OVERVIEW: Dark matter structure and simulations (Astrophysical Constraints on Dark Matter)

Hot gas explodes out of young dwarf galaxies

Simulation by Andrew Pontzen, Fabio Governato and Alyson Brooks on the Darwin Supercomputer, Cambridge UK.

Simulation code **Gasoline** by **James Wadsley** and **Tom Quinn** with metal cooling by **Sijing Sheng**.

Visualization by Andrew Pontzen.

Alyson Brooks Rutgers, the State University of New Jersey

CDM IS AN EXCELLENT MODEL FOR THE LARGE SCALE STRUCTURE OF THE UNIVERSE

Hlozek et al. (2012)

BUT...

THE SMALL SCALE "CRISIS" OF CDM

- Bulge-less disk galaxies
- The cusp/core problem
- The "Missing Satellites" problem
- Missing Dwarfs
- The "Too Big to Fail" (dense satellites) problem

MY STARTING POINT:

THERE IS NO SMALL SCALE CRISIS

THERE'S JUST A LOT OF POORLY UNDERSTOOD PHYSICS

BUT THAT DOESN'T RULE OUT NEW PHYSICS

THE IMPORTANCE OF BARYONIC PHYSICS

CDM PREDICTS LARGE BULGES ...BUT WE RARELY SEE THEM

- Tidal torques: predict the sizes of disks well
- But over-predict the amount of low angular momentum gas

Outflows!

M_{vir} ~ 10¹⁰ M_{sun} "dwarf galaxy"

Edge-on disk orientation

(arrows are velocity vectors)

Outflows Remove Low Angular Momentum Gas

Brook et al., 2011, MNRAS, 415, 1051

van den Bosch et al. (2001)

THE CUSP/CORE PROBLEM

Parameterize density profile as $\varrho(\mathbf{r}) \propto \mathbf{r}^{-\alpha}$ Simulations predict $\alpha \sim 1$ (a steeply rising central cusp) Observations show $\alpha \sim 0$ (constant-density core)

Creation of a Dark Matter Core

Oh et al., 2011, AJ, 142, 24

Pontzen & Governato (2012)

How are Cores Created?

Pontzen & Governato (2012), MNRAS, 421, 3464, arXiv:1106.0499

CORE CREATION VARIES WITH GALAXY MASS

STARTING ASSUMPTION: THERE IS NO SMALL SCALE "CRISIS"

	CDM+Baryons	WDM	SIDM
Bulge-less disk galaxies			
The Cusp/ Core Problem			
Too Big to Fail			
Missing Satellites			

STARTING ASSUMPTION: THERE IS NO SMALL SCALE "CRISIS"

	CDM+Baryons	WDM	SIDM
Bulge-less disk galaxies			
The Cusp/ Core Problem			~
Too Big to Fail		~	/
Missing Satellites	/	/	

STARTING ASSUMPTION: THERE IS NO SMALL SCALE "CRISIS"

	CDM+Baryons	WDM +Baryons	SIDM +Baryons
Bulge-less disk galaxies			
The Cusp/ Core Problem			
Too Big to Fail			/
Missing Satellites	/	/	/

WE NEED BARYONS IN ALTERNATIVE DM MODELS

WHAT IS THE SMOKING GUN THAT POINTS TO A GIVEN DM MODEL?

WDM: WALKING A FINE LINE

Lovell et al. (2016)

A TESTABLE PREDICTION OF DELAYED STRUCTURE FORMATION

Governato et al. (2014)

SIDM: THE CONSTRAINTS ARE WEAKENING

results for a 9x10⁹ M_{sun} halo

BUT... BARYONS WIN FIRST

AN OBSERVATIONAL TEST

If galaxies in this mass range are observed to have large cores, then something beyond CDM is necessary

EVEN LIGHTER DM? FUZZY DM SIMULATIONS

EVEN LIGHTER DM? FUZZY DM SIMULATIONS

EVEN LIGHTER DM? FUZZY DM SIMULATIONS

solitonic cores denser than CDM?

THE FUTURE IS DWARFY

Tollerud et al. (2009)

Conclusions

Baryonic physics alleviates the current problems with CDM

But that doesn't mean CDM is the correct model. All dark matter models must also include baryons!

Future observations of dwarf galaxies ($M_{star} < 10^7 M_{sun}$) are the best probes of non-vanilla CDM

To constrain the Dark Matter model, we must understand the impact of baryonic physics on galaxy formation!

see arXiv:1407.7544 for a review

THE STELLAR MASS — HALO MASS RELATION

THE STELLAR MASS — HALO MASS RELATION

THE STELLAR MASS — HALO MASS RELATION

