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outline

optimization under uncertainty and satisficing - a quick review
satisficing decision criteria - general representation theorem
the t-model: a tractable probabilistic satisficing model
numerical illustration - maximum coverage facility location problem
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optimization under uncertainty and satisficing

optimization under uncertainty

deterministic optimization:
min
x∈X

c ′x s.t. Ax ≥ b

optimization under uncertainty z̃ ∈ W:
min
x∈X

c ′x s.t. A(~z)x ≥ b(~z)

probability distributions available: stochastic optimization (Prékopa
1995; Birge and Louveaux 1997; etc. ....)
distributions unavailable:
- robust optimization (Ben-Tal and Nemirovski 1999; Bertsimas and
Sim 2004, Bertsimas et al. 2011)
- distributionally robust optimization (Delage and Ye 2010; Wiesemann
et al. 2014; etc ... this workshop)
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optimization under uncertainty and satisficing

satisficing

satisficing = satisfy + suffice

Simon (1959):

«... the entrepreneur may not care to maximize, but may simply want to
earn a return that he regards as satisfactory [...] “satisfactory profits” is a
concept more meaningfully related to the psychological notion of aspiration
levels than to maximization...»

Simon, H. A. (1959). Theories of Decision-Making in Economics and Behavioral
Science. The American Economic Review 49(3):253–83.
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optimization under uncertainty and satisficing

a first satisficing model under uncertainty: the p-model

Charnes and Cooper (1963)
first to incorporate the idea of satisficing in mathematical
programming under uncertainty:

max lnP (A(z̃)x ≥ b(z̃))
s.t. x ∈ X .

randomly perturbed linear constraints A(z̃)x ≥ b(z̃)

tractable only for restricted special cases
general case intractable (Nemirovski and Shapiro 2006)

Charnes, A., and W. Cooper (1963) Deterministic Equivalents for Optimizing and
Satisficing under Chance Constraints. Operations Research 11(1):18–39.
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optimization under uncertainty and satisficing

chance-constrained optimization/programming

Charnes and Cooper (1959), close relation to the p-model

min c ′x
s.t. lnP (A(z̃)x ≥ b(z̃)) ≥ ∆

x ∈ X

satisficing criterion subject to a lower bound parameter ∆ ∈ R
objective is a deterministic cost function; c ∈ RN defines the objective
function coefficients
approximation by sample average approximation (SAA) methods

disadvantage: require large number of samples

Charnes, A., and W. Cooper (1959) Chance-Constrained Programming.
Management Science 6(1):73–79.
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optimization under uncertainty and satisficing

robust optimization

min c ′x
s.t. A(z)x ≥ b(z) ∀z ∈ U(Γ)

x ∈ X

z denotes realization of z̃ from an uncertainty set, U(Γ) (typically U(·)
designed such that U(α1) ⊆ U(α2) ⊆ W ⊆ RK for all 0 ≤ α1 ≤ α2).
does not require the specification of a probability distribution, but
instead a “budget of uncertainty” Γ ∈ R+

the level of uncertainty that must be tolerated
may not be easy to specify

yields tractable formulations under reasonable conditions: e.g., if U(Γ)
is described as norm-based sets U(Γ) = {z ∈ W | ||z || ≤ Γ}:

linear program for || · ||1, || · ||∞ and D-Norm (Bertsimas et al. 2004)
second-order cone program for || · ||2 norm

PJ (MIT) Banff March 8, 2018 7 / 33



satisficing models

a satisficing model for robust optimization

the p-model is a satisficing model for chance-constrained optimization:

max lnP (A(z̃)x ≥ b(z̃))
s.t. x ∈ X

min c ′x
s.t. lnP (A(z̃)x ≥ b(z̃)) ≥ ∆

x ∈ X

can we define a satisficing model for robust optimization?

→ the r-model:

max {α | A(z)x ≥ b(z) ∀z ∈ U(α)}
s.t. x ∈ X

min c ′x
s.t. A(z)x ≥ b(z) ∀z ∈ U(Γ)

x ∈ X
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satisficing models
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satisficing models

some benefits of satisficing models
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satisficing models

satisficing decision criterion - definition

setting:
z̃ a K dimensional random vector that influences the entries of the
function maps A : RK 7→ RM×N and b : RK 7→ RM .
randomly perturbed linear constraints, A(z)x ≥ b(z), where z is a
random outcome of z̃ .
W ⊆ RK the support of the random vector z̃ .

definition: satisficing decision criterion

a function ν : RN 7→ R ∪ {−∞} is a satisficing decision criterion if it has
the following two properties. For all x , y ∈ RN ,

1 (satisficing dominance) if A(z)y ≥ b(z) implies A(z)x ≥ b(z) for all
z ∈ W, then ν(x) ≥ ν(y).

2 (infeasibility) if there does not exist z ∈ W such that A(z)x ≥ b(z),
then ν(x) = −∞.
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satisficing models

satisficing decision criteria - previous examples

the p-model is an optimization problem that maximizes a satisficing
decision criterion νP : RN 7→ R ∪ {−∞} given by

νP(x) = lnP (A(z̃)x ≥ b(z̃))

the r-model is an optimization problem that maximizes a satisficing
decision criterion νR : RN 7→ R ∪ {−∞} given by

νR(x) = max {α | A(z)x ≥ b(z) ∀z ∈ U(α)}
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satisficing models

satisficing decision criteria - a general representation

a general representation of any satisficing decision criterion ν can be given
by the following result:

theorem: general representation

consider a function ν : RN 7→ R ∪ {−∞} defined as

ν(x) = max
α∈S
{ρ(α) | A(z)x ≥ b(z) ∀z ∈ U(α)} (1)

for some function ρ : S → R ∪ {−∞} on domain S ⊆ RP , and for some
family of nonempty uncertainty sets U(α) ⊆ W defined for all α ∈ S; then
the function ν is a satisficing decision criterion; moreover, any satisficing
decision criterion can be represented in a form given by (1) with S ⊆ RN .
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satisficing models

the s-model: a general family of satisficing models

general s-model

max ρ(α)
s.t. A(z)x ≥ b(z) ∀z ∈ U(α)

x ∈ X
α ∈ S

adjusts uncertainty sets U(α) for which the constraints remain feasible
maximizes ρ(α) : S → R
careful design of ρ(α) and U(α) can lead to meaningful and tractable
models
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satisficing models

the probabilistic s-model

recap - the most general satisficing model:

general s-model

max ρ(α)
s.t. A(z)x ≥ b(z) ∀z ∈ U(α)

x ∈ X
α ∈ S

how to combine useful aspects of both the p-model and the r-model?
set ρ(α) = lnP (z̃ ∈ U(α))

probabilistic s-model

max lnP (z̃ ∈ U(α))
s.t. A(z)x ≥ b(z) ∀z ∈ U(α)

x ∈ X
α ∈ S
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a tractable probabilistic s-model

the t-model: a tractable probabilistic s-model

uncertain parameters z̃k , k ∈ [K ] are independently distributed real
random variables with support Wk ; W =×K

k=1Wk

uncertainty defined by affine functions:

ai (z) = a0
i +

K∑
k=1

ak
i zk and bi (z) = b0

i +
K∑

k=1
bki zk

family of adjustable uncertainty sets (“box” type):
U(α) = U(α,α) =

{
z ∈ RK : z ∈ [α,α]

}
.

t-model

max
∑
k∈[K ]

lnP (αk ≤ z̃k ≤ αk)

s.t. A(z)x ≥ b(z) ∀z ∈ [α,α]
x ∈ X , α ≤ α, α,α ∈ W

PJ (MIT) Banff March 8, 2018 15 / 33



a tractable probabilistic s-model

reformulation (robust counterpart) of the t-model
reformulation: t-model

max
∑
k∈[K ]

lnP (αk ≤ z̃ ≤ αk)

s.t.
∑
j∈[N]

a0
ijxj +

∑
k∈[K ]

vik ≥ b0
i ∀i ∈ [M]

vik ≤
∑
j∈[N]

akijxjαk − bki αk ∀i ∈ [M], k ∈ [K ]

vik ≤
∑
j∈[N]

akijxjαk − bki αk ∀i ∈ [M], k ∈ [K ]

x ∈ X , v ∈ RM×K ,
α ≤ α, α,α ∈ W.

polynomial number of constraints (good)
remaining difficulties:

non-linear objective function.
the terms xjαk and xjαk j ∈ [N], k ∈ [K ] are bilinear.
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a tractable probabilistic s-model

t-model for log-concave densities

the t-model is tractable if:
the distributions of the random variables are described by log-concave
densities
constraints are linear: e.g., uncertainty in right-hand-side only or,
decision variables x are binary

note: consequence for the non-linear objective function:
if z̃k is log-concave, then lnP

(
δ ≤ z̃k ≤ δ

)
is a concave function of

(δ, δ)
the objective function can be approximated by piecewise linear
approximation of arbitrary accuracy (density cuts) → branch-and-cut
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a tractable probabilistic s-model

t-model for discrete distributions

Wk =
{
ζ1
k , ζ

2
k , . . . , ζ

L(k)
k

}
, P
(
z̃k = ζ`k

)
= p`k

outcomes ζ`k sorted in non-decreasing order

U(α) =

{
z ∈ W |

∑
`∈[L(k)]

ζ`kα
`
k ≤ zk ≤

∑
`∈[L(k)]

ζ`kα
`
k , ∀k ∈ [K ]

}

t-model for discrete distributions

max lnP(z̃ ∈ U(α))
s.t. A(z)x ≥ b(z) ∀z ∈ U(α)∑

`∈[L(k)]

α`
k = 1,

∑
`∈[L(k)]

α`
k = 1, ∀k ∈ [K ]∑

`∈[L(k)]

`(α`
k − α`

k) ≥ 0, ∀k ∈ [K ]

αk , αk ∈ {0, 1}L(k) ∀k ∈ [K ], x ∈ X .
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a tractable probabilistic s-model

monotone t-models

a t-model significantly simplifies if it is monotone:

definition
a t-model is monotone with respect to the uncertain parameters z̃ if there
exists a partition K,K ⊆ [K ], i.e., K ∩ K = ∅, K ∪ K = [K ] such that for
all k ∈ K ∑

j∈[N]

akijxj ≤ bki ∀i ∈ [M], x ∈ X

and for all k ∈ K ∑
j∈[N]

akijxj ≥ bki ∀i ∈ [M], x ∈ X

a monotone t-model can also be turned into an adjustable t-model for
multi-stage decision making !!
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a tractable probabilistic s-model

adjustable t-model for multi-stage decision making

(T + 1)-stage problem.
first stage, decision x0 ∈ RN0 is made before any uncertainty is
realized.
In subsequent stages, decisions made are x1(z̃T1), . . . , xT (z̃TT ), where
the recourse decision x t at stage t + 1 is a measurable function
x t : R|Tt | 7→ RNt that maps from the realization of the uncertain
parameters z̃Tt to the appropriate action in RNt .
let

A(z) =
[
A0(z) A1(z) . . . AT (z)

]
, x(z) =

(
x0, x1(zT1), . . . , xT (zTT )

)
of appropriate dimensions so that

A(z)x(z) = A0(z)x0 +
∑
t∈[T ]

At(z)x t(zTt ).
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a tractable probabilistic s-model

adjustable t-model for multi-stage decision making, cont.

formulate the adjustable T-model as follows:

max
∑
k∈[K ]

lnP (αk ≤ z̃k ≤ αk)

s.t. A(z)x(z) ≥ b(z) ∀z ∈ [α,α]
x(z) ∈ X ∀z ∈ W
x t ∈ R(|Tt |,Nt) ∀t ∈ [T ]
α ≤ α, α,α ∈ W,

where R(m, n) denotes the family of all measurable functions that
map from Rm to Rn.
under fixed recourse assumptions and our monotonicity condition,
equivalent to solving a one-stage problem.
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computational study: a maximum coverage problem

stochastic maximum coverage facility location problem

given:
I candidate facility
locations; J customer
demands d̃j
network is “sparse”: each
customer can be covered
by approx. 15% - 40% of
all facilities
available budget B ;
facility construction costs
ci ; capacities ai
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computational study: a maximum coverage problem

stochastic maximum coverage facility location problem

select facilities that maximize the probability that all demands can be
satisfied:

initial p-model for maximum coverage problem, hard to solve

max lnP

∑
i∈Ij

yij(z̃) ≥ z̃j ∀j ∈ J


s.t.

∑
j∈Ji

yij(z) ≤ aixi ∀z ∈ W, i ∈ I∑
i∈I

cixi ≤ B

yij(z) ≥ 0 ∀z ∈ W, i ∈ I, j ∈ Ji
yij(.) ∈ R(|J |, 1) ∀i ∈ I, j ∈ Ji
xi ∈ {0, 1} ∀i ∈ I,
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computational study: a maximum coverage problem

t-models and monte carlo benchmarks

t-models:
T-1: branch-and-cut for log-concave densities

maximizes the probability that each demand is met
assumes knowledge of the probability distribution

T-2: sample based model (discrete distribution)
L data samples (scenarios)
maximizes # of outcomes that are feasible in constraints
no assumptions about probability distributions

SAA models with L data samples:
P-1: maximizing feasibility probability

maximizes the number of feasible scenarios (obj.: P-model)
E: minimizing expected demand shortfall

minimizes the expected demand shortfall (obj.: expected value)
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computational study: a maximum coverage problem

computational settings

problem instances (total of 60):
# customers |J | ∈ {100, 250, 500, 1000, 2000}
# facilities |I| ∈ {0.5|J |, |J |, 2|J |}
network density Ap ∈ {15, 20, 30, 40}

d̃j ∼ N
(
µj , (0.5µj)

2
)
; µj ∼ U (1, 100)

budget B set 1.05 times the costs required to satisfy the average
demand

computational settings:
CPLEX 12.6.1 with standard parameters
12hrs computing time limit, 24gb memory limit
evaluation via Monte Carlo simulation (100,000 samples)
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computational study: a maximum coverage problem

# customers - scalability of the model T-1

|J | succ. demand time
rate % shortfall (minutes)

100 84.41 2.0 22.7
250 82.76 4.2 2.7
500 99.93 0.0 3.4
1000 96.60 1.2 30.7
2000 95.97 2.2 426.9

all 92.06 1.9 98.5

Table: Out-of-sample performance study for different problem sizes, reporting
average success rate (%), average demand shortfall (in 10 units), average
computing time (in minutes)

solves all instances
high success rates and low shortfalls for all problem sizes
reasonable computing times
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computational study: a maximum coverage problem

L - scalability: data samples based models

average over all 60 instances

T-2 P-1 E
L succ. short time # succ. short time # succ. short time #

rate fall ns rate fall ns rate fall ns
% % %

5 88.73 350.9 44.9 2 64.65 2,440.8 207.0 16 70.10 1,743.6 181.2 12
10 85.39 699.8 62.5 4 43.99 3,335.8 379.1 29 52.69 2,826.7 354.8 22
15 88.41 351.0 75.3 2 35.06 3,523.0 448.7 35 41.85 3,037.6 463.2 30
50 86.64 525.4 54.9 3 20.37 3,627.7 606.7 45 26.54 3,370.2 569.8 39

# ns: number of instances without feasible solution

models P-1 and E hard to solve as L increases

model T-2 remains relatively stable
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computational study: a maximum coverage problem

L - scalability & robustness

average [min, max] among averages of 10 replications increasing L: all instances

J P-1 E T-2
L=5 L=5 L=5 L=15 L=50 L=100 L=500

100 80.70 76.29 80.41 80.56 84.69 84.57 84.47
[71.7, 86.8] [66.4, 85.8] [64.0, 87.3] [70.7, 86.3] [82.2, 86.9] [81.3, 87.1] [80.6, 86.8]

250 81.11 82.51 80.44 80.80 81.57 82.38 82.43
[69.1, 82.8] [82.3, 82.8] [75.4, 82.7] [75.6, 82.5] [75.8, 82.7] [81.9, 82.5] [81.8, 82.5]

500 96.66 95.69 98.29 99.92 99.92 99.92 99.92
[91.7, 99.9] [86.9, 99.9] [91.8, 99.9] [99.9, 99.9] [99.9, 99.9] [99.9, 99.9] [99.9, 99.9]

1000 47.90 70.96 96.58 96.62 96.63 96.63 96.63
[23.7, 63.4] [60.2, 88.5] [96.5, 96.7] [96.6, 96.6] [96.6, 96.6] [96.6, 96.6] [96.6, 96.6]

2000 0.77 26.84 73.97 72.41 73.19 82.63 77.93
[0.0, 7.7] [20.3, 31.3] [63.0, 86.5] [63.0, 78.7] [63.0, 86.6] [63.0, 94.5] [63.0, 94.5]

all 61.25 70.40 86.03 86.15 87.24 89.30 88.34
[56.1, 65.2] [67.6, 77.4] [82.5, 88.8] [84.0, 88.5] [85.4, 88.9] [85.8, 91.7] [85.5, 91.9]

Table: Comparison of average [minimum, maximum] success rates (%) over all
problem instances among 10 replications for Models P-1 and E with same sample
size L = 5, and for Model T-2 with different sample sizes.
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computational study: a maximum coverage problem

investment study: success rates

average intervals between min/max among 10 runs
(L = 5, |I| = 500, |J | = 1000)

P-1 and E models unstable; T-2 model stable at highest success rates
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computational study: a maximum coverage problem

investment study: demand shortfall

average intervals between min/max among 10 runs
(L = 5, |I| = 500, |J | = 1000)

P-1 and E models unstable; T-2 model stable at lowest shortfalls
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conclusions and future directions

conclusions

contributions:
introduction of the s-model

flexible adjustment of uncertainty sets
generalizes the p-model
provides link to general chance-constrains and robust optimization
problems

general framework: allows for many tractable implementations, e.g.,
the t-model
exemplified for continuous and discrete/empiric distributions

log-concave density functions: cut-based solution methods
data sampling/discrete distributions: efficient reformulation to
mixed-integer program
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conclusions and future directions

conclusions

contributions - computational experiments:
maximum coverage facility location problem
large problem instances
benchmark approaches (SAA) cannot handle large sample sizes
t-models scale well for all instances

knowledge about probability distribution helps
without available distributions, large sample size results in stable results
for all instances

PJ (MIT) Banff March 8, 2018 32 / 33



conclusions and future directions

future research directions

simple idea and easy to implement
relevant for decision makers in practice
applicable to many (difficult) problems
high performance → competitive alternative to traditional sampling
methods

cut-based method has been explored for NP-hard MIP
likely to be very quick for linear programs (cutting plane)

further implementations of the S-model
other cases may yield tractable models for important problems

scalability of data-driven approach
may handle even larger data sets when solved by advanced
optimization methods - big data/machine learning?
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