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Distributionally robust optimization

Consider an optimization problem where
@ x is the decision variable

@ z is an uncertain parameter with partly known probability
distribution (measure) 1 € P defined on a set Z

min suplE,fo(x, 2)
xeX pep

s.t. supfi(x,z) <0 j=1,...,J
zel
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Distributionally robust optimization

@ z is an uncertain parameter with partly known probability
distribution (measure) 1 € P defined on a set Z

suplE, fo(x, z)
nePrP

In this presentation, we only focus on the inner
expectation-maximization problem, forget about x and set

fo(X, Z) = ¢0(Z)
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Set of probability measures based on moments

We assume that P C M is a family of measures defined on Z such
that:

E,¢i(z) = b; i=1,...,1

The expectation-maximization problem is:

max /Z bo(2)dp

HeM
s.t. / ldu=1
z
¢i(z)du = b; i=1,...,1
4

a.k.a. the Generalized Problem of Moments (GPM).
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Example

Consider z = (21, 2) € [~1,1]?> = Z such that
/ zidp = / zdpu =0
[_171]2 [_171]2
Goal: evaluate the maximum probability 0.15z; 4+ 0.0752, < —0.1

max / 1({(z1,22) : 0.15z1 +0.075z0 < —0.1})du
K [-1,1]2

s.t. / ldu=1
[_171]2

/ z1dp = / zdp =0
[7171]2 [7171]2
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The worst-case distribution

w((—0.44,—-0.44)) ~ 0.69, u((1,1)) ~0.31
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Discussion

@ The worst-case distribution will always have at most / + 1
probability mass points (Rogosinsky, 1958)

@ One does not expect this to be the case in many applications

@ Therefore, distributionally robust optimization based on
generalized moment problems can be over-conservative

@ Need to model smooth probability density functions, e.g.,
polynomials
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Using polynomials as smooth densities

max [ on(z)h(z)dn
zZ

h(z)
s.t. /h( Ydp =1
/¢I d,u—b i=1,...,1

where
@ 1 is some known reference measure (e.g. Lebesgue)
e h(z) is a sum-of-squares (SOS) polynomial:

where a;(z), i=1,...,K are polynomials in z.
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Forcing a polynomial to be SOS

Some notation:
e denote z® =z - ... zg"
o define the set of all n-tuples of exponents of monomials of

degree at most r:

N(n,r) = {aEN”:zn:a,-gr}

i=1
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Forcing a polynomial to be SOS

If a polynomial h(z) of degree at most 2r can be written as

h(z) = Z H, 3z%2"

a,BEN(n,r)
_ - T - -
1 1
Hii Hip - Hy,\n(n,r)|
7 7
H> 1
— | = ) _ 2
i y ) Hin(n,r)l,In(n,r) i y )

where [H, g] is a positive semidefinite matrix (Vy : y"Hy >0),
then h(z) is an SOS polynomial.
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SOS-based problem of moments

sup /¢o(z Ha,ﬁzaﬂadu
a, L‘fEN (m,2r)

st/ Z Heopdp =1

a,BEN(m,2r)

/¢' Ha,Bza+BdN:bi7 i=1,...,1,
«, iGN(m 2r)

equivalent to:

sup Z Ha”g/zqﬁo(z)zo‘Jrﬁd,u

H=0 «,BEN(m,2r)

s.t. Z / "‘+Bdu =1

a,BEN(m,2r)

> e b, =1,

a,BEN(m,2r)
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Semidefinite programming form

This problem can be written as:

max (H,®%
HeSIN(n,)
st. (HE)=1
(H,®") = b; i=1,...,1
H>0

where (A, B) = Tr(AT B) and where the matrices' entries are:

aa—/(bo )2°*dp, Eap = / 2*Hdp, @) ;= / ¢i(2)z* P dp
JZ

Our ability to compute these terms is crucial. Possible for several
sets, e.g., when ¢g(z), ¢;(z) are polynomials.
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Examples of known moments of monomials

For the standard simplex, we have
/ FX — H?:l Oé,'!
, (Jaf +n)V’

For the hypercube OQ,:

/,,Z / C“dx—l_[/ O"dx,— Oé:—|-1
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Back to our example

Worst-case density obtained with polynomial degree 2r = 2:

Worst-case probability: 0.3942 (compare with 0.6923)
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Conjecture
As r — 400, the optimal value of

max  (H, ®°)
HesSIN(n,r)|
st. (HE)y=1
(H,®') = b; i=1,...,1
H>0

converges to the optimal value of

max / do(z)dp
z

s.t. /1d,u:1
z

/(b,-(z)du:b,- i=1,...,1.
z
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A reason behind the conjecture

For continuous f(z) and convex Z the sequence of optimal values
of

min /f(z
h(z)ex,(z)
s.t. /h(z)du =1.
z

where ¥, is the space of SOS polynomials of degree at most 2r,
converges (Lasserre, 2001) to

mig ()

as r — +o00.
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Theory - numerical investigation
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Back to our example

Worst-case density obtained with polynomial degree 2r = 24:

Probability: 0.6142
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Back to our example

Worst-case density obtained with polynomial degree 2r = 24:

Probability: 0.6142
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Computational heuristic

Instead of optimizing over a high-degree density h(z) do:
@ Optimize a low-degree density polynomial h;(z).

@ Fix hy(z), set the new probability density function as
h1(z)ha(z), where hy(z) is the same degree as hi(z), optimize
over hy(z).

© Fix Ea(z), set the new probability density function as
hi(z)h2(z)h3(z), optimize over h3(z).

Q ..

We tested it also on several global optimization examples.
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Conclusion

@ we propose a new way of defining uncertain smooth
probability measures

@ the maximum expectation problem becomes an SDP

@ proved (?) the convergence to the optimal value of a general
problem of moments

@ computational heuristic: modelling the polynomial density as
a product of polynomial densities of smaller degree, optimized
one after another
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Thank you for your attention
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