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Background

The one-stage DRO model

Consider the following distributionally robust optimization problem:

(DRO)
min
x

sup
P∈P

EP [f (x , ξ)]

s.t. x ∈ X ,
(1)

where P is a set of distributions which contains/approximates the true
probability distribution of random variable ξ.

References: Scarf (1958), Dupacová (1987), Shapiro and Kleywegt
(2002), Prékopa (1995), Bertsimas and Popescu (2005), Zhu and
Fukushima (2006), Goh and Sim (2010), Delage and Ye (2010),
Wiesemann, Kuhn and Sim (2015), Mohajerin Esfahani and Kuhn (2017)
· · ·
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I. Quantifying change of the ambiguity set

Part I: Quantifying change of the
ambiguity set
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I. Quantifying change of the ambiguity set Moment conditions

Ambiguity set defined through moment conditions

P :=

{
P :

EP [ψi (ξ)] = µi , for i = 1, · · · , p
EP [ψi (ξ)] ≤ µi , for i = p + 1, · · · , q

}
, (2)

where ψi : Ξ→ IR, i = 1, · · · , q, are measurable functions.

Question: What if the true µi is not known?

PN :=

{
P :

EP [ψi (ξ)] = µNi , for i = 1, · · · , p
EP [ψi (ξ)] ≤ µNi , for i = p + 1, · · · , q

}
(3)

where µNi is often constructed through samples.
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I. Quantifying change of the ambiguity set Moment conditions

Difference between P and PN?

Let

〈P, ψ〉 :=

∫
Ξ
ψ(ξ)P(dξ).

We can write P and PN as

P = {P ∈P(Ξ) : 〈P, ψE (ξ)〉 = µE , 〈P, ψI (ξ)〉 ≤ µI}

and
PN = {P ∈P(Ξ) : 〈P, ψE (ξ)〉 = µNE , 〈P, ψI (ω)〉 ≤ µNI }.

Q: Does PN approximate P? How?
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I. Quantifying change of the ambiguity set Measuring the distance between probability measures

Measuring the distance between probability measures:
Metrics of ζ-structure

Definition (ζ-metric)

Let P(Ξ) denote the set of all probability distributions/measures over
space (Ξ,B). Let P,Q ∈P(Ξ) and G be a family of real-valued
measurable functions on Ξ. Define

dG (P,Q) := sup
g∈G
|EP [g(ξ)]− EQ [g(ξ)]| .

The (semi-) distance defined as such is called a metric with ζ−structure.

Qustion: How to choose G ?
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I. Quantifying change of the ambiguity set Measuring the distance between probability measures

Metrics of ζ-structure

dG (P,Q) := sup
g∈G
|EP [g(ξ)]− EQ [g(ξ)]| .

Total variation metric (denoted by dTV ):
G :=

{
g : supξ∈Ξ |g(ξ)| ≤ 1

}
.

Kantorovich/ Wasserstein metric (denoted by dK ):
G = {g : g is Lipschitz continuous with L1(g) ≤ 1} .
Bounded Lipschitz metric (denoted by dBL):
G :=

{
g : supξ∈Ξ |g(ξ)| ≤ 1, g is Lipschitz continuous with L1(g) ≤ 1

}
where L1(g) denotes the Lipschitz modulus.

9 / 49



I. Quantifying change of the ambiguity set Measuring the distance between probability measures

Metrics of ζ-structure

dG (P,Q) := sup
g∈G
|EP [g(ξ)]− EQ [g(ξ)]| .

Total variation metric (denoted by dTV ):
G :=

{
g : supξ∈Ξ |g(ξ)| ≤ 1

}
.

Kantorovich/ Wasserstein metric (denoted by dK ):
G = {g : g is Lipschitz continuous with L1(g) ≤ 1} .

Bounded Lipschitz metric (denoted by dBL):
G :=

{
g : supξ∈Ξ |g(ξ)| ≤ 1, g is Lipschitz continuous with L1(g) ≤ 1

}
where L1(g) denotes the Lipschitz modulus.

9 / 49



I. Quantifying change of the ambiguity set Measuring the distance between probability measures

Metrics of ζ-structure

dG (P,Q) := sup
g∈G
|EP [g(ξ)]− EQ [g(ξ)]| .

Total variation metric (denoted by dTV ):
G :=

{
g : supξ∈Ξ |g(ξ)| ≤ 1

}
.

Kantorovich/ Wasserstein metric (denoted by dK ):
G = {g : g is Lipschitz continuous with L1(g) ≤ 1} .
Bounded Lipschitz metric (denoted by dBL):
G :=

{
g : supξ∈Ξ |g(ξ)| ≤ 1, g is Lipschitz continuous with L1(g) ≤ 1

}
where L1(g) denotes the Lipschitz modulus.

9 / 49



I. Quantifying change of the ambiguity set Measuring the distance between probability measures

Hoffman’s lemma for moment problem

Hoffman’s lemma (Sun and Xu (2015))

There exists a positive constant C depending on ψ such that

dTV (Q,P) ≤ C [(‖EQ [ψI (ξ)]− µI )+‖+ ‖EQ [ψE (ξ)]− µE‖],

for any Q ∈P(Ξ), where ‖ · ‖ denotes the Euclidean norm,
(a)+ = max(0, a) and the maximum is taken componentwise.
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I. Quantifying change of the ambiguity set Measuring the distance between probability measures

Quantifying the difference between P and PN

Proposition 2.1

There exists a positive constant C depending on ψ such that

HTV (PN ,P) ≤ C [max(‖(µNI − µI )+‖, ‖(µI − µNI )+‖)
+‖µNE − µE‖],

where C is defined as in the Hoffman’s lemma and HTV denotes the
Hausdorff distance under the total variation metric.
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I. Quantifying change of the ambiguity set Measuring the distance between probability measures

Proof. Let Q ∈ PN . By the Hoffman lemma, there is a constant C such
that

dTV (Q,P) ≤ C [‖(EQ [ψI (ξ(ω))]− µI )+‖+ ‖EQ [ψE (ξ(ω))]− µE‖]

≤ C
[
‖(EQ [ψI (ξ(ω))]− µNI )+‖+ ‖EQ [ψE (ξ(ω))]− µNE ‖

+‖(µNI − µI )+‖+ ‖µNE − µE‖
]

= C [‖(µNI − µI )+‖+ ‖µNE − µE‖],

because (a + b)+ ≤ (a)+ + (b)+. This gives

DTV (PN ,P) = sup
Q∈PN

dTV (Q,P) ≤ C (‖(µNI − µI )+‖+ ‖µNE − µE‖).
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I. Quantifying change of the ambiguity set Measuring the distance between probability measures

Likewise,

DTV (P,PN) ≤ C (‖(µI − µNI )+‖+ ‖µE − µNE ‖).

Combining the inequalities, we have

HTV (PN ,P) ≤ C
[
max(‖(µNI − µI )+‖, ‖(µI − µNI )+‖) + ‖µNE − µE‖

]
.
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I. Quantifying change of the ambiguity set Generalization

Generalizations

P :=

{
P :

EP [ψi (ξ)] = µi , for i = 1, · · · , p
EP [ψi (ξ)] ≤ µi , for i = p + 1, · · · , q

}

⇓

P depends on the decision variable x and other parameter u

P(x , u) := {P ∈P(Ξ) : EP [Ψ(x , u, ξ)] ∈ K} ,

where Ψ is a mapping consisting of matrices and K is a cone in the
respective matrix spaces.

Measuring the distance under ζ-metric.
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I. Quantifying change of the ambiguity set Moment conditions under ζ-metric

Slater condition

There exist P0 ∈P(Ξ) and a constant α > 0 such that

〈P0,Ψ(x0, u0, ξ)〉+ αB ⊂ K, (4)

where B is the unit ball in the space that K is defined.

15 / 49



I. Quantifying change of the ambiguity set Moment conditions under ζ-metric

Hoffman’s lemma under ζ-metric

Proposition 2.2 (Liu, Pichler and Xu (2017))

Under the Slater condition (4)

dG (Q,P(x , u)) ≤ ∆

α
inf
w∈K
‖w − 〈Q,Ψ(x , u, ξ)〉‖ (5)

for any Q ∈P(Ξ) and (x , u) close to (x0, u0), where α is the positive
constant defined in the Slater condition and

∆ := max
P∈P(Ξ)

dG (P,P0). (6)

Question:

How to estimate ∆?
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I. Quantifying change of the ambiguity set Moment conditions under ζ-metric

∆ := max
P∈P(Ξ)

dG (P,P0).

∆ ≤ 2 under the total variation metric dTV and the Bounded
Lipschitz metric dBL;

∆ ≤ diam(Ξ) under the Kantorovich/ Wasserstein metric when the
support set Ξ is bounded.
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I. Quantifying change of the ambiguity set Moment conditions under ζ-metric

Recall

P(x , u) := {P ∈P(Ξ) : EP [Ψ(x , u, ξ)] ∈ K}

vs

P(x ′, u′) :=
{
P ∈P(Ξ) : EP [Ψ(x ′, u′, ξ)] ∈ K

}
.
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I. Quantifying change of the ambiguity set Moment conditions under ζ-metric

Theorem 2.1

Assume:

(a) there exist positive constants γ ∈ IR+ and ν1, ν2 ∈ (0, 1] such that

‖Ψ(x , u, ξ)−Ψ(x ′, u′, ξ)‖ ≤ γ(‖x − x ′‖ν1 + ‖u − u′‖ν2)

for all ξ ∈ Ξ and (x , u), (x ′, u′) ∈ X × U close to (x0, u0).

(b) Ξ is a compact set.

(c) The Slater condition (4) is fulfilled.

Then there exists a positive constant C such that

HG (P(x , u),P(x ′, u′)) ≤ C (‖x − x ′‖ν1 + ‖u − u′‖ν2) (7)

for any (x , u), (x ′, u′) ∈ X × U close to (x0, u0).
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I. Quantifying change of the ambiguity set ζ-ball

Ambiguity set constructed through sample information:
ζ-ball

Let P ∈P(Ξ) and r be a positive number. We call the following set of
probability distributions as ζ-ball:

B(P, r) := {P ′ ∈P(Ξ) : dG (P ′,P) ≤ r}, (8)

where
dG (P,Q) := sup

g∈G
|EP [g(ξ)]− EQ [g(ξ)]| .

and P is a nominal distribution which may be an empirical probability
distribution.
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I. Quantifying change of the ambiguity set ζ-ball

Quantifying change of the ζ-ball

Theorem 2.2 (Liu, Pichler and Xu (2017))

Let B(P, r) be the ζ-ball defined as in (8). For every P, Q ∈P(Ξ) and
r1, r2 ∈ IR+, it holds that

HG

(
B(P, r1),B(Q, r2)

)
≤ dG (P,Q) + |r1 − r2|, (9)

where HG denotes the Hausdorff distance in P(Ξ) associated with
ζ-metric.
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II. Quantitative stability analysis of the DRO

Part II: Quantitative stability analysis of
the DRO

22 / 49



II. Quantitative stability analysis of the DRO

Distributionally robust formulation

Consider the following distributionally robust problem:

(DRO)
min
x

sup
P∈P

EP [f (x , ξ)]

s.t. x ∈ X ,
(10)

and its perturbation

min
x

sup
P∈P̃

EP [f (x , ξ)]

s.t. x ∈ X .
(11)

Question

How does perturbation of of the ambiguity set P affect the optimal value
and the optimal solution?
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II. Quantitative stability analysis of the DRO

Stability of optimal value

Theorem 3.1 (Liu, Pichler and Xu (2017))

Let ϑ(P̃) and ϑ(P) denote the optimal value of the DRO and its
perturbation. Then the following assertions hold:

(i)
|ϑ(P̃)− ϑ(P)| ≤ HG (P̃,P)

where HG is the Hausdorff distance under ζ-metric with

G := {f (x , ·) : x ∈ X}.
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II. Quantitative stability analysis of the DRO

In particular, if P = B(P, r), P̃ = B(P̃, r̃), then

|ϑ(P̃)− ϑ(P)| ≤ dG (P, P̃) + |r − r̃ |. (12)

If the functions in the set G are Lipschitz continuous with modulus κ,
then

|ϑ(P̃)− ϑ(P)| ≤ κdK (P, P̃) + |r − r̃ |. (13)

where dK denotes the Kantorovich/Wasserstein metric.

If the functions in G are bounded by a positive constant C , then

|ϑ(P̃)− ϑ(P)| ≤ CdTV (P, P̃) + |r − r̃ |. (14)
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II. Quantitative stability analysis of the DRO

Proof. Let

v(x) := sup
P∈P

EP [f (x , ξ)], ṽ(x) := sup
P∈P̃

EP [f (x , ξ)].

|ϑ(P̃)− ϑ(P)| =

∣∣∣∣sup
x∈X

v(x)− sup
x∈X

ṽ(x)

∣∣∣∣ ≤ sup
x∈X
|v(x)− ṽ(x)| .

v(x)− ṽ(x) = sup
P∈P

EP [f (x , ξ)]− sup
P∈P̃

EP [f (x , ξ)]

= sup
P∈P

inf
P̃∈P̃

EP [f (x , ξ)]− EP̃ [f (x , ξ)]

≤ sup
P∈P

inf
P̃∈P̃

sup
x∈X
|EP [f (x , ξ)]− EP̃ [f (x , ξ)]|

= sup
P∈P

inf
P̃∈P̃

dG (P, P̃)

= DG (P, P̃),

26 / 49



II. Quantitative stability analysis of the DRO

Proof. Let

v(x) := sup
P∈P

EP [f (x , ξ)], ṽ(x) := sup
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v(x)− ṽ(x) = sup
P∈P

EP [f (x , ξ)]− sup
P∈P̃

EP [f (x , ξ)]

= sup
P∈P

inf
P̃∈P̃

EP [f (x , ξ)]− EP̃ [f (x , ξ)]

≤ sup
P∈P

inf
P̃∈P̃

sup
x∈X
|EP [f (x , ξ)]− EP̃ [f (x , ξ)]|

= sup
P∈P

inf
P̃∈P̃

dG (P, P̃)

= DG (P, P̃),

26 / 49



II. Quantitative stability analysis of the DRO

Proof. Let

v(x) := sup
P∈P

EP [f (x , ξ)], ṽ(x) := sup
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ṽ(x)

∣∣∣∣ ≤ sup
x∈X
|v(x)− ṽ(x)| .
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II. Quantitative stability analysis of the DRO

Stability of the optimal solutions

Theorem 3.1

(ii) If, in addition, supP∈P EP [f (x , ξ)] satisfies the second order growth
condition at X ∗(P), that is, there exist positive constants C and σ
such that

sup
P∈P

EP [f (x , ξ)] ≥ ϑ(P) + σd(x ,X ∗(P))2 ∀ x ∈ X ,

then

D
(
X ∗(P̃),X ∗(P)

)
≤
√

3

σ
HG (P̃,P). (15)

A sufficient condition is that there exists a positive function α(ξ) with
infP∈P EP [α(ξ)] > 0 such that

f (x ′, ξ) ≥ f (x , ξ) + α(ξ)‖x ′ − x‖2 ∀ x ′ ∈ X , ξ ∈ Ξ. (16)
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III. MPDRCC

Part III: Mathematical program with
distributionally robust chance constraint

(MPDRCC)

Guo, Xu and Zhang (2017)
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III. MPDRCC The model

MPDRCC

We consider mathematical program with distributionally robust chance
constraint:

(MPDRCC)
min
x∈X

f (x)

s.t. inf
P∈P

P(g(x , ξ) ≤ 0) ≥ 1− β, (17)

where P is a set of distributions which contains/approximates the true
probability distribution of random variable ξ.

References: Calafiore and El Ghaoui (2006), Zymler, Kuhn and Rustem
(2013), Yang and Xu (2015), Erdoğan and Iyengar (2006), Jiang and
Guan (2015), Hu and Hong (2013), Hanasusanto, Roitch, Kuhn and
Wiesemann (2015) ...
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III. MPDRCC The model

Approximation of MPDRCC

(MPDRCCN)
min
x∈X

f (x)

s.t. inf
P∈PN

P(g(x , ξ) ≤ 0) ≥ 1− β. (18)

Question:

What is the impact on the optimal value and the optimal solutions of
MPDRCC as N increases?
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III. MPDRCC Pseudo-metric

Reformulation of the chance constraint

For each fixed x ∈ X , let

H(x) := {z ∈ Ξ : g(x , z) ≤ 0}.

Then
P(g(x , ξ) ≤ 0) ≥ 1− β ⇐⇒ P(H(x)) ≥ 1− β.

Let

1H(x)(z) :=

{
1 for z ∈ H(x),
0 for z 6∈ H(x),

denote the indicator function of H(x). Then

P(H(x)) = EP [1H(x)(ξ)].
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III. MPDRCC Pseudo-metric

(MPDRCC)
min
x∈X

f (x)

s.t. v(x) := inf
P∈P

EP [1H(x)(ξ)] ≥ 1− β,

vs

(MPDRCCN)
min
x∈X

f (x)

s.t. vN(x) := inf
P∈PN

EP [1H(x)(ξ)] ≥ 1− β,

We call v(x) and vN(x) robust probability function.

Question: Are v(x), vN(x) continuous? Does vN(x) converge to v(x)?
How?
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III. MPDRCC Pseudo-metric

Pseudo-metric

P(H(x)) = EP [1H(x)(ξ)].

Consider the following set of random indicator functions

G := {1H(x)(ξ(·)) : x ∈ X}.

For P,Q ∈P(Ξ), let

D(P,Q) := sup
g∈G

∣∣EP [g ]− EQ [g ]
∣∣ = sup

x∈X

∣∣P(H(x))− Q(H(x))
∣∣.

We call D(P,Q) pseudo-metric.
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III. MPDRCC Abstract conditions for convergence and continuity

Assumptions

Assumption 4.1 ( Convergence of the ambiguity set under the
pseudo-metric)

The ambiguity sets P and PN satisfy the following conditions:

(a) lim
N→∞

D(PN ,P) = 0, (Outer semi-convergence)

(b) lim
N→∞

D(P,PN) = 0. (Inner semi-convergence)

Comment: A combination of (a) and (b) implies lim
N→∞

H (P,PN) = 0.
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III. MPDRCC Abstract conditions for convergence and continuity

Uniform approximation of the robust probability function

Theorem 4.1 (Uniform convergence)

Under Assumption 4.1, i.e., limN→∞H (P,PN) = 0, vN(x) converges to
v(x) uniformly over X as N tends to ∞, i.e.,

lim
N→∞

sup
x∈X
|vN(x)− v(x)| = 0.
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III. MPDRCC Abstract conditions for convergence and continuity

Proof.

vN(x)− v(x) = inf
PN∈PN

PN(H(x))− inf
P∈P

P(H(x))

= sup
P∈P

inf
PN∈PN

PN(H(x))− P(H(x))

≤ sup
P∈P

inf
PN∈PN

∣∣P(H(x))− PN(H(x))
∣∣

≤ sup
P∈P

inf
PN∈PN

sup
x∈X

∣∣P(H(x))− PN(H(x))
∣∣

= sup
P∈P

inf
PN∈PN

sup
g∈G

∣∣EP [g ]− EPN
[g ]
∣∣

= D(P,PN).

This shows
sup
x∈X

[vN(x)− v(x)] ≤ D(P,PN).

36 / 49



III. MPDRCC Abstract conditions for convergence and continuity

Proof.

vN(x)− v(x) = inf
PN∈PN

PN(H(x))− inf
P∈P

P(H(x))

= sup
P∈P

inf
PN∈PN

PN(H(x))− P(H(x))

≤ sup
P∈P

inf
PN∈PN

∣∣P(H(x))− PN(H(x))
∣∣

≤ sup
P∈P

inf
PN∈PN

sup
x∈X

∣∣P(H(x))− PN(H(x))
∣∣

= sup
P∈P

inf
PN∈PN

sup
g∈G

∣∣EP [g ]− EPN
[g ]
∣∣

= D(P,PN).

This shows
sup
x∈X

[vN(x)− v(x)] ≤ D(P,PN).

36 / 49



III. MPDRCC Abstract conditions for convergence and continuity

Stability/convergence of MPDRCC

F and FN denote the feasible set,

ϑ := inf{f (x) : x ∈ F} the optimal value,

ϑN := inf{f (x) : x ∈ FN} the optimal value,

S := {x ∈ F : ϑ = f (x)} the set of optimal solutions,

SN := {x ∈ FN : ϑN = f (x)} the set of optimal solutions,

F s := {x ∈ X : v(x) > 1− β} strict feasible solution.
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III. MPDRCC Abstract conditions for convergence and continuity

Assumptions

Assumption 4.2 (Continuity of robust probability function)

v(·) = infP∈P P(H(·)) is continuous over X .
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III. MPDRCC Abstract conditions for convergence and continuity

Convergence of the optimal value and optimal solutions

Theorem 4.2

Suppose: (a) lim
N→∞

H (P,PN) = 0; (b) v(x) is continuous; (c)

cl F s ∩ S 6= ∅. Then

(i) lim supN→∞FN ⊂ F ;

(ii) lim
N→∞

ϑN = ϑ;

(iii) lim supN→∞ SN ⊂ S.
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III. MPDRCC Sufficient for continuity of the robust probability function

Sufficient for continuity of the robust probability function

Question

Under what conditions is the robust probability function

v(x) := inf
P∈P

P(H(x))

continuous? Recall that H(x) := {z ∈ Ξ : g(x , z) ≤ 0}.

When is P(H(x)) continuous w.r.t x?
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III. MPDRCC Sufficient for continuity of the robust probability function

Conditions for continuity of P(H(x))

Condition 4.1

For H(x) := {z ∈ Ξ : g(x , z) ≤ 0}, K (x) := {z ∈ Ξ : g(x , z) = 0} and
P ∈P(Ξ),

(C1) P(K (x)) = 0 for any x ∈ X;

(C2) H(·) is continuous and convex-valued over X and for any x ∈ X,

P(bdH(x)) = 0. (19)

Note that K (x) = bdH(x) when g(x , ·) is strictly convex and Ξ = IRk .

Theorem 4.3

Let P ∈P(Ξ). Then P(H(·)) is continuous over X when either condition
(C1) or (C2) is fulfilled.
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III. MPDRCC Sufficient for continuity of the robust probability function

Why do we need C2?

Example 4.1

Let ξ : Ω→ IR be a random variable with support set Ξ = IR. Let

g(x , z) :=


z + x for z ≥ −x ,
0 for z ∈ [−x − 1,−x ],
z + x + 1 for z ≤ −x − 1.
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III. MPDRCC Sufficient for continuity of the robust probability function

H(x)={[:g(x,[) ≤ 0}

bd H(x)  

;=R-x-x-1

H(x) = {z ∈ IR : g(x , z) ≤ 0} = (−∞,−x ].

H(·) is convex set-valued, continuous and P(bdH(x)) = 0.

So (C2) is satisfied!
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III. MPDRCC Sufficient for continuity of the robust probability function

K(x)={[:  g(x,[) = 0}
;=R-x-x-1

K (x) := {z ∈ IR : g(x , z) = 0} = [−x − 1,−x ].

P(K (x)) 6= 0.

(C1) is failed!
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III. MPDRCC Sufficient for continuity of the robust probability function

Pointwise continuity of the robust probability function

Theorem 4.4 (Continuity of v(x) := infP∈P P(H(x)))

Suppose P is weakly compact and one of the following condition holds:

(a) (C1) holds for each P ∈ P and for each x ∈ X, g(·, ξ) is continuous
at x uniformly w.r.t. ξ ∈ Ξ;

(b) (C2) holds for each P ∈ P.

Then v(·) is continuous on X .

The set A is said to be weakly compact if every sequence {PN} ⊂ A
contains a subsequence {PN′} and moreover there exists P ∈ A such that
PN′ converges to P weakly.
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III. MPDRCC Sufficient conditions for convergence of PN to P

Sufficient conditions for convergence of D(PN ,P)

Lemma 4.1

Let {PN} ⊂P be a sequence of probability measures and P ∈P.
Suppose PN converges to P weakly. Then

lim
N→∞

D(PN ,P) = 0 (20)

under one of the following conditions:

(a) g(·, ξ) is continuous on X uniformly w.r.t. ξ ∈ Ξ + condition (C1) for
P.

(b) Condition (C2) for the P.
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III. MPDRCC Sufficient conditions for convergence of PN to P

Sufficient conditions for convergence of D(PN ,P)

Proposition 4.1

PN converges to P weakly, i.e., for every sequence {PN} ⊆ PN ,
{PN} has a subsequence {PNk

} converging to P with P ∈ P.

Condition (a) or (b) in Lemma 4.1 holds for any P ∈ P.

Then
lim

N→∞
D(PN ,P) = 0.

47 / 49



III. MPDRCC Sufficient conditions for convergence of PN to P

Sufficient conditions for convergence of D(PN ,P)

Proposition 4.1

PN converges to P weakly, i.e., for every sequence {PN} ⊆ PN ,
{PN} has a subsequence {PNk

} converging to P with P ∈ P.

Condition (a) or (b) in Lemma 4.1 holds for any P ∈ P.

Then
lim

N→∞
D(PN ,P) = 0.

47 / 49



III. MPDRCC Sufficient conditions for convergence of PN to P

Sufficient conditions for convergence of D(P ,PN)
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