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Applications:
o healthcare, cloud computing, airline scheduling...
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Problem Setup

Parameter:
o J: set of items
o I : set of bins
o cz

i : the cost of opening bin i , ∀i ∈ I
o cy

ij : the cost of assigning item j to bin i , ∀i ∈ I , j ∈ J
o Ti : capacity of bin i , ∀i ∈ I
o ρij = 1 if item j can be assigned to bin i ; = 0 o.w.
o t̃ij : item j ’s random weight in bin i

Decision Variables:
o zi ∈ {0, 1}: zi = 1 if we open bin i , and = 0 if not
o yij ∈ {0, 1}: yij = 1 if item j is assigned to bin i
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A Chance-Constrained Formulation

min
z,y

∑
i∈I

cz
i zi +

∑
i∈I

∑
j∈J

cy
ijyij (1a)

s.t. yij ≤ ρijzi ∀i ∈ I , j ∈ J (1b)∑
i∈I

yij = 1 ∀j ∈ J (1c)

yij , zi ∈ {0, 1} ∀i ∈ I , j ∈ J (1d)

P

{∑
j∈J

t̃ijyij ≤ Ti

}
≥ 1− αi ∀i ∈ I (1e)

o Objective (1a): Minimize the total cost.
o (1b)–(1d): Feasible assignment of items → open bins
o (1e): “total weight ≤ bin i capacity” at 1− αi probability
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Gaussian Approximation ⇒ 0-1 SOC Reformulation
If t̃i = [t̃ij , j ∈ J]T follows a Gaussian with known mean µi and
covariance Σi , the chance constraints (1e) are equivalent to (see,
Prékopa (2003)):

Φ−1(1− αi )
√

yT
i Σiyi ≤ Ti − µT

i yi , ∀i ∈ I , (2)

where Φ(·) represents the CDF of the standard normal distribution.

If t̃i follows a general distribution, model (1) can be approximated
by a second-order cone (SOC) program by replacing (1e) with (2).
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DR Chance-Constrained Bin Packing Model

DCBP:

min
z,y

∑
i∈I

cz
i zi +

∑
i∈I

∑
j∈J

cy
ijyij

s.t. (1b)–(1d),

inf
P∈D

P

{∑
j∈J

t̃ijyij ≤ Ti

}
≥ 1− αi ∀i ∈ I (3)

I An accurate and complete estimation of P is rarely accessible.
I Alternative: a set of plausible candidates of P (ambiguity set
D).

I (3): The worst-case probability for any P ∈ D is guaranteed
at least 1− αi (an ambiguous chance constraint).
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Two Moment Ambiguity Sets

MJ
+: the set of all probability distributions on RJ .

Case 1: Exactly match the empirical mean and covariance:

D1(µi ,Σi ) =

{
P ∈MJ

+ :
EP[t̃i ] = µi ,
EP[(t̃i − µi )(t̃i − µi )>] = Σi , ∀i ∈ I

}
,

However, due to estimation error in µi and Σi , we also consider:
Case 2: A more general ambiguity set (Delage and Ye, 2010):

D2 =

{
P ∈MJ

+ :
(EP[t̃i ]− µi )>Σ−1

i (EP[t̃i ]− µi ) ≤ γ1,
EP
[
(t̃i − µi )(t̃i − µi )>

]
� γ2Σi , ∀i ∈ I

}
,

I γ1 > 0 and γ2 > max{γ1, 1} are for controlling D2; can be
chosen based on the amount of data and desired confidence
level or via cross validation.
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0-1 SOC Representation with D = D1

Following Chebyshev’s inequality (see, El Ghaoui et al. (2003);
Wagner (2008)), the DR chance constraint (3) is equivalent to√

yT
i Σiyi ≤

√
αi

1− αi

(
Ti − µT

i yi

)
, ∀i ∈ I (4)

Remarks:
I we can recapture the convexity of chance constraints (3) by

employing set D1 to model the t̃i uncertainty.
I The continuous relaxation of DCBP is an SOC program, one

of the most computationally tractable nonlinear programs.
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0-1 SDP Reformulation with D = D2

When D = D2, based on existing results of general DR chance
constraints (e.g., Zymler et al. (2013), Jiang and Guan (2015))

I DR chance constraints (3) ⇔ SDP constraints (exact)

Then, DCBP ⇔ 0-1 SDP reformulation.

However,

I 0-1 SDP cannot be directly solved in solvers

I Can use a cutting-plane algorithm and iteratively generate
Benders cuts based on the dual of SDP given fixed yi

I It takes ≥ 6,000 seconds to solve instances with 6 bins and 32
items when αi = 0.05 and (γ1, γ2) = (1, 2)

NEXT, we seek
I More tractable reformulation (0-1 SOC program)
I More efficient algorithms (branch-and-cut)
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0-1 SOC Reformulation with D = D2

Theorem
For each i ∈ I , DRCC (3) with D = D2 is equivalent to

µ>
i yi +

(
√
γ1 +

√(1− αi

αi

)
(γ2 − γ1)

)√
y>
i Σiyi ≤ Ti (5a)

if γ1/γ2 ≤ αi , and is equivalent to

µ>
i yi +

√
γ2

αi

√
y>
i Σiyi ≤ Ti (5b)

if γ1/γ2 > αi .

Remarks:
I The result holds for general covariance matrices. (Σi )
I Both (5a) and (5b) are SOC constraints with different

coefficients, dependent on values of γ1, γ2, αi .
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Proof Sketch

The theorem was proved in two steps:

I [Step 1]: Project the random vector t̃i and its ambiguity set
D2 from RJ to the real line, i.e., R.

I This simplifies DRCC (3) as involving a one-dimensional
random variable.

I [Step 2]: Derive worst-case mean and covariance matrix in
D2 that attain the worst-case probability bound in (3). Then
apply Cantelli’s inequality to conclude the SOC representation.

I Let s̃i = t̃i − µi , ξ̃i = y>i s̃i , bi = Ti − µ>i yi .

inf
P∈D2

P{t̃>i yi ≤ Ti} = inf
P∈Ds̃i

P{y>i s̃i ≤ bi}

= inf
P∈Dξ̃i

P{ξ̃i ≤ bi}

= inf
(µ1,σ1)∈S

inf
P∈D1(µ1,σ2

1)
P{ξ̃i ≤ bi}
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Proof Sketch (Continued)

For simplicity, we omit index i for the rest of the proof.

I The above equality into two layers: the outer layer searches
for the optimal (i.e., worst-case) mean and covariance, while
the inner layer computes the worst-case probability bound
under the given mean and covariance.

I For the inner layer, based on Cantelli’s inequality, we have

inf
P∈D1(µ1,σ2

1)
P{ξ̃ ≤ b} =

{
(b−µ1)2

σ2
1+(b−µ1)2 , if b ≥ µ1,

0, o.w.

I As DRCC states that infP∈D2 P{t̃>y ≤ T} ≥ 1− α > 0, we
can assume b ≥ µ1 for all (µ1, σ1) ∈ S w.l.o.g.
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Proof Sketch (Continued)
I It follows that

inf
P∈D2

P{t̃>y ≤ T} = inf
(µ1,σ1)∈S

(b − µ1)2

σ2
1 + (b − µ1)2

= inf
(µ1,σ1)∈S

1(
σ1

b−µ1

)2
+ 1

.

I The objective function decreases as σ1/(b − µ1) increases.

Hence, equivalently, we solve inf(µ1,σ1)∈S −
(

σ1
b−µ1

)
.

𝛾2 𝑦𝑇Σ𝑦 

𝑏 𝜇1 

𝜎1 

(𝜇1
∗ , 𝜎1

∗) 

𝛾1 𝑦𝑇Σ𝑦 
𝛾2
𝛾1

𝑦𝑇Σ𝑦 𝛾2 𝑦𝑇Σ𝑦 − 𝛾1 𝑦𝑇Σ𝑦 − 𝛾2 𝑦𝑇Σ𝑦 
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0-1 SOC Formulation Summary

The DRCC (3) can be reformulated by three types of 0-1 SOC
constraints in the same form of:

(µi )
Tyi + Ωi

√
yT
i Σiyi ≤ Ti , Ωi ≥ 0

I Guassian: Ωi = Φ−1(1− αi )
I DCBP1 with D = D1: Ωi =

√
(1− αi )/αi

I DCBP2 with D = D2:

Ωi =

{ (√
γ1 +

√
(1− αi )(γ2 − γ1)/αi

)
, γ1/γ2 ≤ αi√

γ2/αi , γ2/γ2 ≥ αi

19/40



CPU Time of 0-1 SOC under different Ωi
We test I = 6 and J = 32, αi = 0.05, ∀i ∈ I , and vary Ωi , ∀i in between
[1.64, 6.32]. (Ωi = 1.64 for “Gaussian” and Ωi = 6.32 for “DCBP2”.)
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Special Case: When Σi is Diagonal

Goal: solve 0-1 SOC constraint:

(µi )
Tyi + Ωi

√
yT
i Σiyi ≤ Ti , yi ∈ {0, 1}.

I Denote gi (yi ) = (µi )
Tyi + Ωi

√
cT
i yi , where ci ≥ 0 consists of

the diagonal term in Σi .

I gi (yi ) submodular: if f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for
all S ,T ⊆ N, where N = {1, . . . , n}

I Extended polymatroid inequality for gi (yi ) ≤ Ti (Atamtürk
and Narayanan (2008)):

πT
i yi ≤ Ti

I Branch-and-cut (B&C): π∗i = arg maxπi∈EPgi
πT
i yi can be

found efficiently by the greedy algorithm (Edmonds, 1971).

22/40



Special Case: When Σi is Diagonal

Goal: solve 0-1 SOC constraint:

(µi )
Tyi + Ωi

√
yT
i Σiyi ≤ Ti , yi ∈ {0, 1}.

I Denote gi (yi ) = (µi )
Tyi + Ωi

√
cT
i yi , where ci ≥ 0 consists of

the diagonal term in Σi .

I gi (yi ) submodular: if f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for
all S ,T ⊆ N, where N = {1, . . . , n}

I Extended polymatroid inequality for gi (yi ) ≤ Ti (Atamtürk
and Narayanan (2008)):

πT
i yi ≤ Ti

I Branch-and-cut (B&C): π∗i = arg maxπi∈EPgi
πT
i yi can be

found efficiently by the greedy algorithm (Edmonds, 1971).

22/40



Special Case: When Σi is Diagonal

Goal: solve 0-1 SOC constraint:

(µi )
Tyi + Ωi

√
yT
i Σiyi ≤ Ti , yi ∈ {0, 1}.

I Denote gi (yi ) = (µi )
Tyi + Ωi

√
cT
i yi , where ci ≥ 0 consists of

the diagonal term in Σi .

I gi (yi ) submodular: if f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for
all S ,T ⊆ N, where N = {1, . . . , n}

I Extended polymatroid inequality for gi (yi ) ≤ Ti (Atamtürk
and Narayanan (2008)):

πT
i yi ≤ Ti

I Branch-and-cut (B&C): π∗i = arg maxπi∈EPgi
πT
i yi can be

found efficiently by the greedy algorithm (Edmonds, 1971).

22/40



Special Case: When Σi is Diagonal

Goal: solve 0-1 SOC constraint:

(µi )
Tyi + Ωi

√
yT
i Σiyi ≤ Ti , yi ∈ {0, 1}.

I Denote gi (yi ) = (µi )
Tyi + Ωi

√
cT
i yi , where ci ≥ 0 consists of

the diagonal term in Σi .

I gi (yi ) submodular: if f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for
all S ,T ⊆ N, where N = {1, . . . , n}

I Extended polymatroid inequality for gi (yi ) ≤ Ti (Atamtürk
and Narayanan (2008)):

πT
i yi ≤ Ti

I Branch-and-cut (B&C): π∗i = arg maxπi∈EPgi
πT
i yi can be

found efficiently by the greedy algorithm (Edmonds, 1971).

22/40



Outline

Introduction

DR Chance-Constrained Bin Packing
Formulation
Ambiguity Sets
0-1 SOC Reformulations

Algorithms for Solving 0-1 SOC Programs
Extended Polymatroid Cuts
Submodular Approximations
Valid Inequalities in a Lifted Space

Computational Studies
Experimental Design and Setup
Computational Results

23/40



Non-diagonal Σi : Not Submodular

Example: Suppose that J = {1, 2, 3}, µ = 0, and

Λ =

 0.6 −0.2 0.2
−0.2 0.7 0.1
0.2 0.1 0.6

 .
The three eigenvalues of Λ are 0.2881, 0.7432, and 0.8687, and so
Λ � 0. However, function g(y) = µ>y +

√
y>Λy (with Λ = Ω2Σ)

is not submodular because h(R ∪ {j})− h(R) < h(S ∪ {j})− h(S),
where R = {1}, S = {1, 2}, and j = 3.
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(Necessary) and Sufficient Conditions for Submodularity

We take out the index i for all the variables and parameters for
presentation clarity.

Theorem
Define function h : {0, 1}J → R such that h(y) := y>Λy , where
Λ ∈ RJ×J represents a symmetric matrix. Then, h(y) is
submodular if and only if Λrs ≤ 0 for all r , s = 1, . . . , J and r 6= s.

Proposition

Let Λ ∈ RJ×J represent a symmetric and positive semidefinite
matrix that satisfies (i) 2

∑J
s=1 Λrs ≥ Λrr for all r = 1, . . . , J and

(ii) Λrs ≤ 0 for all r , s = 1, . . . , J and r 6= s. Then, function
g(y) = µ>y +

√
y>Λy is submodular.
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Relaxed Submodular Approximation

The 0-1 SOC constraint g(y) ≤ T implies another SOC constraint

µ>y +
√
y>∆Ly ≤ T , (6)

where function g L(y) := µ>y +
√

y>∆Ly is submodular and ∆L is
an optimal solution of SDP

min
∆
||∆− Λ||2 (7a)

s.t. 0 � ∆ � Λ, (7b)

2
J∑

s=1

∆rs ≥ ∆rr , ∀r = 1, . . . , J, (7c)

∆rs ≤ 0, ∀r , s = 1, . . . , J and r 6= s. (7d)

The extended polymatroid cuts for (6) are valid for DCBP.
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Conservative Submodular Approximation

Additionally, g(y) = µ>y +
√

y>Λy ≤ T is implied by

µ>y +
√
y>∆Uy ≤ T , (8)

where function gU(y) := µ>y +
√
y>∆Uy is submodular and ∆U is

an optimal solution of SDP

min
∆
||∆− Λ||2 (9a)

s.t. ∆ � Λ, (7c)–(7d). (9b)

I The results hold for general 0-1 SOC constraints. We can
apply relaxed and conservative submodular approximations (6)
and (8) to obtain valid bounds on any 0-1 SOC programs,
e.g., the knapsack problem with DRCCs.
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Submodularity through Lifting

We show that the submodularity of g(y) = µ>y +
√

y>Λy ≤ T
holds for general Λ in a lifted (i.e., higher-dimensional) space by

I defining wjk = yjyk for all j , k = 1, . . . , J and augment vector
y to vector v = [y1, . . . , yJ ,w11, . . . ,w1J ,w21, . . . ,wJJ ]>;

I reformulating g(y) ≤ T as y>(Λ− µµ>)y + 2Tµ>y ≤ T 2;

I decomposing (Λ− µµ>) to be the sum of two matrices, one
containing all positive entries and the other all nonpositive;

Accordingly, we derive extended polymatroid inequalities
π>v ≤ T 2 with v = (y ,w) in the lifted space + McCormick
Inequalties to linearize w -variables.
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Valid Inequalities in the Lifted Space

Consider the feasible region of DCBP in the lifted space. We prove
the following valid inequalities:

wijk ≥ yij + yik +
I∑
`=1
6̀=i

w`jk − 1 ∀j , k = 1, . . . , J (10a)

wijk ≥ yij + yik − zi ∀i = 1, . . . , I , ∀j , k = 1, . . . , J (10b)

J∑
j=1
j 6=k

wijk ≤
J∑

j=1

yij − zi ∀i = 1, . . . , I , ∀k = 1, . . . , J (10c)

J∑
j=1

J∑
k=j+1

wijk ≥
J∑

j=1

yij − zi ∀i = 1, . . . , I . (10d)

I The above valid inequalities are polynomially many and all
coefficients are in closed-form. We do not need any separation
processes for these inequalities.
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Approaches and Computer Setting

Compute the three 0-1 SOC reformulations:
I Gaussian - Gaussian distributed uncertainty assumption
I DCBP1 -DR model with D1

I DCBP2 -DR model with D2, (γ1, γ2) = (1, 2)

Appointment allocation setting:
I default: |I | = 6 servers, |J| = 32 appointments
I Ti ∈ [420, 540] minutes (7-9 hours)
I czi = T 2

i /3600 + 3Ti/60, cyij vary in between [0, 18]

Computer setup:
I GUROBI 5.6.3 in Python 2.7; Windows 7 machine with

Intel(R) Core(TM) i7-2600 CPU 3.40 GHz; 8GB memory.
I Cuts added using GUROBI callback class Model.cbCut().
I Cuts generated at each branch-and-bound node, for both

integer and fractional temp solutions.
I Optimality gap tolerance = threshold for violated cuts = 10−4

I Time limit = 3600 seconds.
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Instance Design

In-sample data:
I At each server i ∈ I , t̃ij follows Gaussian:

high mean: 25 min, low mean: 12.5 min;
high variance: std/mean = 1.0, low variance: std/mean = 0.3

I Mix for j ∈ J (8 hMhV, 8 hM`V, 8 `M`V, 8 `MhV)
I Sample size = 10,000 data points

Moments ambiguity
I The same distribution type but pure hMhV appointments.
I out-of-sample size = 10,000 data points

Distribution type ambiguity
I t̃ij (Two-point distribution; long-tail):

= µij + (1−p)√
p(1−p)

σij with probability p = 0.3

= µij −
√

p(1−p)

(1−p) σij min with probability 1− p = 0.7
I out-of-sample size = 10,000 data points
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Computing 0-1 SOC models with diagonal covariance

Table: Time and solution details for instances with diagonal covariance
matrices

Approach Model Time (s) Opt. Obj. Server Opt. Gap Node Cut

B&C
DCBP1 0.73 328.99 3 0.00% 83 82
DCBP2 27.50 366.54 3 0.00% 2146 2624

Guassian 0.13 297.94 2 0.00% 0 0

w/o Cuts
DCBP1 95.73 328.99 3 0.01% 76237 N/A
DCBP2 LIMIT 380.09 9.15% 409422 N/A

Gaussian 0.02 297.94 2 0.00% 16 N/A

SAA MILP 21.20 297.94 2 0.00% 89 N/A
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Computing 0-1 SOC models with general covariance

Table: CPU time of DCBP2 by different methods with general covariance
matrices

Instance
w/o Cuts Ineq. B&C-Relax B&C-Lifted

Time (s) Node Time (s) Node Time (s) Node Cut Time (s) Node Cut

1 286.29 10409 156.50 795 51.99 9095 702 35.03 618 823
2 433.32 10336 167.91 687 26.63 6524 698 12.34 405 235
3 284.17 10434 206.82 971 70.43 17420 621 29.84 595 729
4 310.11 10302 139.06 656 15.37 2467 723 25.31 419 617
5 329.32 10453 181.83 777 56.53 12349 737 35.09 678 921
6 365.28 10300 168.26 652 23.89 4807 695 26.73 555 595
7 296.55 10759 198.87 873 45.21 11585 738 21.08 440 626
8 278.62 10490 211.05 900 53.84 14540 721 47.78 1064 1686
9 139.24 7771 177.41 632 19.90 3918 645 19.37 216 360

10 297.72 10330 159.52 822 30.36 6877 649 29.43 400 727
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Computing 0-1 SOC models under different problem sizes

Table: CPU time of DCBP2 with general covariance and different sizes

Method
J = 32 J = 40

Inst. 1 2 3 4 5 6 7 8 9 10

I = 6

B&C-Relax
Time (s) 51.99 26.63 70.43 15.37 56.53 6.87 12.76 1.59 2.36 12.73

Node 9095 6524 17420 2467 12349 1009 1322 176 285 1270
Cut 702 698 621 723 737 174 604 171 179 602

B&C-Lifted
Time (s) 35.03 12.34 29.84 25.31 35.09 64.58 98.18 91.12 60.11 59.50

Node 618 405 595 419 678 274 484 447 289 234
Cut 823 235 729 617 921 470 690 688 462 394

w/o Cuts
Time (s) 286.29 433.32 284.17 310.11 329.32 1654.31 208.12 1182.46 1580.41 1266.27

Node 10409 10336 10434 10302 10453 10525 1272 10732 10658 10642

I = 8

B&C-Relax
Time (s) 41.57 139.41 55.22 261.24 305.72 23.91 9.73 17.76 27.16 12.98

Node 8342 29042 12267 49820 61334 2130 1240 1561 2607 1024
Cut 737 770 742 803 790 714 199 728 702 690

B&C-Lifted
Time (s) 106.03 28.55 84.64 97.05 13.56 331.29 273.14 307.06 178.41 161.39

Node 678 502 647 634 125 1177 836 1397 457 529
Cut 114 691 128 143 216 1781 1175 2066 703 719

w/o Cuts
Time (s) 866.12 597.43 649.72 683.18 497.15 2265.53 2428.60 2294.62 1781.95 851.99

Node 10338 10305 10309 10306 14386 11441 11219 11708 11128 5241

I = 10

B&C-Relax
Time (s) 3.75 9.28 6.56 3.23 16.71 29.94 80.34 22.58 24.48 339.93

Node 637 972 659 549 2274 2336 7315 1870 1959 34306
Cut 241 552 390 230 741 767 714 736 729 715

B&C-Lifted
Time (s) 108.43 117.44 120.60 22.10 111.37 186.72 714.45 197.42 549.90 661.13

Node 668 785 828 291 779 766 1108 811 896 1209
Cut 108 191 314 281 188 1196 850 1106 568 808

w/o Cuts
Time (s) 987.92 1140.23 183.06 1113.09 1425.83 2382.97 2917.03 LIMIT 2052.42 2451.62

Node 10353 10357 4992 10307 10401 11015 11197 12101 10812 11001
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Out-of-Sample Performance I

I Test optimal solutions yi of Gaussian, DCBP1, DCBP2, and
MILP in various out-of-sample instances.

I Reliability of each open server i =

# of scenarios in which t̃T
i yi ≤ Ti

N = 10, 000

Table: Solution reliability results in simulation sample with misspecified
moments (all hM`V instances)

Model Server 2 Server 4 Server 5 Server 6

DCBP1 N/A 0.94 1.00 1.00
DCBP2 0.98 1.00 0.99 N/A

Gaussian N/A 0.59 N/A 0.89
SAA N/A 0.59 N/A 0.89
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Out-of-Sample Performance II

Table: Solution reliability results in simulation sample with misspecified
distribution (two-point distribution)

Model Server 2 Server 4 Server 5 Server 6

DCBP1 N/A 0.96 1.00 1.00
DCBP2 1.00 1.00 1.00 N/A

Gaussian N/A 0.69 N/A 0.91
SAA N/A 0.69 N/A 0.91
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Conclusions

We investigate
I 0-1 SOC representations of DCBP with cross moments
I fast branch-and-cut (BAC) algorithm for 0-1 SOC models

with general covariance matrices using bounds and valid cuts
I the BAC algorithm with extended polymatroid inequalities in

the original space scales very well as the problem size grows.

Future research
I other applications, e.g., appointment scheduling, production

planning, and power system operation.
I under other types of ambiguity sets (moment or density based)
I connections between SOCP, SDP, and submodular

optimization.

Thank you! Any questions?
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