Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems

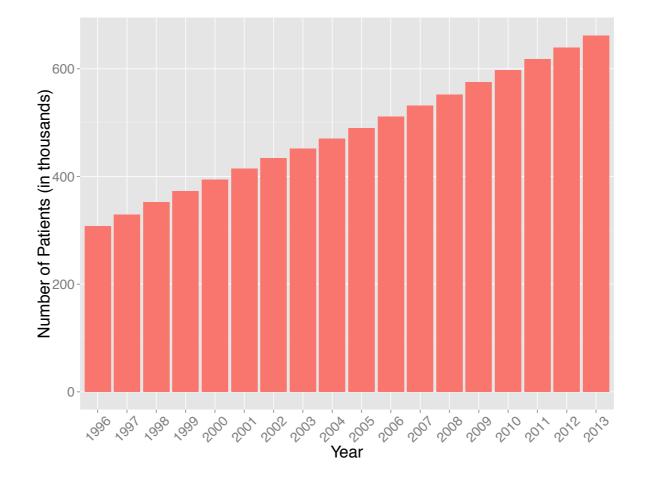
Banff Workshop on Distributionally Robust Optimization

Phebe Vayanos Assistant Professor of Industrial & Systems Engineering and Computer Science Viterbi School of Engineering, USC

(joint with Bandi and Trichakis, forthcoming in *Management Science*)

End-Stage Renal Disease

source: https://www.usrds.org



- terminal disease affecting >600,000 patients in U.S.
- dialysis vs. kidney transplant (preferred)
- living donors vs. deceased donors

Organ Shortage

- I 00k patients waiting
- 36k additions per year
- 19k transplants/year
 - 13.4k (70%) from deceased donors
 - 5.6k (30%) from living donors

Organ Shortage

3-yr trend

+20%

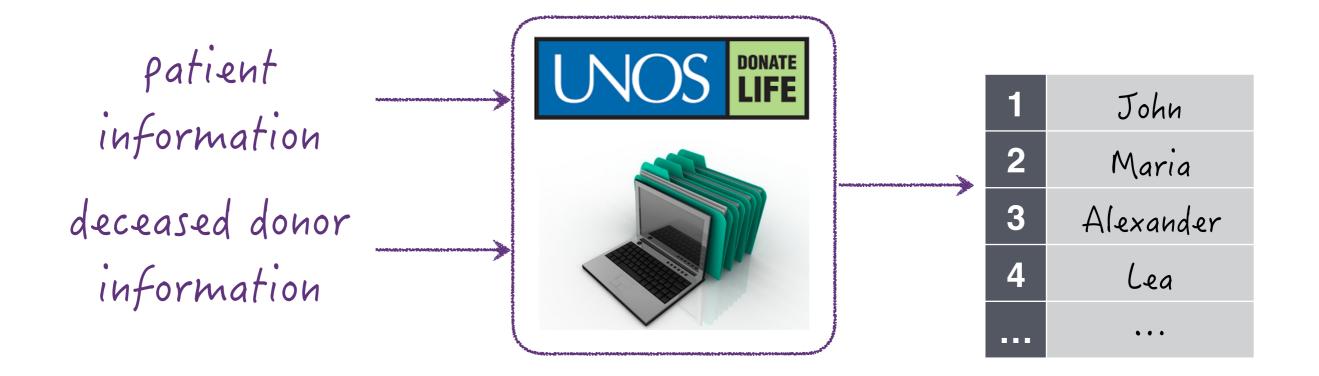
- 100k patients waiting
- 36k additions per year
- 19k transplants/year
 - 13.4k (70%) from deceased donors +20%
 - 5.6k (30%) from living donors -2%

U.S. Kidney Allocation System

patient information

U.S. Kidney Allocation System

U.S. Kidney Allocation System



- medical compatibility: blood group, weight, etc.
- geographic proximity (24-36 hours to transplant)
- <u>point based</u>: wait time, blood antigens: ~FCFS

Wait Time Estimation

Patient X of blood type O is listed in a given geographic region. He is currently ranked 50th. How long until he receives an offer of a <u>particular quality</u>?

Wait Time Estimation

Patient X of blood type O is listed in a given geographic region. He is currently ranked 50th. How long until he receives an offer of a <u>particular quality</u>?

- important for:
 - dialysis management
 - planning of daily life activities
 - accept/reject decisions

Challenges

Challenges

- predicting accept/decline decisions is already hard
 - Kim et al 15: use all available historical data, build series of prediction models (log. reg., SVM, CART, RF); error rates vary 22-47%

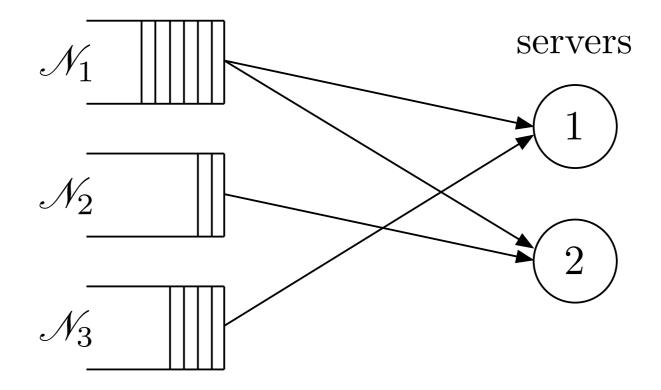
Challenges

- predicting accept/decline decisions is already hard
 - Kim et al 15: use all available historical data, build series of prediction models (log. reg., SVM, CART, RF); error rates vary 22-47%

- in practice:
 - incomplete information: other patients' preferences
 - unstable/ non-stationary system

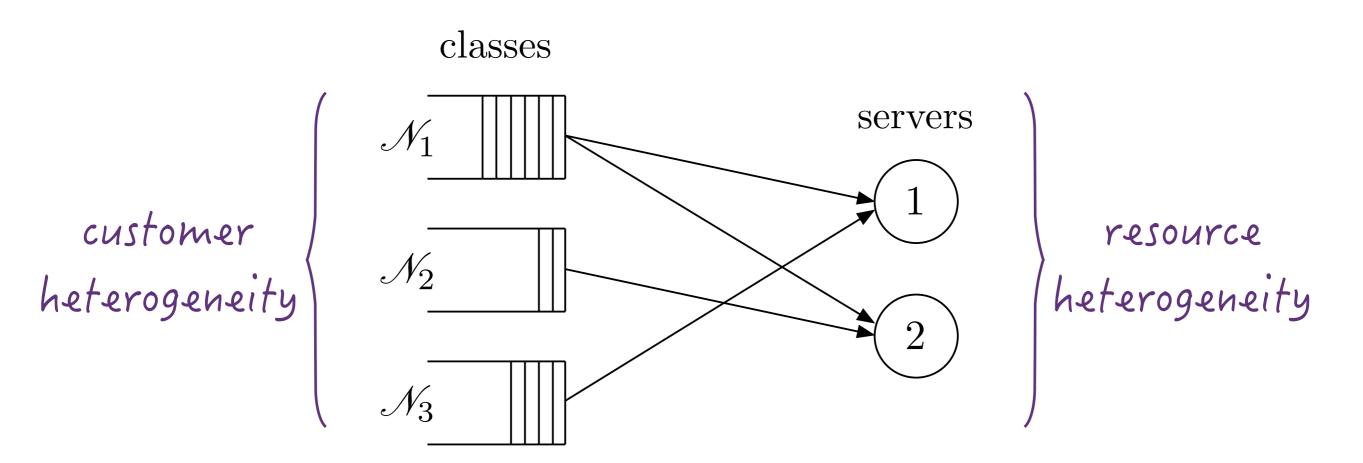
Resource Allocation System

classes



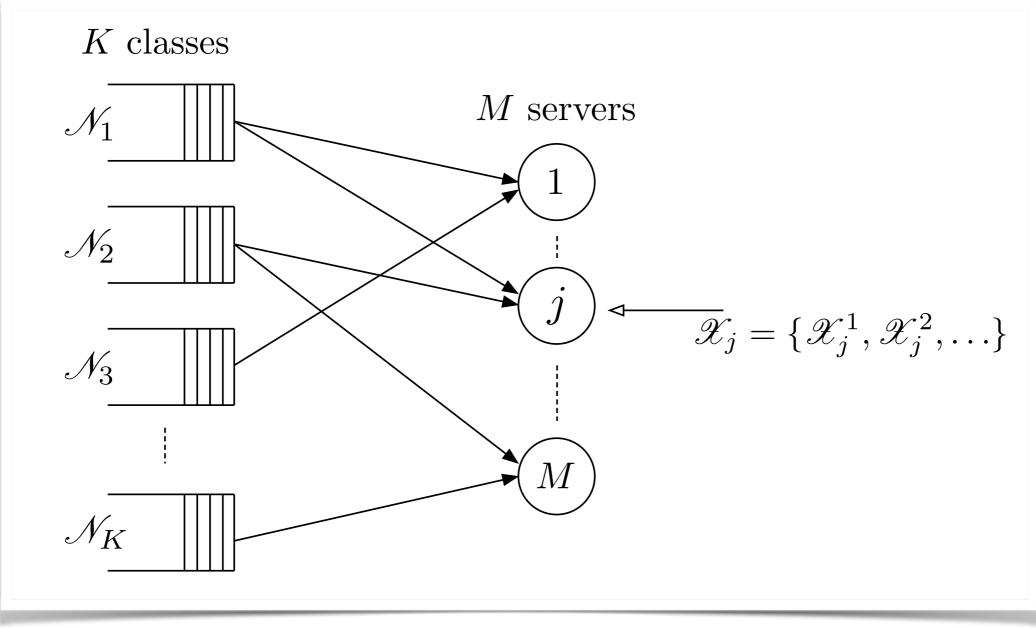
- multiclass, multiserver (MCMS) queuing system
 - servers: resource types
 - customer classes/queues: preferences

Resource Allocation System

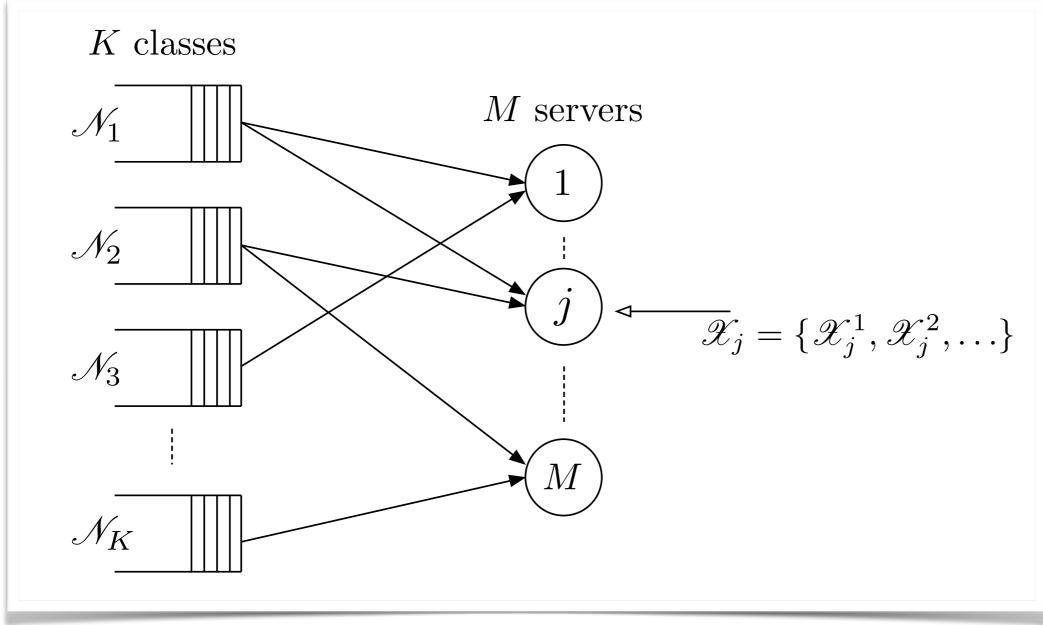


- multiclass, multiserver (MCMS) queuing system
 - servers: resource types
 - customer classes/queues: preferences

MCMS under FCFS

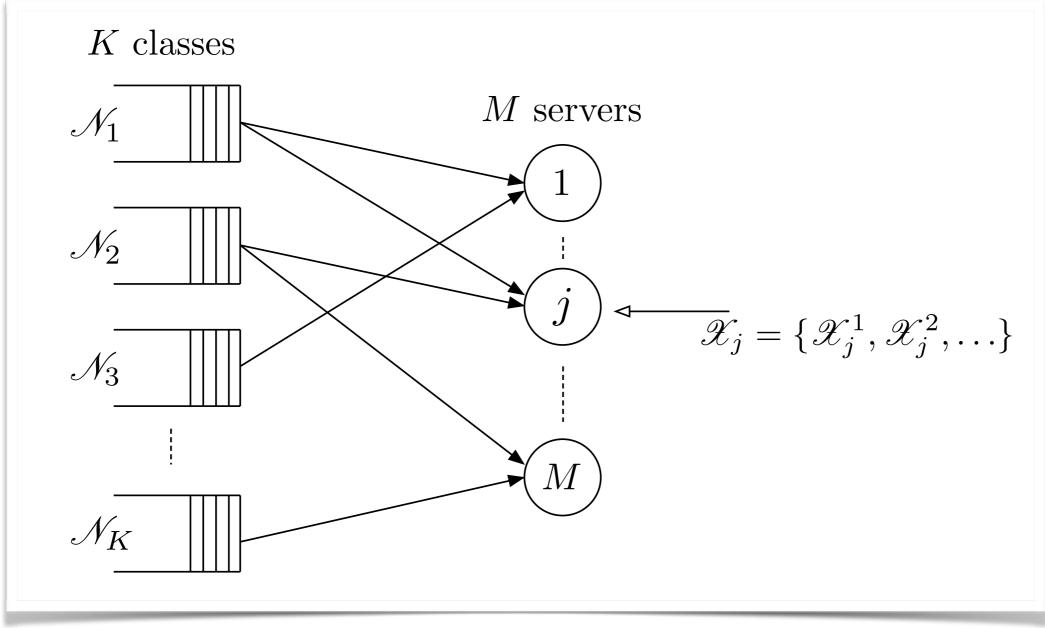


MCMS under FCFS



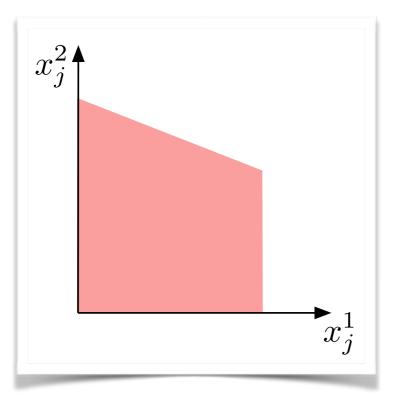
• $\sigma(\nu)$ arrival order of customer $\nu \in \{1, \ldots, \sum_i \mathcal{N}_i\}$

MCMS under FCFS



- $\sigma(\nu)$ arrival order of customer $\nu \in \{1, \ldots, \sum_i \mathcal{N}_i\}$
- $\mathscr{W}_i(\mathscr{N}_1,\ldots,\mathscr{N}_K,\sigma,\mathscr{X}_1,\ldots,\mathscr{X}_M)$ clearing time of queue i

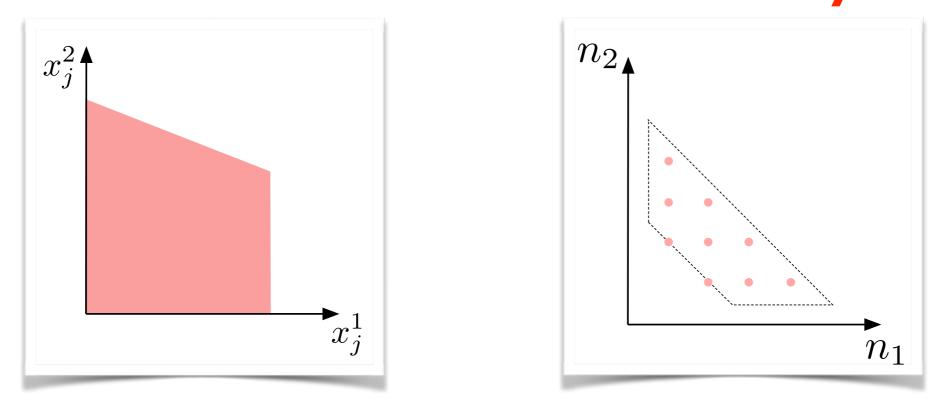
Model of Uncertainty



• service times:

$$\mathbb{X}_j = \left\{ x_j \in \mathbb{R}^{\bar{\ell}_j} : \sum_{k=1}^{\ell} x_j^k \le \frac{\ell}{\mu_j} + \Gamma_j^{\mathbb{X}}(\ell)^{1/\alpha_j}, \, \ell = 1, \dots, \bar{\ell}_j \right\}$$

Model of Uncertainty

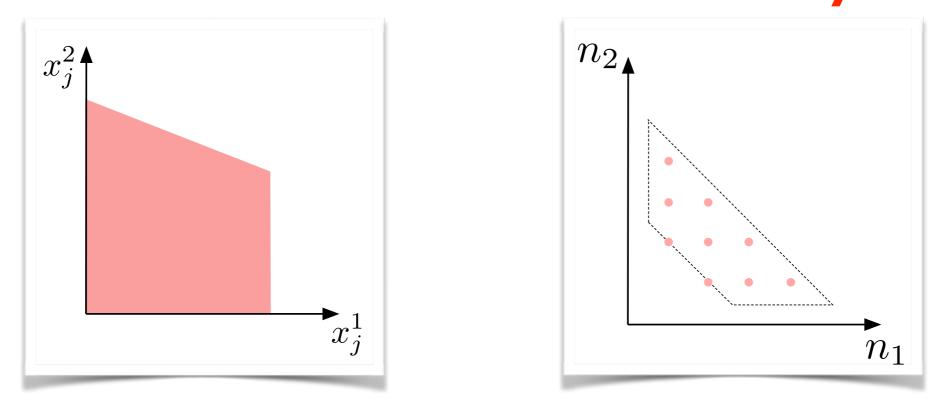


• service times:

$$\mathbb{X}_j = \left\{ x_j \in \mathbb{R}^{\bar{\ell}_j} : \sum_{k=1}^{\ell} x_j^k \le \frac{\ell}{\mu_j} + \Gamma_j^{\mathbb{X}}(\ell)^{1/\alpha_j}, \, \ell = 1, \dots, \bar{\ell}_j \right\}$$

• population vector $n \in \mathbb{P} \cap \mathbb{N}^K$

Model of Uncertainty

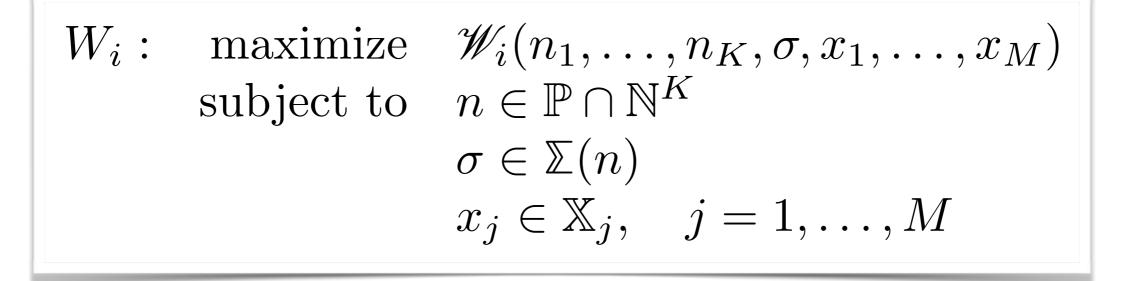


• service times:

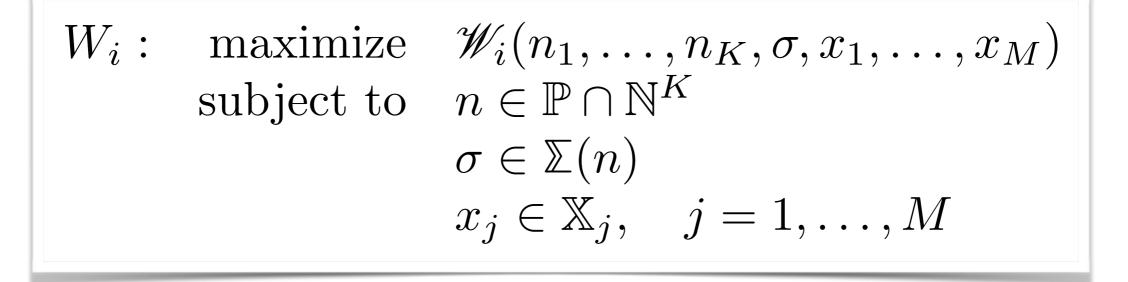
$$\mathbb{X}_j = \left\{ x_j \in \mathbb{R}^{\bar{\ell}_j} : \sum_{k=1}^{\ell} x_j^k \le \frac{\ell}{\mu_j} + \Gamma_j^{\mathbb{X}}(\ell)^{1/\alpha_j}, \, \ell = 1, \dots, \bar{\ell}_j \right\}$$

- population vector $n \in \mathbb{P} \cap \mathbb{N}^K$
- arrival order $\sigma \in \mathbb{Z}(n)$

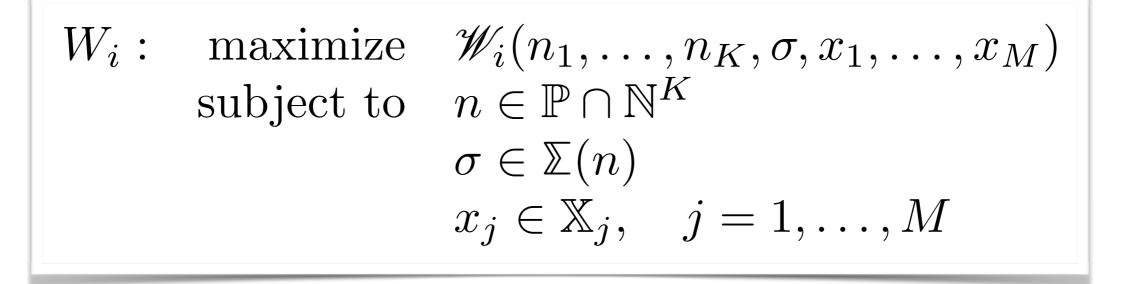
 $W_i: \quad \text{maximize} \quad \mathscr{W}_i(n_1, \dots, n_K, \sigma, x_1, \dots, x_M)$ subject to $n \in \mathbb{P} \cap \mathbb{N}^K$ $\sigma \in \Sigma(n)$ $x_j \in \mathbb{X}_j, \quad j = 1, \dots, M$



robust wait time estimation problem is NP-hard



- robust wait time estimation problem is NP-hard
- no tractable expression for \mathscr{W}_i
 - Lindley equations break down



- robust wait time estimation problem is NP-hard
- no tractable expression for \mathscr{W}_i
 - Lindley equations break down
- key idea: model assignment of servers to customers - y_{kj}^{ℓ} : ℓ th service from server j assigned to class k

assignment-style formulation

$$\begin{array}{ll} \text{maximize} & w_i \\ \text{subject to} & \sum_k^{w_k} y_{kj}^{\ell} \leq 1, \quad \sum_{\ell,j} y_{kj}^{\ell} \leq n_k \\ & \sum_k^{w_k} y_{k'j}^{\ell} \geq f_{kj}^{\ell} \\ & w_k \leq c_j^{\ell} + \bar{\zeta} f_{kj}^{\ell} \\ & w_k \geq c_j^{\ell} - \bar{\zeta} \left(1 - y_{kj}^{\ell} \right) \\ & (c,n) \in \text{uncertainty sets, } (y,f) \text{ binary} \end{array}$$

Performance: Accuracy

• estimation error vs simulation

statistics	avg.	95-%ile	97-%ile	99-%ile
avg. abs. rel. error	6.52%	2.64%	2.55%	3.41%

Performance: Accuracy

• estimation error vs simulation

statistics	avg.	95-%ile	97-%ile	99-%ile
avg. abs. rel. error	6.52%	2.64%	2.55%	3.41%

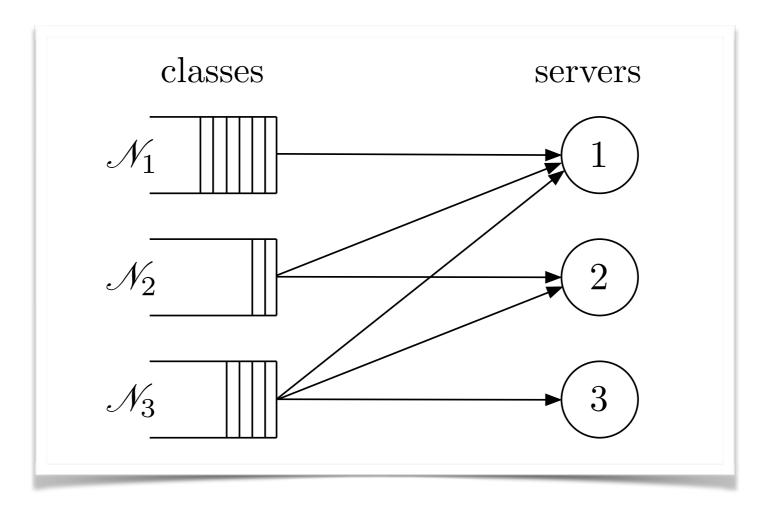
• estimation error when true distribution \neq assumed

avg. queue population	5	100	500
simulation avg. abs. rel. error	21%	15%	12%
our avg. abs. rel. error	13%	9%	7.5%

Hierarchical MCMS

- hierarchy across resource types
 - e.g., different quality service level
 - radiation therapy
 - organ quality
- server j provides jth ranked service
- induces ''threshold-type'' customer preferences

Hierarchical MCMS



- nested structure enables to strengthen formulations
- robust wait time for service of any rank W_K
- problem remains NP-hard

Wait Time for Service in HMCMS

Lemma. For HMCMS systems:

- \mathscr{W}_K increasing in completion times
- completion times can be fixed to their worst-case values:

$$c_j^{\ell} = x_j^1 + \ldots + x_j^{\ell} = \frac{\ell}{\mu_j} + \Gamma_j^{\mathbb{X}}(\ell)^{1/\alpha_j}$$

Wait Time for Service in HMCMS

Lemma. For HMCMS systems:

- \mathscr{W}_K increasing in completion times
- completion times can be fixed to their worst-case values:

$$c_j^{\ell} = x_j^1 + \ldots + x_j^{\ell} = \frac{\ell}{\mu_j} + \Gamma_j^{\mathbb{X}}(\ell)^{1/\alpha_j}$$

- assignment of servers to customers
 - y_{kj}^ℓ : ℓ th service from server j assigned to class k
 - c_j^ℓ : time ℓ th service from server j starts

Wait Time for Service in HMCMS

Lemma. For HMCMS systems:

- \mathscr{W}_K increasing in completion times
- completion times can be fixed to their worst-case values:

$$c_j^{\ell} = x_j^1 + \ldots + x_j^{\ell} = \frac{\ell}{\mu_j} + \Gamma_j^{\mathbb{X}}(\ell)^{1/\alpha_j}$$

assignment of servers to customers
y^l_{kj}: lth service from server j assigned to class k
c^l_j: time lth service from server j starts
drastic variable reduction

- view so far: individual assignments y_{kj}^{ℓ}
 - scales with n

- view so far: individual assignments y_{kj}^{ℓ}
 - scales with n
- alternative view:
 - aggregate assignments m_j
 - independent of n

- view so far: individual assignments y_{kj}^{ℓ}
 - scales with n
- alternative view:
 - aggregate assignments m_j
 - independent of n

$$\widehat{W}_{K}$$

$$\widehat{W}_{K}$$

$$\maxinize \quad w$$

$$subject to \quad w \leq \frac{m_{j}}{\mu_{j}} + \Gamma_{j}^{\mathbb{X}}(m_{j})^{1/\alpha_{j}}$$

$$\sum_{k=j}^{K} m_{k} \leq \sum_{k=j}^{K} n_{k} + K - j$$

$$n \in \mathbb{P}$$

Scalable Heuristic

- view so far: individual assignments y_{kj}^{ℓ}
 - scales with n
- alternative view:
 - aggregate assignments m_j
 - independent of n

maximize wsubject to $w \leq \frac{m_j}{\mu_j} + \Gamma_j^{\mathbb{X}} (m_j)^{1/\alpha_j}$ $\sum_{K}^{K} m_k \leq \sum_{K} n_k + K - j$ \widehat{W}_{K} SOCP! k=jk=j $n \in \mathbb{P}$

Approximation Guarantee

- W_K exact robust wait time
- \widehat{W}_K approximation

let

 $\chi = \max_{j} \left\{ \frac{1}{\mu_{j}} + \Gamma_{j}^{\mathbb{X}} \right\}$

for a hierarchical MCMS system,

 $W_K \le \widehat{W}_K \le W_K + 2\chi$

Approximation Guarantee

- W_K exact robust wait time
- \widehat{W}_K approximation

let

 $\chi = \max_{j} \left\{ \frac{1}{\mu_{j}} + \Gamma_{j}^{\mathbb{X}} \right\}$

for a hierarchical MCMS system,

 $W_K \le \widehat{W}_K \le W_K + 2\chi$

 \Rightarrow approximation becomes tighter as n increases

Heuristic: Performance

• computation times for different HMCMS instances

	general MIP	simpler MIP	SOCP
100 customers	1 sec	0.8 sec	0.8 sec
1,000 customers	< 1 min	< 1/2 min	1.2 sec
10,000 customers	6 min	2 min	5.4 sec
100,000 customers	40 min	10 min	< 1 min

Heuristic: Performance

computation times for different HMCMS instances

	general MIP	simpler MIP	SOCP
100 customers	1 sec	0.8 sec	0.8 sec
1,000 customers	< 1 min	< 1/2 min	1.2 sec
10,000 customers	6 min	2 min	5.4 sec
100,000 customers	40 min	10 min	< 1 min

heuristic approximation errors

50 customers	1.9%	
100 customers	0.85%	
1,000 customers	0.08%	

Application to the KAS

Patient X of blood type O is listed in a given geographic region. He is currently ranked 50th. How long until he receives an offer of a particular quality?

Application to the KAS

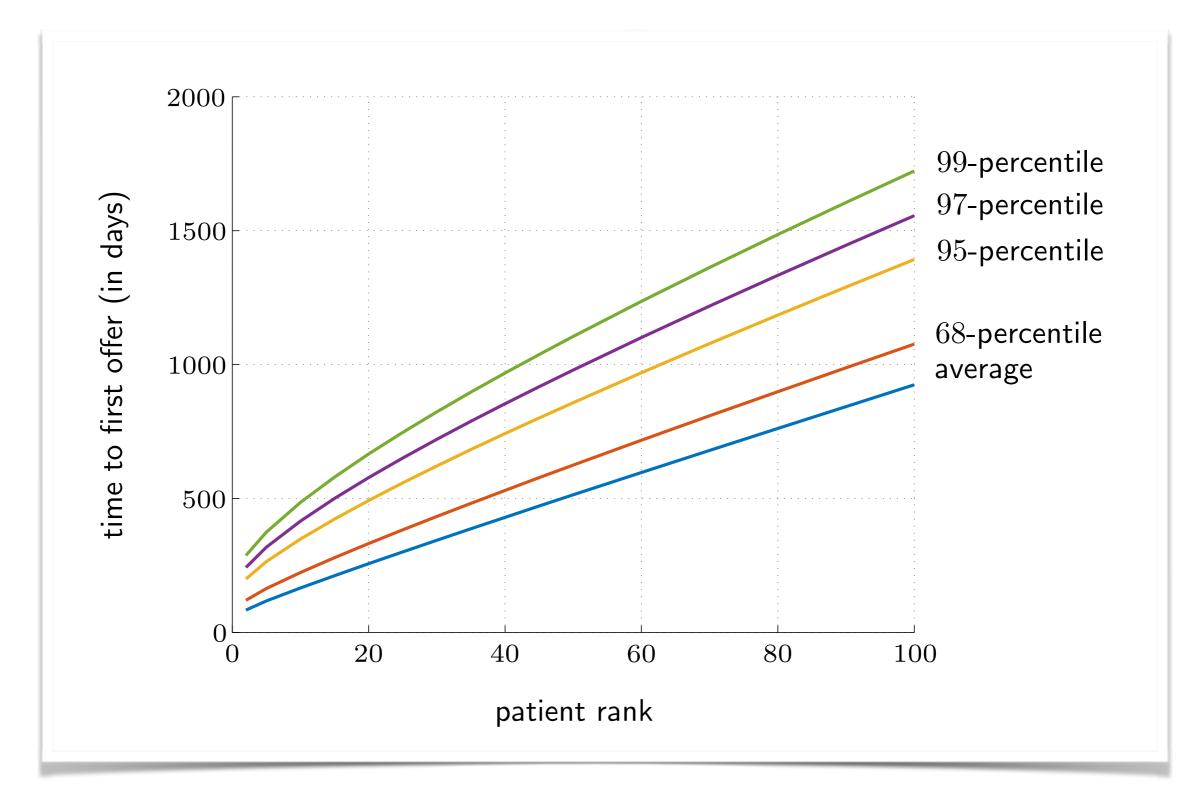
Patient X of blood type O is listed in a given geographic region. He is currently ranked 50th. How long until he receives an offer of a particular quality?

- PADV-OP1 Gift of Life Donor Program
- threshold type decisions
- model as HMCMS

Available Data

- well accepted kidney quality metric: KDPI
- historical kidney procurement rates (for each quality)
- historical patient accept/decline decisions
- 2007-2010 training set
- 2010-2013 testing set

Out-of-Sample Performance



Out-of-Sample Performance

- relative prediction errors
 - 14.96% for avg. and 11.73% for 68-percentile
- delay history estimator:
 - uses personalized info unavailable in practice
 - cannot estimate wait times for high ranks
- relative prediction errors of delay history estimator:
 - 16.76% for avg. and 14.65% for 68-percentile

Summary

- modeling framework for MCMS systems under incomplete information
- MIP formulation
 - more structure: provably tight scalable heuristic
- FCFS, class priority
- application to U.S. kidney allocation system

Thank you!

Model Calibration

- cluster kidneys in quality levels
- service time uncertainty sets: for each quality level j

$$\mathbb{X}_j = \left\{ x_j \in \mathbb{R}^{\bar{\ell}_j} : \sum_{k=1}^{\ell} x_j^k \le \frac{\ell}{\mu_j} + \Gamma \sigma_j \sqrt{\ell}, \ \ell = 1, \dots, \bar{\ell}_j \right\}$$

• $\mu_{j}(\sigma_{j})$ historical procurement rate (std)

- patient is type i, observes rank r and historical accept/decline decisions

- patient is type i, observes rank r and historical accept/decline decisions
- q_k probability of a patient being type k

- patient is type $oldsymbol{i}$, observes rank $oldsymbol{r}$ and historical accept/decline decisions
- q_k probability of a patient being type k
- fit q_k to maximize likelihood of observed decisions

- patient is type i, observes rank r and historical accept/decline decisions
- q_k probability of a patient being type k
- fit q_k to maximize likelihood of observed decisions
- CLT-based approach:

$$\sum_{\nu=1}^{r-1} \mathscr{L}_{\nu} \leq (r-1)\mu_{\mathscr{L}} + \Gamma \sigma_{\mathscr{L}} \sqrt{r-1}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
class of ν th patient
$$\sum_{i=1}^{K} iq_i \qquad \sum_{i=1}^{K} i^2 q_i - \mu_{\mathscr{L}}^2$$

- patient is type $oldsymbol{i}$, observes rank $oldsymbol{r}$ and historical accept/decline decisions
- q_k probability of a patient being type k
- fit q_k to maximize likelihood of observed decisions
- CLT-based approach:

$$\mathbb{P} = \left\{ n \in \mathbb{R}^K : \sum_{i=1}^K in_i - k \le (r-1)\mu_{\mathscr{L}} + \Gamma\sigma_{\mathscr{L}}\sqrt{r-1} \right\}$$

motivation:

• recent policy change: top 20% of healthier patients have priority for top 20% kidneys

modeling implications:

- alternative priority rule: <u>class priority</u>
- customer arrivals

all of our results can be extended!!

• model arrival times similar to service times

- model arrival times similar to service times
- $v^\ell_{m k}$ arrival time of ℓ th customer in class k

$$\sum y_{kj}^\ell \leq n_k \quad \text{becomes} \quad \sum y_{kj}^\ell \leq n_k + v_k^\ell$$

- model arrival times similar to service times
- v_k^ℓ arrival time of ℓ th customer in class k

$$\sum y_{kj}^\ell \leq n_k \quad ext{becomes} \quad \sum y_{kj}^\ell \leq n_k + v_k^\ell$$

- constraints on assignments y_{kj}^ℓ reflect priority rules

- model arrival times similar to service times
- $v^\ell_{m k}$ arrival time of ℓ th customer in class k

$$\sum y_{kj}^\ell \leq n_k \quad \text{becomes} \quad \sum y_{kj}^\ell \leq n_k + v_k^\ell$$

- constraints on assignments y_{kj}^ℓ reflect priority rules
- e.g., if servers indexed in descending priority

$$y_{kj}^{\ell} \le 1 - f_{k'}^{\ell}, \quad k' < k$$

- model arrival times similar to service times
- $v^\ell_{m k}$ arrival time of ℓ th customer in class k

$$\sum y_{kj}^\ell \leq n_k \quad \text{becomes} \quad \sum y_{kj}^\ell \leq n_k + v_k^\ell$$

- constraints on assignments y_{kj}^ℓ reflect priority rules
- e.g., if servers indexed in descending priority

$$y_{kj}^{\ell} \le 1 - f_{k'}^{\ell}, \quad k' < k$$

• all our results can be extended