Practicable Robust Markov Decision Processes

Huan Xu

H. Milton Stewart School of Industrial and System Engineering Georgia Insitute at Technology

Joint work with Shiau-Hong Lim (IBM), Shie Mannor (Technion).

March, 7, 2018 BIRS workshop on distributional robust optimization

Classical planning problems

We typically want to maximize the expected average reward

In planning:

- Model is "known"
- A single scalar reward

• Rare events (black swans) only crop-up through expectations

Classical planning problems

We typically want to maximize the expected average reward

In planning:

- Model is "known"
- A single scalar reward

• Rare events (black swans) only crop-up through expectations

Classical planning problems

We typically want to maximize the expected average reward

In planning:

- Model is "known"
- A single scalar reward

• Rare events (black swans) only crop-up through expectations

Motivation example - Mail catalog

- Mail order retailer
- Marketing problem: send or not send coupon/invitation/mail order catalogue
- Common wisdom: per customer look at RFM: Recency, Frequency, Monetary value
- Oynamics matter
- Every model will be "wrong:" how do you model humans?

Motivation example - Mail catalog

- Mail order retailer
- Marketing problem: send or not send coupon/invitation/mail order catalogue
- Common wisdom: per customer look at RFM: Recency, Frequency, Monetary value
- Oynamics matter
- Every model will be "wrong:" how do you model humans?

Motivation example - Mail catalog

- Mail order retailer
- Marketing problem: send or not send coupon/invitation/mail order catalogue
- Common wisdom: per customer look at RFM: Recency, Frequency, Monetary value
- Dynamics matter
- Every model will be "wrong:" how do you model humans?

Common to many problems

- "Real" state space is huge with lots of uncertainty and parameters
- Batch data are available
- Operative solution: build a smallish MDP (< 300 states!), solve, apply.
- Computational speed less of an issue

Uncertainty and risk are THE concern (and cannot be made scalar)

Common to many problems

- "Real" state space is huge with lots of uncertainty and parameters
- Batch data are available
- Operative solution: build a smallish MDP (< 300 states!), solve, apply.
- Computational speed less of an issue

Uncertainty and risk are THE concern (and cannot be made scalar)

Common to many problems

- "Real" state space is huge with lots of uncertainty and parameters
- Batch data are available
- Operative solution: build a smallish MDP (< 300 states!), solve, apply.
- Computational speed less of an issue

Uncertainty and risk are THE concern (and cannot be made scalar)

The Question:

How to optimize when the model is not (fully) known?

But you have some idea on the magnitude of the uncertainty.

Markov Decision Processes

- Defined by a tuple $\langle T, \gamma, S, A, p, r \rangle$:
- *T* is the possibly infinite decision horizon.
- γ is the discount factor.
- *S* is the set of states.
- A is the set of actions.
- *p* transition probability, in the form of $p_t(s'|s, a)$.
- *r* immediate reward, in the form of $r_t(s, a)$.

Markov Decision Processes

• Total reward is defined:

•
$$\tilde{R} = \sum_{t=1}^{T} \gamma^{t-1} r_t(s_t, a_t).$$

- Classical goal: find a policy π that maximizes the expected total reward under π .
- Three solution approaches:
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Two types of uncertainty

- Internal Uncertainty: uncertainty due to random transitions/rewards → Risk aware MDPs. Not this talk.
- Parameter uncertainty: uncertainty in the parameters → Robust MDPs. This talk.
- Risk vs Ambiguity.
 - Ellsberg's paradox

Two types of uncertainty

- Internal Uncertainty: uncertainty due to random transitions/rewards → Risk aware MDPs. Not this talk.
- Parameter uncertainty: uncertainty in the parameters → Robust MDPs. This talk.
- Risk vs Ambiguity.
 - Ellsberg's paradox

Two types of uncertainty

- Internal Uncertainty: uncertainty due to random transitions/rewards → Risk aware MDPs. Not this talk.
- Parameter uncertainty: uncertainty in the parameters → Robust MDPs. This talk.
- Risk vs Ambiguity.
 - Ellsberg's paradox

Robust MDPs

S and *A* are known, *p* and *r* are unknown.

When in doubt—assume the worst

Set inclusive uncertainty - p and r belong to a known set ("uncertainty set").

Look for a policy with best worst-case performance. Problem becomes:

(*)
$$\max_{\text{policy parameter} \in \mathcal{U}} \mathbb{E}_{\text{policy, parameter}} \left[\sum_{t} \gamma^{t} r_{t} \right]$$

Robust MDPs

S and *A* are known, *p* and *r* are unknown.

When in doubt—assume the worst

 Set inclusive uncertainty - p and r belong to a known set ("uncertainty set").

Look for a policy with best worst-case performance. Problem becomes:

(*)
$$\max_{\text{policy parameter} \in \mathcal{U}} \mathbb{E}_{\text{policy, parameter}} \left[\sum_{t} \gamma^{t} r_{t} \right]$$

Robust MDPs

S and *A* are known, *p* and *r* are unknown.

When in doubt-assume the worst

 Set inclusive uncertainty - p and r belong to a known set ("uncertainty set").

Look for a policy with best worst-case performance. Problem becomes:

(*)
$$\max_{\text{policy parameter} \in \mathcal{U}} \mathbb{E}_{\text{policy, parameter}} \left[\sum_{t} \gamma^{t} r_{t} \right]$$

- Game against nature
- In general: problem is NP-hard except under "rectangular" case.

- $\bullet\,$ More flexible uncertainty set $\to\,$ not this talk
- $\bullet~\mbox{Probabilistic uncertainty} \rightarrow \mbox{not this talk}$
- Large scale \rightarrow not this talk
- Learn the uncertainty \rightarrow this talk

- More flexible uncertainty set \rightarrow not this talk
- Probabilistic uncertainty \rightarrow not this talk
- Large scale \rightarrow not this talk
- Learn the uncertainty \rightarrow this talk

- More flexible uncertainty set \rightarrow not this talk
- Probabilistic uncertainty \rightarrow not this talk
- Large scale \rightarrow not this talk
- Learn the uncertainty \rightarrow this talk

The problem is not solved yet. Still issues to address for practically successful robust MDP

- More flexible uncertainty set \rightarrow not this talk
- Probabilistic uncertainty \rightarrow not this talk
- Large scale \rightarrow not this talk

• Learn the uncertainty \rightarrow this talk

- More flexible uncertainty set \rightarrow not this talk
- Probabilistic uncertainty \rightarrow not this talk
- Large scale \rightarrow not this talk
- Learn the uncertainty \rightarrow this talk

Parameter Uncertainty

Parameter uncertainty due to:

- noisy/incorrect observation
- estimation from finite samples
- environment-dependent
- simplification of the problem

Question: where do I get the uncertainty sets?

There are two types of parameter uncertainty.

- Stochastic uncertainty: there is some true *p* and true *r*, just that we don't know the exact value.
- Adversarial uncertainty: there is no true *p* and *r*, each time when the state is visited, the parameter can vary.
 - > Due to model simplification, or some adversarial effect ignored.
- If I can collect more data, can I
 - Identify the type of the uncertainty?
 - Learn the value of the stochastic uncertainty?
 - Learn the level of the adversarial uncertainty?

• Yes we can!

Question: where do I get the uncertainty sets?

There are two types of parameter uncertainty.

- Stochastic uncertainty: there is some true *p* and true *r*, just that we don't know the exact value.
- Adversarial uncertainty: there is no true *p* and *r*, each time when the state is visited, the parameter can vary.
 - > Due to model simplification, or some adversarial effect ignored.
- If I can collect more data, can I
 - Identify the type of the uncertainty?
 - Learn the value of the stochastic uncertainty?
 - Learn the level of the adversarial uncertainty?
- Yes we can!

Formal setup

- MDP with finite states and actions, reward in [0, 1].
- For each pair (s, a), given a (potentially infinite) class of nested uncertainty sets \$\mathcal{U}(s, a)\$.
- Each pair (*s*, *a*) can be either stochastic or adversarial, which is not known.
- If (s, a) is stochastic, then the true p and r are unknown
- If (s, a) is adversarial, then its true uncertainty set (also unknown) belongs to \$\mathcal{U}(s, a)\$.
- Allowed to repeat the MDP many times.

Formal setup

- MDP with finite states and actions, reward in [0, 1].
- For each pair (s, a), given a (potentially infinite) class of nested uncertainty sets μ(s, a).
- Each pair (*s*, *a*) can be either stochastic or adversarial, which is not known.
- If (*s*, *a*) is stochastic, then the true *p* and *r* are unknown
- If (s, a) is adversarial, then its true uncertainty set (also unknown) belongs to \$\mathcal{U}(s, a)\$.
- Allowed to repeat the MDP many times.

Formal setup

- MDP with finite states and actions, reward in [0, 1].
- For each pair (s, a), given a (potentially infinite) class of nested uncertainty sets μ(s, a).
- Each pair (*s*, *a*) can be either stochastic or adversarial, which is not known.
- If (*s*, *a*) is stochastic, then the true *p* and *r* are unknown
- If (s, a) is adversarial, then its true uncertainty set (also unknown) belongs to \$\mathcal{U}(s, a)\$.
- Allowed to repeat the MDP many times.

• For adversarial state-action pairs, the parameter can be arbitrary (and adaptive to the algorithm).

- Hence not possible to exactly identify the type of uncertainty.
- Not possible to achieve diminishing regret against optimal stationary policy "in hindsight". That is, may not take full advantage if the adversary chooses to play nice.
- Can achieve a vanishing regret against the performance of the robust MDP knowing exactly *p* and *r* for stochastic pair, and the true uncertainty set of adversarial pair.

- For adversarial state-action pairs, the parameter can be arbitrary (and adaptive to the algorithm).
- Hence not possible to exactly identify the type of uncertainty.
- Not possible to achieve diminishing regret against optimal stationary policy "in hindsight". That is, may not take full advantage if the adversary chooses to play nice.
- Can achieve a vanishing regret against the performance of the robust MDP knowing exactly *p* and *r* for stochastic pair, and the true uncertainty set of adversarial pair.

- For adversarial state-action pairs, the parameter can be arbitrary (and adaptive to the algorithm).
- Hence not possible to exactly identify the type of uncertainty.
- Not possible to achieve diminishing regret against optimal stationary policy "in hindsight". That is, may not take full advantage if the adversary chooses to play nice.
- Can achieve a vanishing regret against the performance of the robust MDP knowing exactly *p* and *r* for stochastic pair, and the true uncertainty set of adversarial pair.

- For adversarial state-action pairs, the parameter can be arbitrary (and adaptive to the algorithm).
- Hence not possible to exactly identify the type of uncertainty.
- Not possible to achieve diminishing regret against optimal stationary policy "in hindsight". That is, may not take full advantage if the adversary chooses to play nice.
- Can achieve a vanishing regret against the performance of the robust MDP knowing exactly p and r for stochastic pair, and the true uncertainty set of adversarial pair.

Main intuition

- When purely stochastic, one can resort to RL algorithms, such as UCRL (which consistently uses optimistic estimation) to achieve diminishing regret.
- However, adversary can hurt.

Main intuition

- $2\beta < \alpha < 3\beta$.
- Choose solid line in phase 1 (2T steps), dashed line in phase 2 (T steps).
- The expected value of s_4 is $g^* + \frac{\beta \alpha}{2}$, and the expected value of s_1 is $g^* + \frac{3\beta \alpha}{4} > g^*$.
- The total accumulated reward is 3Tg* + T(2β α). Compared to the minimax policy, the overall regret is non-diminishing.

Main intuition

Be optimistic, but cautious.

- Using UCRL, start by assuming all state-action pairs are stochastic.
- Monitor outcome of transition of each pair. Using a statistic check to identify pairs with overly optimistic beliefs: assumed to be stochastic but indeed adversarial, or assumed to have an uncertainty set smaller than its true uncertainty set.
- Update the information of pairs that fail the statistic check, and re-solve the minimax MDP.

The algorithm -OLRM

Input: *S*, *A*, *T*, δ , and for each (*s*, *a*), $\mathfrak{U}(s, a)$

- Initialize the set $F \leftarrow \{\}$. For each (s, a), set $\mathcal{U}(s, a) \leftarrow \{\}$.
- 2 Initialize $k \leftarrow 1$.
- Compute an optimistic robust policy π̃, assuming all state-action pairs in *F* are adversarial with uncertainty sets as given by U(s, a).
- Execute $\tilde{\pi}$ until one of the followings happen:
 - ▶ The execution count of some state-action (*s*, *a*) has been doubled.
 - ► The executed state-action pair (s, a) fails the statistic check. In this case (s, a) is added to F if it is not yet in F. Update U(s, a).
- Increment k. Go back to step 3.

Computing Optimistic Robust Policy

Input: S, A, T, δ , F, k, and for each (s, a), $\mathcal{U}(s, a)$, $\hat{P}_k(\cdot|s, a)$ and $N_k(s, a)$.

- Set $\tilde{V}_T^k(s) = 0$ for all *s*.
- 2 Repeat, for $t = T 1, \ldots, 0$:
 - ► For each $(s, a) \in F$, set $\tilde{Q}_t^k(s, a) = \min\{T - t, r(s, a) + \min_{p \in \mathcal{U}(s, a)} p(\cdot) \tilde{V}_{t+1}^k(\cdot)\}.$
 - For each $(s, a) \notin F$, set

$$\begin{split} \tilde{Q}_t^k(s,a) &= \min\{T-t, \quad r(s,a) + \hat{P}_k(\cdot|s,a)\tilde{V}_{t+1}^k(\cdot) \\ &+ (T+1)\sqrt{\frac{1}{2N_k(s,a)}\log\frac{14SATk^2}{\delta}}\}. \end{split}$$

► For each *s*, set $\tilde{V}_t^k(s) = \max_a \tilde{Q}_t^k(s, a)$ and $\tilde{\pi}_t(s) = \arg \max_a \tilde{Q}_t^k(s, a)$.

3 Output $\tilde{\pi}$.

Robust to adversarial, optimistic to stochastic.

Huan Xu (NUS \rightarrow Gatech)

Practicable Robust MDPs

Computing Optimistic Robust Policy

Input: S, A, T, δ , F, k, and for each (s, a), $\mathcal{U}(s, a)$, $\hat{P}_k(\cdot|s, a)$ and $N_k(s, a)$.

- Set $\tilde{V}_T^k(s) = 0$ for all *s*.
- **2** Repeat, for t = T 1, ..., 0:
 - ► For each $(s, a) \in F$, set $\tilde{Q}_t^k(s, a) = \min\{T - t, r(s, a) + \min_{p \in \mathcal{U}(s, a)} p(\cdot) \tilde{V}_{t+1}^k(\cdot)\}.$
 - For each $(s, a) \notin F$, set

$$\begin{split} \tilde{Q}_t^k(s,a) &= \min\{T-t, \quad r(s,a) + \hat{P}_k(\cdot|s,a)\tilde{V}_{t+1}^k(\cdot) \\ &+ (T+1)\sqrt{\frac{1}{2N_k(s,a)}\log\frac{14SATk^2}{\delta}}\}. \end{split}$$

► For each *s*, set $\tilde{V}_t^k(s) = \max_a \tilde{Q}_t^k(s, a)$ and $\tilde{\pi}_t(s) = \arg \max_a \tilde{Q}_t^k(s, a)$.

3 Output $\tilde{\pi}$.

Robust to adversarial, optimistic to stochastic.

Huan Xu (NUS \rightarrow Gatech)

Practicable Robust MDPs

Statistic check

• When $(s, a) \notin F$, it fails the statistic check if:

$$\sum_{j=1}^{n} \left\{ \hat{P}_{k_{j}}(\cdot|s,a) \tilde{V}_{t_{j}+1}^{k_{j}}(\cdot) - \tilde{V}_{t_{j}+1}^{k_{j}}(s_{j}') \right\} > (2.5 + T + 3.5T\sqrt{S})\sqrt{n\log\frac{14SAT\tau^{2}}{\delta}}$$

• When $(s, a) \in F$, it fails the statistic check if

$$\sum_{j=n'+1}^n \left\{ \min_{p\in\mathcal{U}(s,a)} p(\cdot) \tilde{V}_{t_j+1}^{k_j}(\cdot) - \tilde{V}_{t_j+1}^{k_j}(s_j') \right\} > 2T\sqrt{2(n-n')\log\frac{14\tau^2}{\delta}}.$$

 If (s, a) fails the statistic check, add (s, a) into F, and update U(s, a) as the smallest set in U(s, a) that satisfies

$$\sum_{j=n'+1}^n \left\{ \min_{p \in \mathcal{U}(s,a)} p(\cdot) \tilde{V}_{t_j+1}^{k_j}(\cdot) - \tilde{V}_{t_j+1}^{k_j}(s'_j) \right\} < T \sqrt{2(n-n')\log \frac{14\tau^2}{\delta}}.$$

More on statistic check

- Essentially checking whether the value of actual transition from (s, a) is below what is expected from the belief of the uncertainty.
- No false alarm: with high probability, *all* stochastic state-action pairs will *always* pass the statistic check; and *all* adversarial state-action pairs will pass the statistic check if U(s, a) ⊇ U*(s, a).
- May fail to identify adversarial states, if the adversary plays "nicely". However, satisfactory rewards are accumulated, so nothing needs to be changed.
- If the adversary plays "nasty", then the statistic check will detect it, and subsequently protect against it.

• "if it ain't broke, don't fix it".

More on statistic check

- Essentially checking whether the value of actual transition from (s, a) is below what is expected from the belief of the uncertainty.
- No false alarm: with high probability, *all* stochastic state-action pairs will *always* pass the statistic check; and *all* adversarial state-action pairs will pass the statistic check if U(s, a) ⊇ U*(s, a).
- May fail to identify adversarial states, if the adversary plays "nicely". However, satisfactory rewards are accumulated, so nothing needs to be changed.
- If the adversary plays "nasty", then the statistic check will detect it, and subsequently protect against it.
- "if it ain't broke, don't fix it".

Performance guarantee

Theorem

Given δ , T, S, A and \mathfrak{U} , if $|\mathfrak{U}(s, a)| \leq C$ for all (s, a), then the total regret of OLRM is

$$\Delta(m) \leq \mathcal{O}\left[T^{3/2}(\sqrt{S} + \sqrt{C})\sqrt{SAm\log\frac{SATm}{\delta}}\right]$$

for all *m*, with probability at least $1 - \delta$.

The total number of steps is $\tau = Tm$, hence the regret is $\tilde{\mathcal{O}}[T(\sqrt{S} + \sqrt{C})\sqrt{SA\tau}]$.

Performance guarantee

- What if \mathfrak{U} is an infinity set?
- We consider the following class:

$$\mathfrak{U}(\boldsymbol{s}, \boldsymbol{a}) = \{\eta(\boldsymbol{s}, \boldsymbol{a}) + \alpha \mathcal{B}(\boldsymbol{s}, \boldsymbol{a}) : \alpha_0(\boldsymbol{s}, \boldsymbol{a}) \le \alpha \le \alpha_\infty\} \cap \mathcal{P}(\boldsymbol{S}) \quad (1)$$

Theorem

Given δ , T, S, A, \mathfrak{U} as defined in Eq. (1), the total regret of OLRM is

$$\Delta(m) \leq \tilde{\mathcal{O}} \left[T \left(S \sqrt{A\tau} + (SA\alpha_{\infty}B)^{2/3} \tau^{1/3} + (SA\alpha_{\infty}B)^{1/3} \tau^{2/3} \right) \right]$$

for all *m*, with probability at least $1 - \delta$.

Infinite horizon average reward

- Assume for any *p* in the true uncertainty set, the resulting MDP is unichain and communicating.
- Similar algorithm, except that computing the optimistic robust policy is trickier.
- Similar performance guarantee: $\mathcal{O}(\sqrt{\tau})$ for finite \mathfrak{U} , and $\mathcal{O}(\tau^{2/3})$ for infinite \mathfrak{U} .

Simulation

Simulation

Huan Xu (NUS \rightarrow Gatech)

Simulation

Conclusion

Learning the uncertainty in robust MDP

- Reinforcement learning adapted
- Diminishing regret
- Make robust MDP practicable.

• Future directions

- MDPs with structures.
- Learning uncertainty in robust optimization.

Conclusion

Learning the uncertainty in robust MDP

- Reinforcement learning adapted
- Diminishing regret
- Make robust MDP practicable.
- Future directions
 - MDPs with structures.
 - Learning uncertainty in robust optimization.