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Optimal management and scenario models

Traditionally, optimal decision making under uncertainty is done
two steps:

I Step 1: Estimation of a probability model for the random
scenarios

I Step 2: Finding the best decision given the estimated model

According to Ellsberg (1961) we face here two types of
non-determinism:
Uncertainty: the probabilistic model is known, but the realizations
of the random variables are unknown (”aleatoric uncertainty”)
Ambiguity: the probability model itself is not fully known
(”epistemic uncertainty”).
Ambiguity sets P: A family of probability models P which are all
plausible models for the reality and we are uncertain about which
concrete P ∈ P is the true one.
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Problem formulation: Ambiguity

Let the basic problem be

min {RP0 [Q(x , ξ)] : x ∈ X}

and let P be the ambiguity set. Then the ambiguity problem is

min {max {RP [Q(x , ξ)] : P ∈ P } : x ∈ X} .

Find the pair of optimal decision x∗ ∈ X which is
good for all models P ∈ P, among which there is

a worst case model P∗ ∈ P.
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The pair (x∗,P∗) forms a saddle point
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Wasserstein distance

In order to measure the distance of two scenario distributions we
use the transportation distance (Kantorovich (1958) distance,
Wasserstein (Vasserstein 1969) distance, earth mover distance)
between random distributions on Rm = (Ω, d) where d is a
distance on Rm.
Wasserstein distance of order r :

dr (P1,P2; d) :=

(
inf
π

{∫
Ω×Ω

d (ω1, ω2)r π [dω1, dω2]

}) 1
r

,

where the infimum is taken over all (bivariate) probability measures
π on Ω× Ω which have respective marginals, that is

π [A× Ω] = P1 [A] and π [Ω× B] = P2 [B]

for all measurable sets A ⊆ Ω and B ⊆ Ω.
We shall call such a measure π a transportation plan.
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Why Wasserstein balls?

I It is very flexible, since the distance d on Rm can be chosen,
e.g. to take more care about tails in extreme value problems.

I If the supports of P1 and P2 are finite and fixed, we have
polyhedrality.

I If the scenario values may vary, the Wasserstein ball is more
involved, but can be attacked by DC-algorithms (D. Wozabal)

I The Wasserstein distance metricizes the weak topology on
uniformly r -integrable sets of probability measures. In
particular, dr (P, P̂n)→ 0 for the empirical measure P̂n.

I For any Lipschitz L-function f

|
∫

f (u) dP1(u)−
∫

f (u) dP2(u)| ≤ L · d1(P1,P2)
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Implications of closedness in Wasserstein distance

Assume that X ∼ P and X̃ ∼ P̃. Then

1.
∣∣∣E|X |p − E|X̃ |p

∣∣∣ ≤
p · dr

(
P, P̃

)
·max

{
E

r−1
r

[
|X |r ·

p−1
r−1

]
, E

r−1
r

[
|X̃ |r ·

p−1
r−1

]}
,

2. |E(X p)− E(X p)| ≤
p · dr

(
P, P̃

)
·max

{
E

r−1
r

[
|X |r ·

p−1
r−1

]
, E

r−1
r

[
|X̃ |r ·

p−1
r−1

]}
for p

an integer,

3.
∣∣∣EX 2 − EX̃ 2

∣∣∣ ≤ 2 · d2

(
P, P̃

)
·max

{
E

1
2

[
X 2
]
, E

1
2

[
X̃ 2
]}

,

4.
∣∣∣E|X |r − E|X̃ |r

∣∣∣ ≤
r · dr

(
P, P̃

)
·max

{
E

r−1
r [|X |r ] , E

r−1
r

[
|X̃ |r

]}
and

5.
∣∣∣E|X |p − E|X̃ |p

∣∣∣ ≤
p · d2

(
P, P̃

)
·max

{
E

1
2

[
|X |2(p−1)

]
, E

1
2

[
|X̃ |2(p−1)

]}
,

where p ≥ 1 and r > 1.
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Statistical estimation and confidence sets

I For compatibility with the convergence of the empirical
distribution, the distance should metricize the weak (weak*)
convergence.

I It should allow to construct statistical confidence sets, i.e.
random sets, which contains the true distribution with
prescribed level of confidence.

One typical Theorem:
Theorem (Boley, Guilin, Villani). Let d(x , y) = ‖x − y‖. Suppose
that

∫
exp(α‖x‖)P(dx) <∞. Then for m′ < m, there exist

constants k and N0 such that for ε > 0 and
n ≥ N0 max(ε−(2r+m′), 1)

P{dr (P̂n,P) ≥ ε} ≤ exp(−Kn1/r min(ε, ε2)).
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Single-,two- and multistage
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Single- or twostage Multistage

Single- or twostage Stochastic optimization problems involve a
probability distribution for the scenarios. Multistage problems
involve a stochastic process for which the conditional distributions
are relevant, not just the joint distribution. It is crucial to encode
the information structure into the scenario process in order to
model non-anticipativity.
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Nested distance for multistage situations

A generalization of the Wasserstein distance for multistage
situations: Let P = (Ω, (Ft)0≤t≤T ,P) and P̃ = (Ω̃, (F̃t)0≤t≤T , P̃)
two filtered probability spaces. The nested distance of order r ≥ 1
between P and P̃, denoted by dl(P, P̃), is defined as the optimal
value of the optimization problem

inf
π

(∫∫
FT⊗F̃T

d(ω, ω̃)rπ(dω, d ω̃)

)1/r

s.t. π
(
A× Ω̃|Ft ⊗ F̃t

)
= P

[
A
∣∣∣Ft

]
A ∈ FT ; t = 1, . . . ,T

π
(
Ω× B|Ft ⊗ F̃t

)
= P

[
B|F̃t

]
B ∈ F̃T ; t = 1, . . . ,T .

We define model neigborhoods as balls in nested distance around a
baseline model P0:

P = {P : dl(P,P0) ≤ ε}
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The main Lipschitz property

Theorem. (A. Pichler, G.P. 2009)
Let P :=

(
Ω, (Ft)t=0,...T ,P

)
, (P̃ :=

(
Ω̃, (F̃t)t=0,...T , P̃

)
, resp.) be

filtered probability spaces. Consider the multistage stochastic
optimization problem

v(P) := inf {EPQ(ξ, x) : x C F} ,

where Q is convex in x for any ξ fixed, and Lipschitz with constant
L in ξ for any x fixed. Then∣∣∣v(P)− v(P̃)

∣∣∣ ≤ L · dr (P, P̃)

for every r ≥ 1.
The constraint x C F expresses the fact that the stochastic
decision process x must be adapted to the filtration F , i.e.must be
nonanticipative.
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Confidence sets for the nested distance

If P̂n is the empirical distribution of a set of n paths

(ξ
(i)
1 , . . . , ξ

(i)
T )i=1,...,n. Then P̂n does NOT converge in nested

distance to the true distribution.
Theorem. Let P̂n ∗ khn be a smoothed version of the empirical
process, where the conditional distributions are smoothed with the
kernel function k and a bandwidth hn. Suppose that

I the stochastic process takes its values in Rm and the
bandwidth constants satisfy

hn → 0,
nhmn
|log hn|

→ ∞, |log hn|
log log n

→∞, and nhmn →∞,

I the conditional densities have a compact and convex support
and are bounded from above and from below.

Then the nested distance between the smoothed empirical
distribution Pk

n := P̂n ∗ khn and the true model P satisfies

P
(

dl
(
P, Pk

n

)
> C · ε

)
≤ T · ε

for a constant C depending on the constants involved in the
assumptions and for n large enough.
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The nested distance is d(P, P̃) = 0.82.
The distance of the multiperiod distributions is d(P, P̃) = 0.68.
This approximation is calculated as a stagewise optimal
transportation problem (a stagewise optimal facility location
problem), not by Monte Carlo. Consequently, all scenarios get
different probability values, not just 1/n as by crude MC.
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The nested distance is d(P, P̃) = 1.12.
The distance of the multiperiod distributions is d(P, P̃) = 0.67.
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Examples for robust decisions

I Pricing of contingent claims

I Portfolio optimization (single-stage)

I Management of hydro reservoirs
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Pricing of contingent claims in discrete time

Consider a d + 1-dimensional price process S for the underlying
defined on a filtered probability space (Ω,F)

St = (S
(0)
t ,S

(1)
t , . . . ,S

(d)
t ), t = 1, . . . ,T .

A contingent claim C consists of a sequence of cash flows
C1, . . . ,CT which is adapted to the filtration generated by the
underlying.
The consistent no-arbitrage ask-price of the contingent claim by a
pointwise replication strategy is given by solution of the multistage
optimization problem

πa: := min
x ,w

w

s.t. x>0 S0 ≤ w

x>t−1St − x>t St − Ct ≥ 0 ∀t = 1, · · · ,T − 1;

x>T−1ST − CT ≥ 0.
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Acceptability functionals

An acceptability functional is a mapping
A : Lp(Ω,F ,P)→ R ∪ ±∞ which is: concave, monotonic,
translation equivariant and positively homogeneous.
By duality, such a functional can be represented as

A(Y ) = inf
Z∈ZA

{E [YZ ]} ,

where ZA is the supergradient set of densities.
The (upper) Average Value-at-Risk has supergradient set is
Z = {Z : 0 ≤ Z ≤ 1/α;E(Z ) = 1}.
Special cases of the AV@R are

I AV@R0(Y ) = essinf (Y), the essental infimum. Acceptability
w.r.t. essinf means almost sure (super-) hedging, the
“classical” hedging condition.

I AV@R1(Y ) = E(Y ), the expectation. Acceptability w.r.t. the
expectation is the weakest form of acceptability: expectation
hedging.

Georg Ch. Pflug/A. Pichler/D. Wozabal/B. Analui/M. Glanzer/M. PohlNonparametric Distributional Robustness in Multistage Stochastic Optimization



The acceptable ask price

The acceptable ask-price is given as the optimal solution of the
optimization problem S

πa(A1, . . . ,AT ) := min
x ,w

w

s.t. x>0 S0 ≤ w

At(x
>
t St − x>t−1St − Ct) ≥ 0 ∀t = 1, · · · ,T − 1;

AT (x>T−1ST − CT ) ≥ 0.

A similar problem determines the acceptable bid-price.

Georg Ch. Pflug/A. Pichler/D. Wozabal/B. Analui/M. Glanzer/M. PohlNonparametric Distributional Robustness in Multistage Stochastic Optimization



Acceptability under model ambiguity

The robust acceptable ask-price is defined as the optimal solution
of the optimization problem

min
xt ,w

w

s.t.

x>0 S0 ≤ w

AP
t (x>t−1St − x>t St − Ct) ≥ 0 ∀P ∈ P; ∀t = 1, . . . ,T − 1

AP
T (x>T−1ST − CT ) ≥ 0 ∀P ∈ P

The optimal bid price is defined in an analogous way.
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Dualization

Let P be a convex set of probability models, which is spanned by a
sequence of models P1,P2, . . ., that are all absolutely continuous
w.r.t. some baseline model P̂. Moreover, for all t = 1, . . . ,T , let
At be acceptability functionals with corresponding supergradient
sets ZAt . Then, strong duality holds between the given ambiguity
problem and its dual given by

πPa (A1, . . . ,AT ) = sup
Q

EQ

[
T∑
t=1

C̃t

]
s.t. EQ

[
S̃t+1

∣∣∣Ft

]
= S̃t ∀t = 0, . . . ,T − 1

∀t = 1, . . . ,T ∃ P ∈ P :
dQ
dP

∣∣∣∣
Ft

∈ ZAP
t
.
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Observations

I Weakening the acceptance level decreases the ask-price and
increases the bid-price

I Increasing the ambiguity radius increases the ask-price and
decreases the bid-price

I The bid-ask spread decreases with weakening the acceptance
level and increases with the ambiguity level
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An illustration for the bid-ask spread
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Challenging the Black-Scholes formula

Call option: strike K = 95, S0 = 100, T=1yr, vola 20%, r = 1%
Continuous time BS price 11.0602
Discrete price on a bushy tree , which carries lots of martingale
measures: 11.0593

Georg Ch. Pflug/A. Pichler/D. Wozabal/B. Analui/M. Glanzer/M. PohlNonparametric Distributional Robustness in Multistage Stochastic Optimization



Portfolio selection with AV@R risk under model
ambiguity

max
x∈X

min
P∈P

E
(
x>ξP

)
− λAV@Rα

(
−x>ξP

)
,

P := {P : d1(P,P0) ≤ ε},
P0... reference/baseline distribution,
ε... level of model ambiguity,
d1(·, ·)... Wasserstein distance.
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Consider the empirical distribution P0 = P̂n
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Pflug and Wozabal (2007)
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Esfahani and Kuhn (2015)
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Figure: Optimal portfolio composition as a function of the level of model
ambiguity κ.
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Equal weights is maximin for large ambiguity

With this insight, we may prove a remarkable result for distortion
functionals:

lim
K→∞

argmax {
∑

xi=1,xi≥0} min
dr (P,P0)≤K

AP(x>ξ) =
1

M
1l.

Under large ambiguity, the optimal decision is the ”equal weights”
allocation.
The same result holds for the Markovitz model, if the distance is
d2.
Distortion utility functional: A(Y ) =

∫ 1
0 F−1

Y (p)h(p) dp

Average value-at-risk: AV@R(Y ) = 1
α

∫ α
0 F−1

Y (p) dp
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Ambiguity only in dependency

ξC is the distribution of the return vector, where C is the copula
while the marginals of ξi are fixed. Let C0 be the baseline copula.

max
x∈X

min
d1(C ,C0)≤ε

E
(
−x>ξC

)
− λR

(
x>ξC

)
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Total dependency ambiguity: Portfolio Concentration

Let C be the family of all copulas.
If R is subadditive, comonotone additive and positive
homogeneous, then

max
x∈X

min
C∈C

E
(
x>ξC

)
− λR

(
x>ξC

)
= maxi∈{1,...,m}E[ξi ]− λR(ξi ).

Thus the maximin portfolio is to invest everything in just one the
asset i∗, where

i∗ = argmaxi∈{1,...,m}E[ξi ]− λR(ξi ).
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Concentration vs Diversification

Data: 6 Indices: S&P 500, TOPIX, FTSE China B35, EURO
STOXX 50, FTSE 100 and NIFTY 500; observations Jan 1 - Dec
13, 2016
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Price of Ambiguity and Reward for Robustness

Let P̂ be the baseline model and let x∗(P) be the optimal solution
of the baseline problem. Likewise, let P be the ambiguity set and
let x∗(P) be the solution of the minimax problem. Under
convex-concavity, the solution x∗(P) of the minimax problem
together with the worst case model P∗ form a saddle point,
meaning that the following inequality is valid for all feasible x and
all P ∈ P

EP[Q(x∗(P), ξ)] ≤ EP∗ [Q(x∗(P), ξ)] ≤ EP∗ [Q(x , ξ)].

Let us call EP∗ [Q(x∗(P), ξ)] the minimax value.
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Define:

I The Price of Ambiguity.

EP̂[Q(x∗(P), ξ)]− EP̂[Q(x∗(P̂), ξ)] ≥ 0.

”How much do I loose by implementing the minimax strategy
x∗(P) instead of the best strategy for the baseline model, if in
fact the baseline model is true?”

I Reward for robust decisions.

EP∗ [Q(x∗(P), ξ)]− EP∗ [Q(x∗(P), ξ)] ≥ 0.

”How much do I gain, when I implement the minimax strategy
x∗(P) instead of the best strategy for the baseline model, if in
fact the worst case model is true?”
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Management of a hydrosystem in the Austrian Alps

The scenario process is 5-dimensional: Spot prices, Pumping
prices, Inflows for 3 reservoirs.
The decision process is 2-dimensional: Turbining and Pumping
The number of decision stages is 8 (weeks).
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The typical picture: The larger is the ambiguity radius, the simpler
is the worst case tree.
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The minimax decisions: They get more complicated with increasing
ambiguity radius: Decisions lying on bounds are avoided.

Price of ambiguity: 2.3%.
Reward for robustness: 7.5%.
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Conclusions

I In order to capture scenario uncertainty (aleatoric uncertainty)
and probability ambiguity (epistemic uncertainty) we use a
maximin approach.

I The ambiguity neighborhood are chosen in such a way that
they form statistical confidence regions for which bounds for
the covering probability are available.

I For single stage problems we use the Kantorovich-Wasserstein
distance, for multistage problems we use the nested distance
to quantify the epistemic uncertainty.

I If the ambiguity radius is increased, then the saddle point
changes typically in the following way:

I The robust decision strategy becomes more complicated and
”diversified”.

I The worst case model gets more simpler.

I Often the price for ambiguity is smaller than the reward for
robustness.

Georg Ch. Pflug/A. Pichler/D. Wozabal/B. Analui/M. Glanzer/M. PohlNonparametric Distributional Robustness in Multistage Stochastic Optimization



References

I M. Glanzer, Pflug, G. Incorporating statistical model error into the calculation of acceptability prices of
contingent claims. Manuscript, submitted.

I Pflug, G., Pohl, M. (2017). A review on ambiguity in stochastic portfolio optimization. Set-Valued and
Variational Analysis.

I Pflug, G., Pichler, A. (2016). From empirical observations to models for Stochastic Optimization:
Convergence properties. SIAM Journal on Optimization, 26(3), 1715-1740.

I Pflug, G., Pichler, A. (2014). Multistage Stochastic Optimization. (Springer Series in Operations Research
and Financial Engineering). Springer.

I Analui, B., Pflug, G. (2014). On Distributionally Robust Multiperiod Stochastic Optimization.
Computational Management Science, 11, 197-220. DOI: 10.1007/s10287-014-0213-y

I Pflug, G., Pichler, A., Wozabal, D. (2012). The 1/N investment strategy is optimal under high model
ambiguity. Journal of Banking and Finance, 36(2), 410-417. DOI:

I Wozabal, D., Pflug, G. (2007). Ambiguity in portfolio selection. Quantitative Finance, 7(4), 435-442.

Georg Ch. Pflug/A. Pichler/D. Wozabal/B. Analui/M. Glanzer/M. PohlNonparametric Distributional Robustness in Multistage Stochastic Optimization


