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End-Stage Renal Disease

ource: https.//www.usrds.org

600-

Number of Patients (|n thousands)

- terminal disease affecting >600,000 patients in U.S.

- dialysis vs. kidney transplant (preferred)

iving donors vs. deceased donors
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Organ Shortage

|00k patients wairting

- 36k additions per year

| 9k transplants/year

3.4k (70%) from deceased donors
= 5.6k (30%) from living donors




Organ Shortage

3-yr trend
| 00k patients waiting +207
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U.S. Kidney Allocation System
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- medical compatibility: blood group, weight, etc.

* geographic proximity (24-36 hours to transplant)
* point based: wart time, blood antigens: ~FCFS




Wait Time Estimation

Patient X of blood fype O s listed tn a given
geographic region, He s currently ranked 50th. How

long until he receives an offer of a particular quality?




Wait Time Estimation

Patient X of blood type O s listed tn a given
geographic region, He s currently ranked 50th. How

long until he receives an offer of a particular quality?

R ———

* Important for:

- dialysis management

- planning of daily life activities

- accept/reject decisions
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Challenges

» Kim et al |5:use all avallable
series of prediction models (
RF); error rates vary 22-4/7%

nistorical data, bui

og. reg.,, SVYM, CA

- predicting accept/decline decisions Is already hard
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Challenges

» Kim et al |5:use all avallable
series of prediction models (
RF); error rates vary 22-4/7%

* In practice:

nistorical data, bui

og. reg.,, SVYM, CA

* Incomplete information: other patients’

preferences

» unstable/ non-stationary system

- predicting accept/decline decisions Is already hard

d
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Resource Allocation System

classes

SEervers
M

- multiclass, multiserver (MCMS) queuing system

* Servers:resource types

*customer classes/queues: preferences
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Resource Allocation System
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MCMS under FCFS

K classes

N M servers

2 = {2} 27 )
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N7 M servers
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* o(v) arrival order of customer v € {1,...,> . 4}




MCMS under FCFS

K classes
7 M servers
No
2 ={Z 27,.. .}
N3 i
r =)
* o(v) arrival order of customer v € {1,...,> . 4}

* Wi My N0, 27,0, ) clearing time of queue i
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Model of Uncertainty

- service times:

Xj — {CE]' ERZj :
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Model of Uncertainty
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- arrival order o € 2(n)



Robust Wait Times

W;: maximize #;(ni,...,NK,0,T1,...,T\M)
subject to n € PNN#
o € 2(n)
$j€Xj, ]Zl,,M

R ———
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Robust Wait Times

W;: maximize #;(ni,...,NK,0,T1,...,T\M)
subject to n € PNN#
o € 2(n)

$jEXj, ]Z].,,M

* robust walt time estimation problem is NP-hard
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Robust Wait Times

W;: maximize #;(ni,...,NK,0,T1,...,T\M)
subject to n € PNN#
o € 2(n)

IjEX]’, ]Z].,,M

* robust walt time estimation problem is NP-hard
no tractable expression for #;
Lindley equations break down
» key 1dea: model assignment of servers to customers

— yﬁj: (th service from server j assigned to class k&
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Robust Wait Times

assignment-style formulation

maximize w;
subject to Zyﬁj <1, Zyﬁj < ng
.3

k
14 14
Zyk’j > Tk
k’ _
Wy < C? + Cflf]

wk26§—5(1—y@)
(c,n) € uncertainty sets, (y, f) binary
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Performance: Accuracy

- estimation error vs simulation

avg. abs. rel. error BEGRYY. 2.64%  2.55% 3.41%
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Performance: Accuracy

estimation error vs simulation

avg. abs. rel. error BEGRYY. 2.64%  2.55% 3.41%

estimation error when true distribution # assumed

simulation avg. abs. rel. error EEFAV 15% 12%
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Hierarchical MCMS

* hierarchy across resource types

- eg, different quality service level

* radiation therapy

*organ quality

* server)p

* |Induces ‘'t

rovides 7th ranked service

nreshold-type” customer preferences
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Hierarchical MCMS

classes servers

M 1

- nested structure enables to strengthen formulations

* robust walrt time for service of any rank Wk

* problem remains NP-hard
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Wait Time for Service in HMCMS

Lemma. For HMCMS systems:
- Wk increasing In completion times

- completion times can be fixed to their worst-case values:

/ y
+.otal = — +TF(0)Y
H;

¢ 1
C; = X

15



Wait Time for Service in HMCMS

Lemma. For HMCMS systems:
- Wk increasing In completion times

- completion times can be fixed to their worst-case values:

4 o
+...+x§: . IF?(Z)U 7
fhy

¢ 1
C; = X

*assignment of servers to customers

14 . L
- Yk Lth service from server j assigned to class k

Cﬁ - time {th service from server ] starts
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Wait Time for Service in HMCMS

Lemma. For HMCMS systems:
- Wk increasing In completion times

- completion times can be fixed to their worst-case values:

4 o
+...+x§: . IF?(Z)U 7
fhy

CE-:.CIZ‘

1
J J

*assignment of servers to customers

14 . L
- Yk Lth service from server j assigned to class k

o a'aVa , ) - C . C Y\ )\ aNalye

c:::{> drastic variable reduction
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Scalable Heuristic
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Scalable Heuristic

*view so far: individual assignments yﬁj

scales with n
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Scalable Heuristic

+ view so far: individual assignments y;,;

scales with

- alternative view:

aggregate assignments m;

independent of N
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Scalable Heuristic

+ view so far: individual assignments y;,;

scales with

- alternative view:

aggregate assignments m;

independent of N

maximize w \

m.
subject to w < — 4 F?(mj)l/%‘

WK K K O ,
kaﬁznk+l{—j S0CF!
k= k=

n P
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Approximation Guarantee

- Wi exact robust walit time

- Wk approximation

let

1
X:max{ | I’;g}
J 1%

for a hierarchical MCMS system,

Wi < Wi < Wk + 2x
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Approximation Guarantee

- Wi exact robust walit time

- Wk approximation

let

1
X:max{ | I‘;g}
J 1%

for a hierarchical MCMS system,

Wi < Wi < Wk + 2x

£ > approximation becomes tighter as n tncreases
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Heuristic: Performance

» computation times for different HMCMS instances

1 sec 0.8 sec 0.8 sec
< 1 min < 1/2 min 1.2 sec
6 min 2 min 5.4 sec
40 min 10 min < 1 min
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Heuristic: Performance

» computation times for different HMCMS instances

100 customers 1 sec 0.8 sec 0.8 sec

1,000 customers < 1 min < 1/2 min 1.2 sec
10,000 customers 6 Min 2 min 5.4 sec
100,000 customers 40 min 10 min < 1 min

*heuristic approximation errors

1.9%

100 customers 0.85%

1,000 customers 0.08%
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Application to the KAS

Patient X of blood fype O s listed tn a given
geographic region, He s currently ranked 50th. How

long until he receives an offer of a particular quality?
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Application to the KAS

Patient X of blood type O s listed tn a given
geographic region, He s currently ranked 50th. How

long until he receives an offer of a particular quality?

R ——————

- PADV-OP| Gift of Lite Donor Program
* threshold type decisions

- model as HMCMS

19



Available Data

- well accepted kidney quality metric: KDPI

* historical kidney procurement rates (for each
qualrty)
* historical patient accept/decline decisions

- 2007/-2010 training set
- 2010-2013 testing set
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Out-of-Sample Performance

time to first offer (in days)

2000

1500+

1000+

500

20

40 60

patient rank

30

100
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- 99-percentile
- 97-percentile
- 95-percentile

68-percentile
~ average



Out-of-Sample Performance

* relative prediction erro

| £

967 for avg. and

S

|./3% for 68-percentile

*delay history estimator:

uses personalized info unavailable in practice

cannot estimate wait times for high ranks

- relative prediction errors of delay history estimator:
|6./6% for ave. and |4.65% for 68-percentile
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Summary

* modeling framework for MCMS systems under
incomplete information

- MIP formulation

more structure: provably tight scalable heuristic
» FCFS, class priority

- application to U.S. kidney allocation system
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Thank you!



Model Calibration

- cluster kidneys In quality levels

*service time uncertainty sets: for each quality level 7

g

/
ij{il?jERej ; meg £ | FUj\/Z,EZI,...,fj}
k=1

» Mj (04) historical procurement rate (std)
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Model Calibration: Queue Populations
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Model Calibration: Queue Populations

- patient is type 7, observes rank 7 and historical
accept/decline decisions
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Model Calibration: Queue Populations

- patient is type 7, observes rank 7 and historical
accept/decline decisions

* (i probability of a patient being type k
- it gx to maximize likelihood of observed decisions

- CLI-based approach:

r—1
ZCZ,/ <(r—Lpug+Toevr—1

class of vth patient iiqz- ZZ Y

1=1
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Model Calibration: Queue Populations

- patient is type 7, observes rank 7 and historical
accept/decline decisions

* (i probability of a patient being type k
- it gx to maximize likelihood of observed decisions

- CLI-based approach:

K
IP{nERK:Zinikg(rl)ug+Fag\/r1}

1=1
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Extensions

motivation:

recent policy change: top 20% of healthier
batients have priority for top 20% kidneys

modeling implications:

alternative priority rule: class priority

customer arrivals

all of our results can be extended!

27



HMCMS under Class Priority



HMCMS under Class Priority

- model arrival times similar to service times
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HMCMS under Class Priority

- model arrival times similar to service times

14 . . .
Vi, arrival time of £th customer In class &

Zyﬁj < ng becomes Zy,ﬁj < ng+ v,ﬁ
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HMCMS under Class Priority

- model arrival times similar to service times

Uﬁ arrival time of £th customer in class k
Zy,ﬁj < nr becomes Zyﬁj < ng+ v,ﬁ

* constraints on assighments yﬁj reflect priority rules

+ eg, If servers iIndexed In descending priority

yk]<1_f£” k',<k

- all our results can be extended
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