Enhancing the sensitivity to DM signatures in the VHE γ-ray band through machine learning

D. Nieto on behalf of the Cherenkov Telescope Array Consortium

Statistical Challenges in the Search for Dark Matter

February 2018 Banff, Alberta

- Dark matter searches in the (VHE) $\gamma\text{-ray}$ band
- Imaging atmospheric Cherenkov technique
- Machine learning & current-generation IACTs
- Machine learning & next-generation IACTs

- Basis: Detection of DM annihilation or decay products (SM particles)
- In most cases, entangled with CR and subdominant
- \bullet WIMPs with masses in the ~100 GeV range are good DM particle candidates
- Photons are privileged messengers
 - No deflection by B-fields, trace back to source
 - Observation of astrophysical targets
 - Characteristic spectral shape: identification

Expected spectrum from annihilating DM

$$\frac{d\Phi}{dE} = J(\Delta\Omega) \times \frac{d\Phi^{PP}}{dE} = \int_{I.o.s,V} \rho_{DM}^{2}(I) d\Omega dI \times \frac{1}{4\pi} \frac{\langle \sigma_{ann} V \rangle}{2m_{DM}^{2}} \sum_{i} B_{i} \frac{dN_{i}^{\gamma}}{dE}$$

Key concepts: $\rho_{\text{DM}},$ distance, background

Galactic Center & Halo High flux Background Issues

Galaxy Clusters

Huge DM content
Large distance
High background

Unassociated HE Sources: DM Subhalos?

Pieri et al. PRD 83:0235, 2008

 $\chi \chi \rightarrow b \overline{b}, m_{\chi} = 40 \text{ GeV}$

D. Nieto

- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area (~10⁵ m²)
- Large background from charged CR
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area (~10⁵ m²)
- Large background from charged CR
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area (~10⁵ m²)
- Large background from charged CR
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area (~10⁵ m²)
- Large background from charged CR
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area (~10⁵ m²)
- Large background from charged CR
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area (~10⁵ m²)
- Large background from charged CR
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

Fraction accepted gammas

0.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

- ML method: Random Forest (RF)
- Applied to: background rejection, arrival direction

Albert et al., NIM-A 588:424-432 (2008)

Aleksic et al., A&A 524 A77 (2010)

0.1

Machine learning & current generation IACT

- ML method: Boosted Decision Trees (BDT)
- Applied to: background rejection

Krause et al., APP V89 P1-9 (2017)

- ML method: Boosted Decision Trees (BDT)
- Applied to: background rejection

- 5-20 fold better sensitivity w.r.t. current IACTs
- 4 decades of energy coverage: tens of GeV to >100 TeV
- Improved angular and energy resolution
- Two arrays (North/South)

Low-energy range: 23 m ø Parabolic reflector 4° - 5° FoV Energy threshold ~tens GeV

Mid energy-range: 12 m ø Davies-Cotton reflector 9 m ø Schwarzschild-Couder reflector 7° - 8° FoV mCrab sensitivity in the 100 GeV – 10 TeV range

High-energy range: 4 m ø Davies-Cotton reflector 4 m ø Schwarzschild-Couder reflector 9 - 10° FoV Several km² area at multi-TeV energies

www.cta-observatory.org/

Science with CTA, arXiv:1709.07997

Dark matter searches with CTA

Enhancing CTA's performance with deep learning

- DL capable of *extracting* and mapping image features automatically with unprecedented classification accuracy. Hyper-active CS research field constantly improving
- Many HEP/Astro experiments already exploring/utilizing the technique (LIGO, LHC, MicroBooNe, NOVa, etc...)

Method:

- Use deep learning to reconstruct CTA events from non-parameterized images
 - Performance enhancement -> better sensitivity to DM

But there are risk...

• MC reliability (e.g. network selecting some features from your MC not present in real data)

Next step -> find the best performing model for event reconstruction

The curse of dimensionality haunts us here too!

- Hyperparameter space for deep learning architecture design
 - Number of CNN layers
 - o Kernel size
 - Activation function
 - o Dropout rate
 - Number of FC layers
 - o Batch size
 - Learning rate
 - o Optimizer
 - o ...

- Optimization strategies
 - o Grid searches
 - Random searches
 - Bayesian optimization
 - Evolutionary algorithms
 - Reinforcement learning
 - o ...

+ Not that many works on models taking stereoscopic images...

- o Gamma-ray telescopes and IACTs in particular are competitive DM probes
- o Current-generation IACTs have enhanced their performances through ML
- Next-generation IACT may profit from latest developments in ML
 - Any gain in performance can be translated into better sensitivity to DM
- Ongoing efforts to exploit deep learning as an event reconstruction method for CTA
 - Background rejection happens over non-parametrized single images
 - Working on optimizing architectures:
 - That take advantage of stereoscopic information
 - That work for energy and arrival direction estimation (regression)

Nieto et al., PoS(ICRC2017)809

- Simulation run:

 Diffuse {gamma, proton}
- Telescope array:
 8x SC-MST
- Three energy bins:

Bin	E_{min} [TeV]	E_{max} [TeV]	Ngamma	N _{proton}
Total			4160578	6518742
Low Energy	0.1	0.31	727316	499909
Medium Energy	0.31	1	657397	245912
High Energy	1	10	642034	147012

• Default ED sanity cuts prior to BDT training:

Cut
$0 \le \sqrt{MCxoff^2 + MCyoff^2} \le 3$
-2 < MSCW < 2
-2 < MSCL < 5
$EChi2S \ge 0$
ERecS > 0
0 < EmissionHeight < 50
$dES \ge 0$

ROC

Accuracy

Model	Low E.	Med. E.	High E.
ResNet50	81.1%	90.1%	91.2%
Inception V3	81.4%	90.1%	91.6%

AUC

Model/Energy	Low E.	Med. E.	High E.
ResNet50	84.8%	91.4%	90.2%
InceptionV3	84.7%	91.1%	92.0%

- Expected trends in performance as a function of energy observed
- Inception V3 similar to ResNet50
- BDT ROCs shown as **reference** and a milestone to overtake
- BDT vs DL ~= 8 SCT array vs single SCT, thus a direct comparison between the two methods is NOT on an equal footing