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End-Stage Renal Disease

• terminal disease affecting >600,000 patients in U.S.
• dialysis vs. kidney transplant (preferred) 
• living donors vs. deceased donors
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Organ Shortage

• 100k patients waiting
• 36k additions per year
• 19k transplants/year

• 13.4k (70%) from deceased donors
• 5.6k (30%) from living donors
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U.S. Kidney Allocation System
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U.S. Kidney Allocation System

• medical compatibility: blood group, weight, etc.
• geographic proximity (24-36 hours to transplant)
• point based: wait time, blood antigens: ~FCFS
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Wait Time Estimation
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Patient X of blood type O is listed in a given 
geographic region. He is currently ranked 50th. How 
long until he receives an offer of a particular quality?



Wait Time Estimation
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Patient X of blood type O is listed in a given 
geographic region. He is currently ranked 50th. How 
long until he receives an offer of a particular quality?

• important for :
- dialysis management
- planning of daily life activities
- accept/reject decisions



Challenges
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Challenges
• predicting accept/decline decisions is already hard

• Kim et al 15: use all available historical data, build 
series of prediction models (log. reg., SVM, CART, 
RF); error rates vary 22-47%
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Challenges
• predicting accept/decline decisions is already hard

• Kim et al 15: use all available historical data, build 
series of prediction models (log. reg., SVM, CART, 
RF); error rates vary 22-47%

• in practice:
• incomplete information: other patients’ 

preferences
• unstable/ non-stationary system
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Resource Allocation System

• multiclass, multiserver (MCMS) queuing system
• servers: resource types 
• customer classes/queues: preferences
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MCMS under FCFS
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MCMS under FCFS

•        arrival order of customer  
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MCMS under FCFS

•        arrival order of customer  
•                                          clearing time of queue 
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Model of Uncertainty
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Robust Wait Times
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Robust Wait Times

• robust wait time estimation problem is NP-hard
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Robust Wait Times

• robust wait time estimation problem is NP-hard
• no tractable expression for 

- Lindley equations break down
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Robust Wait Times

• robust wait time estimation problem is NP-hard
• no tractable expression for 

- Lindley equations break down
• key idea: model assignment of servers to customers

-   :    th service from server    assigned to class 
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Robust Wait Times
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Performance: Accuracy

• estimation error vs simulation
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statistics avg. 95-%ile 97-%ile 99-%ile

avg. abs. rel. error 6.52% 2.64% 2.55% 3.41%



Performance: Accuracy

• estimation error vs simulation

12

• estimation error when true distribution      assumed6=

statistics avg. 95-%ile 97-%ile 99-%ile

avg. abs. rel. error 6.52% 2.64% 2.55% 3.41%

avg. queue population 5 100 500

simulation avg. abs. rel. error 21% 15% 12%

our avg. abs. rel. error 13% 9% 7.5%



Hierarchical MCMS

• hierarchy across resource types
• e.g., different quality service level

• radiation therapy
• organ quality

• server   provides  th ranked service
• induces “threshold-type” customer preferences 
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Hierarchical MCMS

• nested structure enables to strengthen formulations
• robust wait time for service of any rank
• problem remains NP-hard 
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Wait Time for Service in HMCMS

Lemma. For HMCMS systems:
•         increasing in completion times
• completion times can be fixed to their worst-case values:
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Lemma. For HMCMS systems:
•         increasing in completion times
• completion times can be fixed to their worst-case values:
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drastic variable reduction

• assignment of servers to customers
-       :    th service from server    assigned to class 
-       :  time   th service from server   starts

y`kj ` j k
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Scalable Heuristic
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• view so far : individual assignments     
- scales with 
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Approximation Guarantee
•        exact robust wait time
•        approximation
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Approximation Guarantee
•        exact robust wait time
•        approximation
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for a hierarchical MCMS system,
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approximation becomes tighter as    increasesn



Heuristic: Performance

• computation times for different HMCMS instances
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general MIP simpler MIP SOCP

100 customers 1 sec 0.8 sec 0.8 sec

1,000 customers < 1 min < 1/2 min 1.2 sec

10,000 customers 6 min 2 min 5.4 sec

100,000 customers 40 min 10 min < 1 min



Heuristic: Performance

• computation times for different HMCMS instances

18

• heuristic approximation errors

general MIP simpler MIP SOCP

100 customers 1 sec 0.8 sec 0.8 sec

1,000 customers < 1 min < 1/2 min 1.2 sec

10,000 customers 6 min 2 min 5.4 sec

100,000 customers 40 min 10 min < 1 min

50 customers 1.9%

100 customers 0.85%

1,000 customers 0.08%



Application to the KAS
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long until he receives an offer of a particular quality?



Application to the KAS

• PADV-OP1 Gift of Life Donor Program
• threshold type decisions
• model as HMCMS

19
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geographic region. He is currently ranked 50th. How 
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Available Data
• well accepted kidney quality metric: KDPI
• historical kidney procurement rates (for each 

quality)
• historical patient accept/decline decisions 
• 2007-2010 training set
• 2010-2013 testing set

20



Out-of-Sample Performance
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Out-of-Sample Performance

• relative prediction errors
- 14.96% for avg. and 11.73% for 68-percentile

• delay history estimator: 
- uses personalized info unavailable in practice
- cannot estimate wait times for high ranks

• relative prediction errors of delay history estimator:
- 16.76% for avg. and 14.65% for 68-percentile
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Summary
• modeling framework for MCMS systems under 

incomplete information
• MIP formulation

- more structure: provably tight scalable heuristic
• FCFS, class priority
• application to U.S. kidney allocation system
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Thank you!



Model Calibration
• cluster kidneys in quality levels
• service time uncertainty sets: for each quality level 

•     (    ) historical procurement rate (std)

25
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Model Calibration: Queue Populations
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Model Calibration: Queue Populations

• patient is type   , observes rank    and historical 
accept/decline decisions
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Model Calibration: Queue Populations

• patient is type   , observes rank    and historical 
accept/decline decisions

•     probability of a patient being type  
• fit      to maximize likelihood of observed decisions
• CLT-based approach:                         
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Extensions
motivation:

• recent policy change: top 20% of healthier 
patients have priority for top 20% kidneys

modeling implications:
• alternative priority rule: class priority
• customer arrivals

all of our results can be extended!!
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HMCMS under Class Priority
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