non-relativistic dark matter,
thus, it has no impact on the evolution of dark matter perturba-
tions (except on very small scales, irrelevant for galaxy forma-
tion/evolution). On the other hand, since in this work we are only
interested on the evolution of dark matter perturbations, the param-
eters {bn,�l} can be neglected since they have very little impact
on the actual structure of the linear matter power spectrum. More
precisely, when the DR-DR interactions decouple later than the
DR-DM interactions, these terms should be taken into account but
they only affect scales at and smaller than that of the second DAO
peak in the linear power spectrum. This would introduce only mi-
nor corrections that can be neglected for the purpose of following
the non-linear evolution of structures. We are therefore left only
with the doublet {an,↵l}, which fully characterises the evolution
of the dark matter perturbations, with the set of l�dependent coeffi-
cients ↵l encompassing information about the angular dependence

MNRAS 000, 1–17 (2015)



Many possible ways to probe small-
scale structure
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Gravitational Lensing

Stellar Streams

Local dwarf galaxies Lyman-alpha forest

De Odenkirchen et al. (2003)

Credits: Bill Keel

Credits: J. Bullock, M. Geha, R. Powell

RXJ 1131-1231 (HST/NASA)

Predictions for the high-redshift Universe in ETHOS 9
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Figure 6. FUV (150 nm) and NIR (1.15 µm) rest-frame luminos-
ity functions, on the top and middle panels, respectively, plus the
luminosity function in the observer-frame (using apparent mag-
nitudes) in the JWST F150W band in the bottom panel. The
di↵erent colours are for di↵erent redshifts according to the leg-
end, and the solid and dashed lines are for the CDM and ETHOS
cases, respectively. The horizontal dotted line marks the galaxy
abundance below which low number statistics in the simulation
a↵ect the results in a relevant way (< 16 galaxies per bin). For the
upper panel a collection of observations is also shown (Bouwens
et al. 2015a; Livermore et al. 2017). The grey (top panel) and blue
(top and middle panels) bands are estimated observational limits
from HUDF and for an optimistic deep survey with JWST. In
the bottom panel we show the expected JWST magnitude limit
in the observer-frame for the F150W NIRCam filter.

(SSP) using as input the metallicity and age of the star par-
ticle, and using the initial mass function (IMF) used in our
simulation setting (Chabrier IMF; Chabrier 2003); the code
then outputs the spectra of the SSP for the particle. A mass-
weighted sum is then performed across all particles in the
galaxy to compute its spectral energy distribution and total
luminosity in the desired band. We compute the FUV and
Near Infrared (NIR) luminosity functions, at 150 nm and
1.15 µm rest frame wavelengths, top and middle panels of
Fig. 6, respectively. We choose these two wavelengths since
they are representative of the FUV, which is a good tracer of
recent star formation (young stars), and the NIR, which is a
better tracer of the older stellar population (more sensitive
to the prior star formation history). In the bottom panel of
Fig. 5 we also present the evolution of the luminosity func-
tion (in the observer frame) as it would be observed by the
Near InfraRed Camera (NIRCam) on JWST (filter F150W),
taking into account the transmittance of the NIRCam Filter
in JWST6.

The luminosity functions in Fig. 6 are shown in
monochromatic AB magnitudes, rest-frame in the upper and
middle panel, observer-frame in the bottom panel. The FUV
(150 nm) luminosity function is shown in the upper panel
of Fig. 6. The grey vertical band is roughly the current
limit from HST observations (HUDF and CANDELS, see
e.g. Bouwens et al. 2015a), while the blue band is the esti-
mated limit for JWST, which is based on the sensitivities
for the NIRCam for point source detection with a signal to
noise ratio (S/N) of 10 and 104 s exposure7. We scaled these
sensitivities for the fairly optimistic scenario of a deep field
survey with 106 s exposure (assuming a t�2 scaling), a factor
of a few better than the HUDF, and lowering the threshold
for point source detection to S/N = 5. The limit is shown
as a band, since the flux sensitivities in Jy are transformed
into redshift-dependent sensitivities in the rest-frame mag-
nitudes. We observe that it is approximately at the limit of
what JWST can observe in the FUV where the di↵erence
between CDM and ETHOS starts to be apparent. Unless
the actual final survey strategy and depth for JWST is im-
proved, it will be di�cult to distinguish the models in this
way, albeit the high-redshift range z = 10 � 12 might be
promising.

The rest-frame NIR (1.15µm) luminosity function for
our simulations is shown in the middle panel of Fig. 6. Since
this wavelength is more sensitive to the older stellar popula-
tion, and hence to the star formation history, it becomes
less sensitive, particularly at higher redshifts, to the en-
hanced starburst phenomena in ETHOS discussed earlier,
which mostly a↵ect the recent star formation in the galaxy.
The rapid build-up of the galaxy population at the fain-end
observed in the FUV is thus not as apparent in the NIR. The
di↵erence between the ETHOS and CDMmodels is however,
not apparent until z � 8 for MAB(1.15µm) = �14.5.

The sensitivity of JWST to NIR wavelengths relies
on a di↵erent instrument, the Mid InfraRed Instrument

6 https://jwst-docs.stsci.edu/display/JTI/NIRCam+Filters
7 The F115W, F150W and F200W are the NIRCam filters sen-
sitive to the rest-frame FUV (150nm) luminosity function in the
redshifts shown in the top panel of Fig. 6. Their sensitivities were
taken from https://jwst.stsci.edu/instrumentation/nircam

MNRAS 000, 1–15 (2017)

UV Luminosity Function
Lovell, Zavala, Vogelsberger Shen, 
Cyr-Racine +, arXiv:1711.10497



Example: Mapping the Milky Way satellites
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• We are approaching the limit of visible small-scale structure!

Fornax Sculptor

DracoSegue I Credits: J. Bullock, M. Geha, R. Powell
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source plane
lens plane (what we see)

us

SDSS0924

One possible solution: Strong 
Gravitational Lensing

Credits: Leonidas Moustakas
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Galaxy-scale Gravitational Lenses
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Credits: Leonidas Moustakas
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• Use universality of gravity to probe smallest dark matter 
structures. 

Probing substructure through gravitational 
lensing

10 M. Vogelsberger et al.

Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well

MNRAS 000, 1–17 (2015)

Not to scale!See e.g. Dalal & Kochanek (2002); Vegetti et al. 
Nature, (2012); Hezaveh et al., (2016)
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• Compact sources (quasars):

• Flux-ratio anomalies (Dalal & Kochanek 2002)

• Time-delay lensing (Keeton & Moustakas 2009, Cyr-Racine et al. 2016)

• Extended sources (galaxies):

• Gravitational imaging of subhalos (Koopmans 2005; Vegetti et al. 
2009, 2012, 2014; Hezaveh et al. 2016)

• Transdimensional inference of subhalos (Brewer et al. 2015; 
Daylan et al. 2018)

• Power spectrum analysis of substructure field (Hezaveh et al. 
2016; Cyr-Racine, Keeton & Moustakas, 2018)

Probing substructure through gravitational 
lensing



Direct Subhalo Detection
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• “Gravitational Imaging” of Perturbed Einstein Rings

Figure 1: The detection of a dark-matter dominated satellite in the gravitational lens system
B1938+666 at redshift 0.881. The data shown here are at 2.2 micron and were taken with the
W. M. Keck telescope in June 2010. Additional data sets at 1.6 micron, from the Keck tele-
scope and the Hubble Space Telescope, are presented in the Supplementary Information. Top-left
panel: the original data set with the lensing galaxy subtracted. Top-middle panel: the final re-
construction. Top-right panel: the image residuals. Bottom-left panel: the source reconstruction.
Bottom-middle panel: the potential correction from a smooth potential required by the model to
fit the data. Bottom-right panel: the resulting dimensionless projected density corrections. The
total lensing potential is defined as the sum of an analytic potential for the host galaxy plus the
local pixelized potential corrections defined on a Cartesian grid. The potential corrections are a
general correction to the analytical smooth potential and correct for the presence of substructure,
for large-scale moments in the density profile of the galaxy and shear. When the Laplace opera-
tor is applied to the potential corrections and translated into surface density corrections, the terms
related to the shear and mass sheets become zero and a constant, respectively. A strong positive
density correction is found on the top part of the lensed arc. Note that these images are set on
a arbitrary regular grid that has the origin shifted relative to the centre of the smooth lens model
by ∆x = 0.024 arcsec and ∆y = 0.089 arcsec. When this shift is taken into account the position
of the density correction is consistent with the position of the substructure found in the analytic
re-construction (see Supplementary Information).

3

Vegetti et al. Nature, (2012). See also Hezaveh et al. (2016) 



Direct Subhalo Detection: Challenges
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• What is actually detected?

• Unclear what the measured mass actually mean (Minor & 
Kaplinghat, 2017).

• Throw away all lensing data to infer dark matter subhalo
statistics (subhalo mass function).

• Number of subhalo is fixed (Degeneracies with main lens 
model).

Can we improve on this?



Transdimensional subhalo Inference
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• Let the data drive the model complexity

Daylan, Cyr-Racine et al. (2018). See also Brewer et al. (2015) 

11

Figure 4. The probabilistic graphical model of PCAT lens metamodel. Each colored node in the network corresponds either to
a single parameter or a set of parameters (when vectorized) in the metamodel. M denotes the forward-modeled photon count
maps and D stands for the observed photon count maps. Nodes and edges are colored depending on the type of parameter they
represent and their conditional dependences, respectively. See Section 2.8 and Table 1 for further details.

Poisson mixture sampler originally designed to sample
from a gamma-ray emission metamodel consistent with
the Fermi-LAT data. In this work we extend PCAT to
evaluate lens models.

Given some Poisson distributed count data, PCAT pro-
poses reversible jumps (Green 1995) across members
of the metamodel in the form of births, deaths, splits
and merges of transdimensional elements, which repre-
sent dark, light-deflecting subhalos in this context. Re-
versibility of the transdimensional proposals ensure that
detailed balance is respected across the metamodel. The
resulting chain contains fair samples from the posterior
distribution of the metamodel given the data, which can
be used to compare models or constrain their parame-
ters.

When sampling from the posterior probability density
of the metamodel we assume that a photon counting
experiment, e.g., a CCD, measures impinging photon
counts in spatial pixels and spectral bands. We denote
the observed number of photons in energy band i and
pixel j by kdij . Given an observed image, ideally our aim
would be to infer the underlying true model, ktrueij , such
that kdij is a Poisson realization of ktrueij . In practice,
however, the true model can be highly complex. There-

fore, we approximate it using a parametric metamodel,
kmij , which predicts the mean photon count in energy
band i and pixel j. The observed photon count map
can therefore be written as a Poisson realization of the
photon count map predicted by the approximate model,
yielding the log-likelihood

lnP (D|M) =

X

ij

lnP (kdij |kmij )

=

X

ij

kdij ln k
m

ij � kmij � ln kdij !,
(16)

where D represents the set of observed photon count
maps and M denotes those predicted by the metamodel.
The photon count map predicted by the metamodel in
energy band i and pixel j, kmij , is then the model flux
convolved with the exposure of the detector towards a
particular direction on the sky, (✓

1

, ✓
2

), at energy E,
✏(E, ✓

1

, ✓
2

), and the transmission efficiency of the optical
filter, T (E),

kmij =

ZZZ
fm(E, ✓

1

, ✓
2

)✏(E, ✓
1

, ✓
2

)T (E) dE d✓
1

d✓
2

, (17)

Hyper-parameters

Number of subhalos

Probabilistic 
graphical model 
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Transdimensional subhalo inference: 
Pros and Cons

• Pros:

• Allows covariances between models with different 
number of subhalos to be taken into account. 

• Lead to direct constraints on the mass function (hyper-
parameters) that are (in my opinion) more believable. 

• Cons:

• Might need to impose bound on model complexity 
(parsimony prior). 
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• Move away from the subhalo language

Power spectrum analysis of substructure field

10 M. Vogelsberger et al.

Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well

MNRAS 000, 1–17 (2015)

Not to scale!
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• The textured window introduces perturbation on a given 
scale.

Substructure field analogy: Looking 
through a textured window

1) Unperturbed image 
2) Image seen through textured glass
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• The power spectrum has three main features:

Substructure power spectrum

Díaz Rivero, Cyr-Racine, & Dvorkin, arXiv:1707.04590
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Depends on inner 
density profile of 

subhalos

Determined by 
average subhalo size

Depends on 
abundance

13

FIG. (6): Density profile for a truncated NFW profile
(solid blue) and a truncated Burkert profile (solid green)
for ⌧ = 15, p = 0.7, and m = 106 M�. The gray dot-
ted and dashed-dotted lines represent the scale and tidal

radius, respectively.

FIG. (7): 1-subhalo power spectrum for a population of
tNFW subhalos (solid blue; same fiducial model as in Fig.
3) and tBurk subhalos (solid green). We also show k

trunc

(dotted-dashed gray) and k

scale

(solid gray), as well as
the k � k

scale

behavior of both power spectra.

the 1-subhalo term. In the forthcoming discussion we
will therefore explore the extent of this high-k di↵erence
between the two density profiles we’ve chosen to be rep-
resentative of each dark matter scenario.

We follow an identical procedure to the tNFW case
to determine the 1-subhalo term of the power spectrum,
which is shown in Fig. 7. We also show, for reference,
the fiducial tNFW case shown in blue in Fig. 3. There
is a slight increase in power with respect to the tNFW
population on intermediate scales due to the redistribu-
tion of mass as the core forms, followed by the expected
decrease in power on small scales due to the actual core.
Despite these di↵erences, we note that the changes of
the substructure convergence power spectrum on scales
k

trunc

. k . k

scale

in going from the tNFW to the tBurk
case is well within the variation allowed by varying the

statistical properties of the subhalo population, i.e. the
di↵erent e↵ects shown across Figs. 3 and 4. This implies
that measurements of the power spectrum on these scales
are unlikely to distinguish between a cored or cusped sub-
halo profile.
On even smaller scales k � k

scale

, the tBurk power
spectrum P

1sh

(k) begins to significantly deviate from its
tNFW counterpart. Indeed, since the Fourier transform
of the truncated Burkert profile behaves as

̃

tBurk

(k) ! 8(p4 � ⌧

4)

⌧

2

�
⇡(p� ⌧)2 + 4⌧2 log

⇥
p

⌧

⇤� 1

(k p r
s

)4
, (62)

for k p r

s

� 1, the 1-subhalo term for a population
of cored subhalos goes as P

1sh

(k) / 1/k8 for large k,
much steeper than the 1/k4 expected for NFW subhalos.
Therefore, if at all measurable (see discussion below), the
slope of the power spectrum on these scales could be deci-
sive in determining the inner density profile of subhalos,
which in turn could shed light on the particle nature of
dark matter.

V. DISCUSSION AND CONCLUSION

In this paper we have introduced a general formalism
to study the 2-point correlation function of the conver-
gence field due to subhalo populations in strong gravi-
tational lenses, keeping in mind that the observable for
these types of problems tend to be photon count or sur-
face brightness maps that exhibit multiple images due
to the light from a background source (e.g. a quasar or
a galaxy) having been warped by a massive foreground
object, namely the gravitational lens. We have explored
in depth how di↵erent subhalo population properties af-
fect the substructure convergence field, as well as how it
di↵ers for two alternative dark matter scenarios: CDM,
which we have represented as a population of tNFW sub-
halos, and SIDM, where we used a truncated generalized
Burkert profile to represent the subhalo population.
Using the CDM scenario as our baseline, we found that

the form of the 1-subhalo term is largely determined by
three key quantities: a low-k amplitude proportional to
̄

sub

hm2i/hmi, a turnover scale k

trunc

where the power
spectrum starts probing the density profile of the largest
subhalos, and the wavenumber k

scale

corresponding to
the smallest scale radii beyond which the slope of the
power spectrum reflects the inner density profile of the
subhalos. We have shown that the first of these is di-
rectly related to subhalo abundance and specific statisti-
cal moments of the subhalo mass function. On the other
hand, the turnover scale is determined by the average
truncation radius of the largest subhalo included in the
power spectrum calculation. On scales k & k

trunc

, there
is significant variability depending on the statistical prop-
erties of subhalos - i.e. changes to the tidal truncation,
parameters pertaining to the subhalo mass function, or to
the scale radius-mass relation can shift the distribution

Truncated
Navarro-Frenk-White
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• The substructure deflection field, leads to subtle surface 
brightness variations along the Einstein ring 

Effect of substructures on lensed images

Lens galaxy Einstein ring

Cyr-Racine, Keeton & Moustakas, in prep.
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• The substructure deflection field, leads to subtle surface 
brightness variations along the Einstein ring 

Effect of substructures on lensed images
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• We can decompose the image residuals in a Fourier-like 
basis to determine which modes are present in the data.

From image residuals to substructure power 
spectrum

Cyr-Racine, Keeton & Moustakas, in prep.
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FIG. 3. Real and imaginary parts of the W�
l kernel for four di↵erent Fourier modes. The kernels are ordered from long wave-

length modes (top left corner) to short wavelength modes (lower right corner) with {kl
1

, kl
2

, kl
3

, kl
4

} = {1.57, 2.22, 11.0, 19.1}
arscec�1. The source and lens model used here are the same as in Fig. 2

measure a limited number of Fourier modes. Now, com-
pared to large-scale structure surveys, the window func-
tion plays a subdued role here since the gradient of the
source appearing in W�

l

kernel (Eq. (50)) already limits
the sensitivity of the data to Fourier modes with wave-
length on the order of the lens’ Einstein radius or smaller,
independently of the size of A

img

. Furthermore, for the
modes given in Eq. (48), �

ll

(k) is strongly peaked at
k = k

l

while �
ll

0(k) is oscillatory for l 6= l0, hence leading
to strong cancellation4 of the o↵-diagonal elements. We
can thus approximate the window function as

�
ll

0(k) ⇡ �(k � k
l

)

k
l

�
ll

0 , (55)

which yield a C
sub

covariance matrix of the form

(C
sub

)
ll

0 =
4

A
img

k
l

k
l

0

Z
dk k P

(0)

sub

(k)�
ll

0(k)

⇡ 4P
(0)

sub

(k
l

)

A
img

k2

l

�
ll

0 . (56)

We note that for a constant P
(0)

sub

(k) (as in the case of
a population of point masses), Eq. (56) becomes exact
for the diagonal elements of C

sub

. In general, as long
as the value of the convergence power spectrum does not
rapidly vary over the width of the window function, we
find Eq. (56) to be an excellent approximation.

4 For instance, we find that
R1
0

dk k�l,l+1

⇠ 10�3.

B. Numerical implementation

To implement and test the likelihood presented in
Secs. IV A and IV B in the Fourier basis, we have de-
veloped the software package PkLens. Written in pure
Python 3, PkLens uses just-in-time compilation and au-
tomatic parallelization from the numba package to accel-
erate key parts of the computation. The linear algebra
is optimized using a parallelized implementation of the
c�intel Math Kernel Library.

The reality condition W�

�l

= W�⇤
l

implies that the G
matrix defined in Eq. (37) can be written in the following
block structure

G =

✓
X Y
Y⇤ X⇤

◆
, (57)

where X = X† is an Hermitian block and Y = YT is a
symmetric block, both of size N

modes,ind

⇥N
modes,ind

. We
thus need to compute only half the elements of X and half
that of Y (for a total of N

modes,ind

entries, at it should!)
to fully characterize the matrix G. This structure of the
G matrix allows us to use blockwise inversion in order
to compute the matrix D�1 appearing in the likelihood
given in Eq. (40), hence significantly speeding up the
linear algebra. Similarly, only half of the g

l

vector entries
need to be computed since g�l

= g⇤
l

.
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Use Hubble Space Telescope
mock images to assess sensitivity

• We show a significant detection of the power spectrum:

Cyr-Racine, Keeton & Moustakas, in prep.
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B. Numerical implementation

To implement and test the likelihood presented in
Secs. IV A and IV B in the Fourier basis, we have de-
veloped the software package PkLens. Written in pure
Python 3, PkLens uses just-in-time compilation and au-
tomatic parallelization from the numba package to accel-
erate key parts of the computation. The linear algebra
is optimized using a parallelized implementation of the
c�intel Math Kernel Library.

The reality condition W�

�l

= W�⇤
l

implies that the G
matrix defined in Eq. (37) can be written in the following
block structure

G =

✓
X Y
Y⇤ X⇤

◆
, (57)

where X = X† is an Hermitian block and Y = YT is a
symmetric block, both of size N

modes,ind

⇥N
modes,ind

. We
thus need to compute only half the elements of X and half
that of Y (for a total of N

modes,ind

entries, at it should!)
to fully characterize the matrix G. This structure of the
G matrix allows us to use blockwise inversion in order
to compute the matrix D�1 appearing in the likelihood
given in Eq. (40), hence significantly speeding up the
linear algebra. Similarly, only half of the g

l

vector entries
need to be computed since g�l

= g⇤
l

.

VI. FISHER ANALYSIS

To develop some intuition about the sensitivity of dif-
ferent lens configurations and observational scenarios to
the substructure convergence power spectrum, it is in-
structive to first carry out a simple Fisher analysis of the
likelihood given in Eq. (43). We adopt a binned substruc-
ture convergence power spectrum as our fitting model,
and the relevant parameters here are thus the amplitude
of P

sub

(k) within each bin, {P
sub,i

}
i=1,...,N

bins

. For the
analysis shown in this section, we divide the range of
scales probed by a given lensed image into 6 wavenumber
bins that are evenly spaced in log(k). In the following,
for each filter centered at wavelength �, we assume that
we have N�

obs

observations of the same lens.

A. Fisher matrix and sensitivity function

The Fisher matrix for the binned amplitude of the
power spectrum takes the form

F
ij

⌘
D @2 ln L

@P
sub,i

@P
sub,j

E

=
�
ij

N
i

2P 2

sub,i

 
1 � A2

img

16P 2

sub,i

N
i

X

l2i

|(D̃�1)
ll

|2k4

l

!

' �
ij

N
i

2P 2

sub,i

 
1 � 1

N
i

X

l2i

1

(1 + P
sub,i

S
l

)2

!
, (58)

where the sum runs over all Fourier modes whose mag-
nitude falls within the range of the ith bin, and N

i

is
the total number of modes within the bin. Notice the
unorthodox sign in the definition of the Fisher matrix
which stems from the fact that the likelihood (43) is
Gaussian in the g̃

l

variables, but with a variance given
by hg̃

l

g̃
l

0i = �D̃
ll

0 . In going from the second to the third
line, we have assumed that the noise for each observation
is Poissonian with C

N

�

,ij

= �
ij

�
1

O
�

(x
i

) (where O
�

(x
i

)
is given in Eq. (13) and �

1

= 1 for pure Poisson noise)
and neglected the o↵-diagonal entries of the G�

ll

0 matrix.
In Eq. (58), we have introduced the sensitivity S

l

of a
given gravitational lens observation to the lth mode of
the substructure convergence field. It is defined as the
product of a mode-independent prefactor Q�

obs

that de-
pends on the depth and quality of the observation and of
a mode-dependent function ⇤�

l

that only depends on the
spatial structure of the macrolens, source, and PSF,

S
l

=
X

�

Q�

obs

⇥ ⇤�

l

, (59)

where

Q�

obs

⌘ N�

obs

T
exp

F
�

�
1

S(�)

inv

, (60)

and

⇤�

l

⌘ 4

k2

l

N
pix

X

m

|(W
�

⇤ r'
l

· r
u

Ŝ
�

)(x
m

)|2
W

�

⇤ Ŝ
�

(x
m

)
, (61)

where the sum runs over all the pixels in the image,
and the “⇤” symbol stands for the convolution operation.
Note that we have written the source surface brightness
as S

�

(u) = F
�

Ŝ
�

(u), where F
�

is the total source flux
within the bandpass of the filter and

R
d2u Ŝ

�

(u) = 1.
For simplicity, we have omitted the foreground contri-
bution when writing Eq. (61). Since ⇤�

l

describes the
intrinsic sensitivity of a given lens configuration to the
lth mode of the substructure density field, it is a useful
figure of merit to rapidly assess whether a given lens can
provide competitive constraints on the substructure con-
vergence power spectrum. The dimensionless prefactor
Q�

obs

simply captures how the sensitivity S
l

scales with
exposure time, number of observations, source flux, noise
level, and detector sensitivity. Not surprisingly, the sen-
sitivity is improved for a longer total exposure, a brighter
source, a lower noise level, and by lowering the value of

S(�)

inv

(which could be done by using a larger telescope
and/or a more sensitive camera).

For very large value of the sensitivity, P
sub,i

S
l

�
1, Eq. (58) implies that the measurement uncertainty

�P
sub,i

=
q

(F�1

ii

) on the amplitude of the binned power

spectrum becomes sample variance dominated with

�P
sub,i

'
p

2P
sub,ip
N

i

, (P
sub,i

S
l

� 1) (62)
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The next decade of substructure lensing

Thanks!

• With LSST and WFIRST(??), the number of known galaxy-
scale gravitational lenses will grow dramatically (from ~100 
to ~10000).

• This will open the “statistical era” of strong lensing.

• Need to compare “direct” subhalo detection with more 
general probe of the density field.  

• Several challenges to tackle, including how to jointly analyze 
a large number of lenses. 


