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outline

@ optimization under uncertainty and satisficing - a quick review
o satisficing decision criteria - general representation theorem
@ the t-model: a tractable probabilistic satisficing model

@ numerical illustration - maximum coverage facility location problem
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optimization under uncertainty and satisficing

optimization under uncertainty

@ deterministic optimization:
min ¢’x s.t. Ax > b
XeX
@ optimization under uncertainty z € W:
min ¢’x s.t. A(Z)x > b(2)
XeX

o probability distributions available: stochastic optimization (Prékopa
1995; Birge and Louveaux 1997; etc. ....)

o distributions unavailable:
- robust optimization (Ben-Tal and Nemirovski 1999; Bertsimas and
Sim 2004, Bertsimas et al. 2011)
- distributionally robust optimization (Delage and Ye 2010; Wiesemann
et al. 2014; etc ... this workshop)
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optimization under uncertainty and satisficing

satisficing

satisficing = satisfy + suffice

Simon (1959):
«... the entrepreneur may not care to maximize, but may simply want to
earn a return that he regards as satisfactory [...] “satisfactory profits” is a

concept more meaningfully related to the psychological notion of aspiration
levels than to maximization...»

Simon, H. A. (1959). Theories of Decision-Making in Economics and Behavioral
Science. The American Economic Review 49(3):253-83.
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optimization under uncertainty and satisficing

a first satisficing model under uncertainty: the p-model

Charnes and Cooper (1963)

o first to incorporate the idea of satisficing in mathematical
programming under uncertainty:

max InP(A(Z)x > b(Z2)) J
s.t. xe X.

e randomly perturbed linear constraints A(Z)x > b(Z)

e tractable only for restricted special cases
o general case intractable (Nemirovski and Shapiro 2006)

Charnes, A., and W. Cooper (1963) Deterministic Equivalents for Optimizing and
Satisficing under Chance Constraints. Operations Research 11(1):18-39.
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optimization under uncertainty and satisficing

chance-constrained optimization/programming

Charnes and Cooper (1959), close relation to the p-model

min c’x
st. InP(A(2)x > b(2)) > A
xeX

o satisficing criterion subject to a lower bound parameter A € R
@ objective is a deterministic cost function; ¢ € RN defines the objective
function coefficients
@ approximation by sample average approximation (SAA) methods
o disadvantage: require large number of samples

Charnes, A., and W. Cooper (1959) Chance-Constrained Programming.
Management Science 6(1):73-79.
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optimization under uncertainty and satisficing

robust optimization

min c’x
st. A(z)x > b(z) Yz e U(T)
xeX

@ z denotes realization of Z from an uncertainty set, U(T") (typically (-)
designed such that U(a;) C U(ax) €W C RX forall 0 < a3 < ap).
@ does not require the specification of a probability distribution, but
instead a “budget of uncertainty” I € R
o the level of uncertainty that must be tolerated
e may not be easy to specify
e yields tractable formulations under reasonable conditions: e.g., if Z(I)
is described as norm-based sets U(I') = {z e W | ||z|| < T}:

o linear program for || - ||1, || - ||co @and D-Norm (Bertsimas et al. 2004)
e second-order cone program for || - ||2 norm
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satisficing models

a satisficing model for robust optimization

@ the p-model is a satisficing model for chance-constrained optimization:

- . min  ¢’x
max_ InP(A(Z)x > b(2)) st. InP(A(E)x > b(3)) > A
st. xeX XE X
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satisficing models

a satisficing model for robust optimization

@ the p-model is a satisficing model for chance-constrained optimization:

- . min  ¢’x
max_ InP(A(Z)x > b(2)) st. InP(A(E)x > b(3)) > A
st. xe X XxEX

@ can we define a satisficing model for robust optimization?

min  ¢'x
s.t. A(z)x > b(z) Yz eU(T)
xeX
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satisficing models

a satisficing model for robust optimization

@ the p-model is a satisficing model for chance-constrained optimization:

- . min  ¢’x
max_ InP(A(Z)x > b(2)) st. InP(A(E)x > b(3)) > A
st. xeX XE X

@ can we define a satisficing model for robust optimization?

— the r-model:

min  ¢'x
msatx iae‘;? (2= blz) vz et s.t. f(g); > b(z) vz eU(r)
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satisficing models

some benefits of satisficing models

@ the p-model is a satisficing model for chance-constrained optimization:

- . min  ¢'x
max_ InP(A(Z)x > b(2)) st. InP(A(E)x > b(3)) > A
st. xeX XE X

@ can we define a satisficing model for robust optimization?

— the r-model:

min  ¢'x
msatx iae‘;? (2= bla) vz e )] s.t. f(g); > b(z) vz eU(r)
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satisficing models

some benefits of satisficing models

@ the p-model is a satisficing model for chance-constrained optimization:

- - min  ¢'x
max  InP(A(Z)x = b(2)) st. InP(A(Z)x > b(%)) > A
st. xe XU{c'x < B} XX

@ can we define a satisficing model for robust optimization?

— the r-model:

in c'x
max {a | A(z)x > b(z) VzeU(e)} ™"
st x€XU{c'x < B} s.t. f(é)_; > b(z) YzeU(T)
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satisficing decision criterion - definition

setting:

@ Z a K dimensional random vector that influences the entries of the
function maps A : RK — RM*N and b : RX s RM.

e randomly perturbed linear constraints, A(z)x > b(z), where z is a
random outcome of Z.

@ W C RX the support of the random vector .

definition: satisficing decision criterion

a function v : RN +— R U {—o0} is a satisficing decision criterion if it has
the following two properties. For all x,y € RV,
@ (satisficing dominance) if A(z)y > b(z) implies A(z)x > b(z) for all
z €W, then v(x) > v(y).

@ (infeasibility) if there does not exist z € W such that A(z)x > b(z),
then v(x) = —oc.

v
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satisficing models

satisficing decision criteria - previous examples

@ the p-model is an optimization problem that maximizes a satisficing
decision criterion vp : RN = R U {—oc} given by

vp(x) = InP(A(Z)x > b(Z2))

@ the r-model is an optimization problem that maximizes a satisficing
decision criterion vg : RN+ R U {—oc} given by

vr(x) = max{a | A(z)x > b(z) Vz € U(a)}
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satisficing models

satisficing decision criteria - a general representation

a general representation of any satisficing decision criterion v can be given
by the following result:

theorem: general representation

consider a function v : RN s R U {—00} defined as

v(x) = max {p(a) | A(z)x > b(z) Vz € U(a)} (1)
ac
for some function p: S — RU {—co} on domain S C RP, and for some
family of nonempty uncertainty sets U(a) C W defined for all a € S; then
the function v is a satisficing decision criterion; moreover, any satisficing
decision criterion can be represented in a form given by (1) with S € RV.

v
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satisficing models

the ss-model: a general family of satisficing models

general s-model

max p(a)

st. A(z)x > b(z) VzeU(a)
xecX
acS

@ adjusts uncertainty sets U(a) for which the constraints remain feasible
e maximizes p(a): S — R

o careful design of p(a) and U(ax) can lead to meaningful and tractable
models
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satisficing models

the probabilistic s-model

@ recap - the most general satisficing model:

general s-model

max p(a)

st. A(z)x > b(z) VzelU(a)
xeX
acsS

@ how to combine useful aspects of both the p-model and the r-model?
e set p(a) = InP(Z e U(a))
probabilistic s-model
max InP(Z € U(ax))
st. A(z)x > b(z) Vz e U(x)
xexX
acsS
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a tractable probabilistic s-model

the t-model: a tractable probabilistic s-model

@ uncertain parameters Zy, k € [K] are independently distributed real
random variables with support Wy; W = ><sz1 Wi

@ uncertainty defined by affine functions:
K K
a,-(z) = a? + Z af‘zk and b,'(Z) = b? + Z bIka
k=1 k=1

o family of adjustable uncertainty sets (“box" type):
Ula) =U(a, @) = {z eERK:ze [g,a]}.

t-model

max Z InP(a) < 2 < @)
ke[K]

st. A(z)x > b(z) Vz € [a, @]
xekX a<a, a,aecW
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reformulation (robust counterpart) of the t-model

reformulation: t-model

max Z InP(a) < Z < @)

ke[K]
st Y apx+ Y v b} Vie[M]
JEIN] kelK]
vik < Y agxjoi — bfay Vi € [M], k € [K]
J€N]
vik < Y agxjoy — bfay Vi€ [M], k € [K]
J€N]

x € X,v e RMxK,
a<a, aaclV.

@ polynomial number of constraints (good)
o remaining difficulties:
e non-linear objective function.
o the terms xja and xjax j € [N], k € [K] are bilinear.
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a tractable probabilistic s-model

t-model for log-concave densities

the t-model is tractable if:

@ the distributions of the random variables are described by log-concave
densities

@ constraints are linear: e.g., uncertainty in right-hand-side only or,
decision variables x are binary

note: consequence for the non-linear objective function:
o if Z is log-concave, then InPP (§ < Z, < 4) is a concave function of

(6,9)
o the objective function can be approximated by piecewise linear
approximation of arbitrary accuracy (density cuts) — branch-and-cut
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a tractable probabilistic s-model

t-model for discrete distributions

o Wi = {g;,gﬁ,...,g,f“‘)}, P (5 =) = pl

@ outcomes Cf sorted in non-decreasing order

oU(a)=LzeW| X (ol <z< Y (g, Vke K]
Le[L(k)] Le[L(k)]

t-model for discrete distributions

max InP(Z € U())
st. A(z)x > b(z) Vz e U(a)

Y oai=1 Y @ =1, VkelK]

Le[L(K)] fe[L(k)]
Z lal, —ab) >0, Vk € [K]
Le[L(k)]

o, oy € {0,1}*9 vk e [K], x € X.

}
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a tractable probabilistic s-model

monotone t-models

a t-model significantly simplifies if it is monotone:

definition
a t-model is monotone with respect to the uncertain parameters Z if there
exists a partition K, £ C [K], i.e., KNK =0, KUK = [K] such that for
all ke K

Z af-j-xj < bf Vie [M,xc X

J€N]

and for all k € K

> afxi = bf Vi€ [M],xeX
J€M

a monotone t-model can also be turned into an adjustable t-model for
multi-stage decision making !!
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a tractable probabilistic s-model

adjustable t-model for multi-stage decision making

@ (T + 1)-stage problem.
o first stage, decision x? € RMo is made before any uncertainty is
realized.

o In subsequent stages, decisions made are x!(27;),...,x"(27;), where
the recourse decision x* at stage t + 1 is a measurable function
xt : RI7el 5 RNt that maps from the realization of the uncertain
parameters Z7; to the appropriate action in RM:

o let
Az) = [A%(2) A'(z) ... AT(2)]. x(2) = (x*.xM(zn).....x"(z7:)
of appropriate dimensions so that

A(2)x(z) = A%2)x° + ) AY(2)x'(z7).
te[T]
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a tractable probabilistic s-model

adjustable t-model for multi-stage decision making, cont.

o formulate the adjustable T-model as follows:

max Z InP(a < Zp < @)

ke[K]

s.t. A(z2)x(z) > b(z2) Vz € [a, @]
x(z)e X VzeW
xt € R(|Ti], Ny) vt € [T]

QS&, Q,&EW,

where R(m, n) denotes the family of all measurable functions that
map from R™ to R".

@ under fixed recourse assumptions and our monotonicity condition,
equivalent to solving a one-stage problem.
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computational study: a maximum coverage problem

stochastic maximum coverage facility location problem

given:
@ 7 candidate facility

locations; J customer N80, 20)
demands dj; .
@ network is “sparse”: each . N(50, 10)

customer can be covered
by approx. 15% - 40% of

all facilities
M{50, 10)

@ available budget B;
facility construction costs
C;; capacities a;

Banff

N(50, 10)

= B
N(150, 30)

N(80, 20)

N(150, 30)
N(50, 10)

. N(80, 20)
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computational study: a maximum coverage problem

stochastic maximum coverage facility location problem

select facilities that maximize the probability that all demands can be

satisfied:

initial p-model for maximum coverage problem, hard to solve

max InP Zyu >z vjeJd

i€Z;
Zy;j(z) < ajXx; VzeW,iel
JET;
Z cixi < B
ieZ
yi(z) >0 VzeW,ie€l,jeJ;
yi(.) € R(|T1,1) VieZljeJ;
x; € {0,1} Viel,
Banff March 8, 2018
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computational study: a maximum coverage problem

t-models and monte carlo benchmarks

t-models:
@ T-1: branch-and-cut for log-concave densities

e maximizes the probability that each demand is met
e assumes knowledge of the probability distribution

@ T-2: sample based model (discrete distribution)

o L data samples (scenarios)
e maximizes # of outcomes that are feasible in constraints
e no assumptions about probability distributions

SAA models with L data samples:
@ P-1: maximizing feasibility probability
e maximizes the number of feasible scenarios (obj.: P-model)
e E: minimizing expected demand shortfall
o minimizes the expected demand shortfall (obj.: expected value)
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computational study: a maximum coverage problem

computational settings

problem instances (total of 60):
o # customers |7| € {100,250, 500, 1000, 2000}
o # facilities |Z| € {0.5|7],|J|,2|T|}
e network density A, € {15,20, 30,40}

o dj~ N (1, (051)%);  p; ~ U(1,100)

@ budget B set 1.05 times the costs required to satisfy the average
demand

computational settings:
@ CPLEX 12.6.1 with standard parameters
@ 12hrs computing time limit, 24gb memory limit

@ evaluation via Monte Carlo simulation (100,000 samples)
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# customers - scalability of the model T-1

|T] succ. demand time
rate % shortfall  (minutes)

100 84.41 2.0 22,7
250 82.76 4.2 2.7
500  99.93 0.0 3.4
1000  96.60 1.2 30.7
2000  95.97 2.2 426.9
all  92.06 1.9 98.5

Table: Out-of-sample performance study for different problem sizes, reporting
average success rate (%), average demand shortfall (in 10 units), average
computing time (in minutes)

@ solves all instances
@ high success rates and low shortfalls for all problem sizes

@ reasonable computing times
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computational study: a maximum coverage problem

L - scalability: data samples based models

average over all 60 instances

T2 P-1 E

L succ. short time # succ. short time # succ. short time #

rate fall ns rate fall ns rate fall ns

% % %
5 88.73 350.9 44.9 2 64.65 2,440.8 207.0 16 70.10 1,743.6 181.2 12
10 | 8539 699.8 625 4 | 4399 33358 379.1 29 | 5260 2,826.7 354.8 22
15 88.41 351.0 75.3 2 35.06 3,623.0 448.7 35 41.85 3,037.6 463.2 30
50 86.64 525.4 54.9 3 20.37 3,627.7 606.7 45 26.54 3,370.2 569.8 39
@ # ns: number of instances without feasible solution
@ models P-1 and E hard to solve as L increases
@ model T-2 remains relatively stable
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L - scalability & robustness

average [min, max] among averages of 10 replications increasing L: all instances

J P-1 E T2
L=5 L=5 L=5 L=15 L=50 L=100 L=500
100 80.70 76.29 80.41 80.56 84.69 84.57 84.47
[71.7, 86.8] | [66.4, 85.8] | [64.0,87.3] [70.7,86.3] [82.2,86.9] [81.3,87.1] [80.6, 86.8]
250 81.11 82.51 80.44 80.80 81.57 82.38 82.43
[69.1, 82.8] | [82.3,82.8] | [75.4,82.7] [75.6, 82.5] [75.8,827] [81.9,82.5] [81.8, 82.5]
500 96.66 95.69 98.29 99.02 99.02 99.02 99.92
[91.7, 99.9] | [86.9,99.9] | [91.8, 99.9]  [99.9, 99.9]  [99.9, 99.9]  [99.9, 99.9]  [99.9, 99.9]
1000 47.90 70.96 96.58 96.62 96.63 96.63 96.63
[23.7, 63.4] | [60.2, 88.5] | [96.5, 96.7]  [96.6, 96.6]  [96.6, 96.6]  [96.6, 96.6]  [96.6, 96.6]
2000 0.77 26.84 73.97 72.41 73.19 82.63 77.93
[0.0,7.7] | [20.3,31.3] | [63.0,86.5] [63.0,78.7] [63.0,86.6] [63.0, 94.5]  [63.0, 94.5]
all 61.25 70.40 86.03 86.15 87.24 89.30 88.34
[56.1, 65.2] | [67.6, 77.4] | [82.5, 88.8] [84.0, 88.5] [85.4, 88.9] [85.8,91.7]  [85.5, 91.9]

Table: Comparison of average [minimum, maximum] success rates (%) over all
problem instances among 10 replications for Models P-1 and E with same sample
size L =5, and for Model T-2 with different sample sizes.
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investment study: success rates

average intervals between min/max among 10 runs
(L =5, |Z| =500, |J| = 1000)

100 |- | ==vee Model P-1 average) | e eeeeaoos N
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@ P-1 and E models unstable; T-2 model stable at highest success rates
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investment study: demand shortfall

average intervals between min/max among 10 runs
(L =5, |Z| =500, |J| = 1000)

1,000 ‘ : .
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@ P-1 and E models unstable; T-2 model stable at lowest shortfalls
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conclusions and future directions

conclusions

contributions:
@ introduction of the s-model

o flexible adjustment of uncertainty sets

o generalizes the p-model

e provides link to general chance-constrains and robust optimization
problems

@ general framework: allows for many tractable implementations, e.g.,
the t-model
e exemplified for continuous and discrete/empiric distributions

o log-concave density functions: cut-based solution methods
o data sampling/discrete distributions: efficient reformulation to
mixed-integer program
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conclusions and future directions

conclusions

contributions - computational experiments:
@ maximum coverage facility location problem
@ large problem instances

@ benchmark approaches (SAA) cannot handle large sample sizes
@ t-models scale well for all instances

e knowledge about probability distribution helps
e without available distributions, large sample size results in stable results
for all instances
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conclusions and future directions

future research directions

simple idea and easy to implement

o relevant for decision makers in practice

e applicable to many (difficult) problems

o high performance — competitive alternative to traditional sampling
methods

@ cut-based method has been explored for NP-hard MIP

o likely to be very quick for linear programs (cutting plane)

further implementations of the S-model
o other cases may yield tractable models for important problems

scalability of data-driven approach

e may handle even larger data sets when solved by advanced
optimization methods - big data/machine learning?
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