Satisficing Models to Mitigate Uncertainty

Patrick Jaillet *

Department of Electrical Engineering and Computer Science Laboratory for Information and Decision Systems Operations Research Center Massachusetts Institute of Technology

March 8, 2018

1/33

outline

- optimization under uncertainty and satisficing a quick review
- satisficing decision criteria general representation theorem
- the t-model: a tractable probabilistic satisficing model
- numerical illustration maximum coverage facility location problem

optimization under uncertainty

- deterministic optimization: $\min_{\mathbf{x} \in \mathcal{X}} \mathbf{c}' \mathbf{x} \text{ s.t. } \mathbf{A} \mathbf{x} \ge \mathbf{b}$
- optimization under uncertainty $\tilde{\mathbf{z}} \in \mathcal{W}$: $\min_{\mathbf{x} \in \mathcal{X}} \mathbf{c}' \mathbf{x} \text{ s.t. } \mathbf{A}(\tilde{\mathbf{z}}) \mathbf{x} \geq \mathbf{b}(\tilde{\mathbf{z}})$
 - probability distributions available: stochastic optimization (Prékopa 1995; Birge and Louveaux 1997; etc.)
 - distributions unavailable:
 - robust optimization (Ben-Tal and Nemirovski 1999; Bertsimas and Sim 2004, Bertsimas et al. 2011)
 - distributionally robust optimization (Delage and Ye 2010; Wiesemann et al. 2014; etc ... this workshop)

satisficing

satisficing = satisfy + suffice

Simon (1959):

«... the entrepreneur may not care to maximize, but may simply want to earn a return that he regards as satisfactory [...] "satisfactory profits" is a concept more meaningfully related to the psychological notion of aspiration levels than to maximization...»

Simon, H. A. (1959). Theories of Decision-Making in Economics and Behavioral Science. The American Economic Review 49(3):253–83.

a first satisficing model under uncertainty: the p-model

Charnes and Cooper (1963)

• first to incorporate the idea of satisficing in mathematical programming under uncertainty:

max
$$\ln \mathbb{P}(\boldsymbol{A}(\tilde{\boldsymbol{z}})\boldsymbol{x} \geq \boldsymbol{b}(\tilde{\boldsymbol{z}}))$$

s.t. $\boldsymbol{x} \in \mathcal{X}$.

- randomly perturbed linear constraints $A(\tilde{z})x \geq b(\tilde{z})$
 - tractable only for restricted special cases
 - general case intractable (Nemirovski and Shapiro 2006)

Charnes, A., and W. Cooper (1963) Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints. Operations Research 11(1):18–39.

March 8, 2018

5 / 33

chance-constrained optimization/programming

Charnes and Cooper (1959), close relation to the p-model

min
$$c'x$$

s.t. $\ln \mathbb{P}(A(\tilde{z})x \ge b(\tilde{z})) \ge \Delta$
 $x \in \mathcal{X}$

- ullet satisficing criterion subject to a lower bound parameter $\Delta \in \mathbb{R}$
- objective is a deterministic cost function; $c \in \mathbb{R}^N$ defines the objective function coefficients
- approximation by sample average approximation (SAA) methods
 - disadvantage: require large number of samples

Charnes, A., and W. Cooper (1959) Chance-Constrained Programming.

Management Science 6(1):73–79.

robust optimization

min
$$c'x$$

s.t. $A(z)x \ge b(z) \quad \forall z \in \mathcal{U}(\Gamma)$
 $x \in \mathcal{X}$

- z denotes realization of \tilde{z} from an uncertainty set, $\mathcal{U}(\Gamma)$ (typically $\mathcal{U}(\cdot)$ designed such that $\mathcal{U}(\alpha_1) \subseteq \mathcal{U}(\alpha_2) \subseteq \mathcal{W} \subseteq \mathbb{R}^K$ for all $0 \le \alpha_1 \le \alpha_2$).
- does not require the specification of a probability distribution, but instead a "budget of uncertainty" $\Gamma \in \mathbb{R}_+$
 - the level of uncertainty that must be tolerated
 - may not be easy to specify
- yields tractable formulations under reasonable conditions: e.g., if $\mathcal{U}(\Gamma)$ is described as norm-based sets $\mathcal{U}(\Gamma) = \{z \in \mathcal{W} \mid ||z|| \leq \Gamma\}$:
 - \bullet linear program for $||\cdot||_1,\,||\cdot||_{\infty}$ and D-Norm (Bertsimas et al. 2004)
 - second-order cone program for $||\cdot||_2$ norm

|ロト 4回ト 4 E ト 4 E ト | E | りへ(

7/33

PJ (MIT) Banff March 8, 2018

a satisficing model for robust optimization

• the p-model is a satisficing model for chance-constrained optimization:

$$\max_{s.t.} \ln \mathbb{P} (A(\tilde{z})x \ge b(\tilde{z}))$$
s.t. $x \in \mathcal{X}$

min
$$c'x$$

s.t. $\ln \mathbb{P}(A(\tilde{z})x \ge b(\tilde{z})) \ge \Delta$
 $x \in \mathcal{X}$

a satisficing model for robust optimization

• the p-model is a satisficing model for chance-constrained optimization:

$$\begin{array}{ll} \max & \ln \mathbb{P}\left(\boldsymbol{A}(\boldsymbol{\tilde{z}})\boldsymbol{x} \geq \boldsymbol{b}(\boldsymbol{\tilde{z}})\right) \\ \text{s.t.} & \boldsymbol{x} \in \mathcal{X} \end{array} \qquad \begin{array}{ll} \min & \boldsymbol{c}'\boldsymbol{x} \\ \text{s.t.} & \ln \mathbb{P}\left(\boldsymbol{A}(\boldsymbol{\tilde{z}})\boldsymbol{x} \geq \boldsymbol{b}(\boldsymbol{\tilde{z}})\right) \geq \Delta \\ \boldsymbol{x} \in \mathcal{X} \end{array}$$

• can we define a satisficing model for robust optimization?

min
$$c'x$$

s.t. $A(z)x \ge b(z) \quad \forall z \in \mathcal{U}(\Gamma)$
 $x \in \mathcal{X}$

a satisficing model for robust optimization

• the p-model is a satisficing model for chance-constrained optimization:

$$\begin{array}{ll} \max & \ln \mathbb{P}\left(\boldsymbol{A}(\boldsymbol{\tilde{z}})\boldsymbol{x} \geq \boldsymbol{b}(\boldsymbol{\tilde{z}})\right) \\ \text{s.t.} & \boldsymbol{x} \in \mathcal{X} \end{array} \qquad \begin{array}{ll} \min & \boldsymbol{c}'\boldsymbol{x} \\ \text{s.t.} & \ln \mathbb{P}\left(\boldsymbol{A}(\boldsymbol{\tilde{z}})\boldsymbol{x} \geq \boldsymbol{b}(\boldsymbol{\tilde{z}})\right) \geq \Delta \\ \boldsymbol{x} \in \mathcal{X} \end{array}$$

• can we define a satisficing model for robust optimization?

 \rightarrow the r-model:

$$\max_{\mathbf{s.t.}} \quad \{\alpha \mid \mathbf{A}(\mathbf{z})\mathbf{x} \ge \mathbf{b}(\mathbf{z}) \quad \forall \mathbf{z} \in \mathcal{U}(\alpha)\} \qquad \min_{\mathbf{s.t.}} \quad \mathbf{c'x} \\ \text{s.t.} \quad \mathbf{A}(\mathbf{z})\mathbf{x} \ge \mathbf{b}(\mathbf{z}) \quad \forall \mathbf{z} \in \mathcal{U}(\Gamma)$$

some benefits of satisficing models

• the p-model is a satisficing model for chance-constrained optimization:

$$\begin{array}{ll} \max & \ln \mathbb{P}\left(\boldsymbol{A}(\boldsymbol{\tilde{z}})\boldsymbol{x} \geq \boldsymbol{b}(\boldsymbol{\tilde{z}})\right) \\ \text{s.t.} & \boldsymbol{x} \in \mathcal{X} \end{array} \qquad \begin{array}{ll} \min & \boldsymbol{c}'\boldsymbol{x} \\ \text{s.t.} & \ln \mathbb{P}\left(\boldsymbol{A}(\boldsymbol{\tilde{z}})\boldsymbol{x} \geq \boldsymbol{b}(\boldsymbol{\tilde{z}})\right) \geq \boldsymbol{\Delta} \\ \boldsymbol{x} \in \mathcal{X} \end{array}$$

• can we define a satisficing model for robust optimization?

 \rightarrow the r-model:

$$\max_{\mathbf{s.t.}} \quad \{\alpha \mid \mathbf{A}(\mathbf{z})\mathbf{x} \ge \mathbf{b}(\mathbf{z}) \quad \forall \mathbf{z} \in \mathcal{U}(\alpha)\} \qquad \text{s.t.} \quad \mathbf{A}(\mathbf{z})\mathbf{c}$$

$$\begin{array}{ll} \min & c'x \\ \text{s.t.} & \textit{A}(z)x \geq \textit{b}(z) \ \forall z \in \mathcal{U}(\Gamma) \\ & x \in \mathcal{X} \end{array}$$

some benefits of satisficing models

the p-model is a satisficing model for chance-constrained optimization:

$$\begin{array}{ll} \max & \ln \mathbb{P} \left(\boldsymbol{A}(\tilde{\boldsymbol{z}}) \boldsymbol{x} \geq \boldsymbol{b}(\tilde{\boldsymbol{z}}) \right) \\ \text{s.t.} & \boldsymbol{x} \in \mathcal{X} \cup \{ \boldsymbol{c}' \boldsymbol{x} \leq \boldsymbol{B} \} \end{array} \qquad \begin{array}{ll} \min & \boldsymbol{c}' \boldsymbol{x} \\ \text{s.t.} & \ln \mathbb{P} \left(\boldsymbol{A}(\tilde{\boldsymbol{z}}) \boldsymbol{x} \geq \boldsymbol{b}(\tilde{\boldsymbol{z}}) \right) \geq \Delta \\ \boldsymbol{x} \in \mathcal{X} \end{array}$$

• can we define a satisficing model for robust optimization?

 \rightarrow the r-model:

$$\max_{\mathbf{x}} \quad \{\alpha \mid \mathbf{A}(\mathbf{z})\mathbf{x} \ge \mathbf{b}(\mathbf{z}) \quad \forall \mathbf{z} \in \mathcal{U}(\alpha)\}$$

s.t.
$$\mathbf{x} \in \mathcal{X} \cup \{\mathbf{c}'\mathbf{x} \le B\}$$

$$\begin{aligned} & \min \quad & c'x \\ & \text{s.t.} \quad & \textbf{\textit{A}}(z)x \geq \textbf{\textit{b}}(z) \quad \forall z \in \mathcal{U}(\textbf{\textit{\Gamma}}) \\ & \quad & x \in \mathcal{X} \end{aligned}$$

satisficing decision criterion - definition

setting:

- \tilde{z} a K dimensional random vector that influences the entries of the function maps $\boldsymbol{A}: \mathbb{R}^K \mapsto \mathbb{R}^{M \times N}$ and $\boldsymbol{b}: \mathbb{R}^K \mapsto \mathbb{R}^M$.
- randomly perturbed linear constraints, $A(z)x \ge b(z)$, where z is a random outcome of \tilde{z} .
- $W \subseteq \mathbb{R}^K$ the support of the random vector $\tilde{\mathbf{z}}$.

definition: satisficing decision criterion

a function $\nu: \mathbb{R}^N \mapsto \mathbb{R} \cup \{-\infty\}$ is a *satisficing decision criterion* if it has the following two properties. For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$,

- (satisficing dominance) if $A(z)y \ge b(z)$ implies $A(z)x \ge b(z)$ for all $z \in \mathcal{W}$, then $\nu(x) \ge \nu(y)$.
- ② (infeasibility) if there does not exist $z \in \mathcal{W}$ such that $A(z)x \geq b(z)$, then $\nu(x) = -\infty$.

satisficing decision criteria - previous examples

• the p-model is an optimization problem that maximizes a satisficing decision criterion $\nu_P: \mathbb{R}^N \mapsto \mathbb{R} \cup \{-\infty\}$ given by

$$u_P(\mathbf{x}) = \ln \mathbb{P}\left(\mathbf{A}(\tilde{\mathbf{z}})\mathbf{x} \geq \mathbf{b}(\tilde{\mathbf{z}})\right)$$

• the r-model is an optimization problem that maximizes a satisficing decision criterion $\nu_R: \mathbb{R}^N \mapsto \mathbb{R} \cup \{-\infty\}$ given by

$$\nu_R(\mathbf{x}) = \max \{ \alpha \mid \mathbf{A}(\mathbf{z})\mathbf{x} \geq \mathbf{b}(\mathbf{z}) \ \forall \mathbf{z} \in \mathcal{U}(\alpha) \}$$

satisficing decision criteria - a general representation

a general representation of any satisficing decision criterion ν can be given by the following result:

theorem: general representation

consider a function $\nu:\mathbb{R}^{\textit{N}}\mapsto\mathbb{R}\cup\{-\infty\}$ defined as

$$\nu(\mathbf{x}) = \max_{\alpha \in \mathcal{S}} \left\{ \rho(\alpha) \mid \mathbf{A}(\mathbf{z})\mathbf{x} \ge \mathbf{b}(\mathbf{z}) \ \forall \mathbf{z} \in \mathcal{U}(\alpha) \right\}$$
(1)

for some function $\rho: \mathcal{S} \to \mathbb{R} \cup \{-\infty\}$ on domain $\mathcal{S} \subseteq \mathbb{R}^P$, and for some family of nonempty uncertainty sets $\mathcal{U}(\alpha) \subseteq \mathcal{W}$ defined for all $\alpha \in \mathcal{S}$; then the function ν is a satisficing decision criterion; moreover, any satisficing decision criterion can be represented in a form given by (1) with $\mathcal{S} \subseteq \mathbb{R}^N$.

the s-model: a general family of satisficing models

general s-model

$$\max_{\mathbf{s.t.}} \begin{array}{l} \rho(\alpha) \\ \text{s.t.} & \mathbf{A}(\mathbf{z})\mathbf{x} \geq b(\mathbf{z}) \ \forall \mathbf{z} \in \mathcal{U}(\alpha) \\ \mathbf{x} \in \mathcal{X} \\ \alpha \in \mathcal{S} \end{array}$$

- ullet adjusts uncertainty sets $\mathcal{U}(lpha)$ for which the constraints remain feasible
- maximizes $\rho(\alpha): S \to \mathbb{R}$
- careful design of $\rho(\alpha)$ and $\mathcal{U}(\alpha)$ can lead to meaningful and tractable models

the probabilistic s-model

recap - the most general satisficing model:

general s-model

$$\begin{array}{ll} \max & \rho(\alpha) \\ \text{s.t.} & \boldsymbol{A}(\boldsymbol{z})\boldsymbol{x} \geq b(\boldsymbol{z}) \ \forall \boldsymbol{z} \in \mathcal{U}(\alpha) \\ & \boldsymbol{x} \in \mathcal{X} \\ & \alpha \in \mathcal{S} \end{array}$$

- how to combine useful aspects of both the p-model and the r-model?
- ullet set $ho(oldsymbol{lpha})=\mathsf{In}\mathbb{P}\left(ilde{oldsymbol{z}}\in\mathcal{U}(oldsymbol{lpha})
 ight)$

probabilistic s-model

$$\begin{array}{ll} \max & \ln \mathbb{P} \left(\tilde{\pmb{z}} \in \mathcal{U}(\alpha) \right) \\ \text{s.t.} & \pmb{A}(\pmb{z}) \pmb{x} \geq \pmb{b}(\pmb{z}) \ \, \forall \pmb{z} \in \mathcal{U}(\alpha) \\ & \pmb{x} \in \mathcal{X} \\ & \alpha \in \mathcal{S} \end{array}$$

the t-model: a tractable probabilistic s-model

- uncertain parameters \tilde{z}_k , $k \in [K]$ are independently distributed real random variables with support \mathcal{W}_k ; $\mathcal{W} = \times_{k=1}^K \mathcal{W}_k$
- uncertainty defined by affine functions:

$$\boldsymbol{a}_i(\boldsymbol{z}) = \boldsymbol{a}_i^0 + \sum\limits_{k=1}^K \boldsymbol{a}_i^k z_k$$
 and $b_i(\boldsymbol{z}) = b_i^0 + \sum\limits_{k=1}^K b_i^k z_k$

• family of adjustable uncertainty sets ("box" type):

$$\mathcal{U}(\alpha) = \mathcal{U}(\underline{\alpha}, \overline{\alpha}) = \Big\{ \mathbf{z} \in \mathbb{R}^K : \mathbf{z} \in [\underline{\alpha}, \overline{\alpha}] \Big\}.$$

t-model

$$\begin{array}{ll} \max & \sum_{k \in [K]} \ln \mathbb{P} \left(\underline{\alpha}_k \leq \tilde{\mathbf{z}}_k \leq \overline{\alpha}_k\right) \\ \text{s.t.} & \mathbf{A}(\mathbf{z}) \mathbf{x} \geq \mathbf{b}(\mathbf{z}) \ \forall \mathbf{z} \in [\underline{\alpha}, \overline{\alpha}] \\ & \mathbf{x} \in \mathcal{X}, \ \alpha \leq \overline{\alpha}, \ \alpha, \overline{\alpha} \in \mathcal{W} \end{array}$$

reformulation (robust counterpart) of the t-model

reformulation: t-model

$$\begin{split} \max & \quad \sum_{k \in [K]} \ln \mathbb{P} \left(\underline{\alpha}_k \leq \widetilde{z} \leq \overline{\alpha}_k \right) \\ \text{s.t.} & \quad \sum_{j \in [N]} a^0_{ij} x_j + \sum_{k \in [K]} v_{ik} \geq b^0_i \quad \forall i \in [M] \\ v_{ik} \leq & \quad \sum_{j \in [N]} a^k_{ij} x_j \overline{\alpha}_k - b^k_i \overline{\alpha}_k \quad \forall i \in [M], \ k \in [K] \\ v_{ik} \leq & \quad \sum_{j \in [N]} a^k_{ij} x_j \underline{\alpha}_k - b^k_i \underline{\alpha}_k \quad \forall i \in [M], \ k \in [K] \\ & \quad x \in \mathcal{X}, \mathbf{v} \in \mathbb{R}^{M \times K}, \\ & \quad \underline{\alpha} \leq \overline{\alpha}, \quad \underline{\alpha}, \overline{\alpha} \in \mathcal{W}. \end{split}$$

- polynomial number of constraints (good)
- remaining difficulties:
 - non-linear objective function.
 - the terms $x_j\underline{\alpha}_k$ and $x_j\overline{\alpha}_k$ $j \in [N], k \in [K]$ are bilinear.

t-model for log-concave densities

the t-model is tractable if:

- the distributions of the random variables are described by log-concave densities
- constraints are linear: e.g., uncertainty in right-hand-side only or, decision variables x are binary

note: consequence for the non-linear objective function:

- if \tilde{z}_k is log-concave, then $\ln \mathbb{P}\left(\underline{\delta} \leq \tilde{z}_k \leq \overline{\delta}\right)$ is a concave function of $(\underline{\delta}, \overline{\delta})$
- the objective function can be approximated by piecewise linear approximation of arbitrary accuracy (density cuts) \rightarrow branch-and-cut

t-model for discrete distributions

- $\mathcal{W}_k = \left\{ \zeta_k^1, \zeta_k^2, \dots, \zeta_k^{L(k)} \right\}, \, \mathbb{P}\left(\tilde{z}_k = \zeta_k^\ell \right) = p_k^\ell$
- outcomes ζ_k^{ℓ} sorted in non-decreasing order

•
$$\mathcal{U}(\alpha) = \left\{ \mathbf{z} \in \mathcal{W} \mid \sum_{\ell \in [L(k)]} \zeta_k^{\ell} \underline{\alpha}_k^{\ell} \le z_k \le \sum_{\ell \in [L(k)]} \zeta_k^{\ell} \overline{\alpha}_k^{\ell}, \ \forall k \in [K] \right\}$$

t-model for discrete distributions

$$\begin{array}{ll} \max & \ln \mathbb{P}(\widetilde{\pmb{z}} \in \mathcal{U}(\pmb{\alpha})) \\ \mathrm{s.t.} & \pmb{A}(\pmb{z}) \pmb{x} \geq \pmb{b}(\pmb{z}) \ \, \forall \pmb{z} \in \mathcal{U}(\pmb{\alpha}) \\ & \sum_{\ell \in [L(k)]} \underline{\alpha}_k^\ell = 1, \ \, \sum_{\ell \in [L(k)]} \overline{\alpha}_k^\ell = 1, \ \, \forall k \in [K] \\ & \sum_{\ell \in [L(k)]} \ell(\overline{\alpha}_k^\ell - \underline{\alpha}_k^\ell) \geq 0, \ \, \forall k \in [K] \\ & \alpha_k, \ \, \overline{\alpha}_k \in \{0,1\}^{L(k)} \ \, \forall k \in [K], \ \, \pmb{x} \in \mathcal{X}. \end{array}$$

◆ロト 4周ト 4 E ト 4 E ト 9 Q Q

monotone t-models

a t-model significantly simplifies if it is *monotone*:

definition

a t-model is *monotone* with respect to the uncertain parameters \tilde{z} if there exists a partition $\overline{\mathcal{K}}, \underline{\mathcal{K}} \subseteq [K]$, i.e., $\overline{\mathcal{K}} \cap \underline{\mathcal{K}} = \emptyset$, $\overline{\mathcal{K}} \cup \underline{\mathcal{K}} = [K]$ such that for all $k \in \overline{\mathcal{K}}$

$$\sum_{j \in [N]} a_{ij}^k x_j \le b_i^k \ \forall i \in [M], \mathbf{x} \in \mathcal{X}$$

and for all $k \in \underline{\mathcal{K}}$

$$\sum_{j \in [M]} a_{ij}^k x_j \ge b_i^k \quad \forall i \in [M], \mathbf{x} \in \mathcal{X}$$

a monotone t-model can also be turned into an adjustable t-model for multi-stage decision making !!

adjustable t-model for multi-stage decision making

- (T+1)-stage problem.
- first stage, decision $\mathbf{x}^0 \in \mathbb{R}^{N_0}$ is made before any uncertainty is realized.
- In subsequent stages, decisions made are $\mathbf{x}^1(\tilde{\mathbf{z}}_{\mathcal{T}_1}), \ldots, \mathbf{x}^T(\tilde{\mathbf{z}}_{\mathcal{T}_T})$, where the recourse decision \mathbf{x}^t at stage t+1 is a measurable function $\mathbf{x}^t: \mathbb{R}^{|\mathcal{T}_t|} \mapsto \mathbb{R}^{N_t}$ that maps from the realization of the uncertain parameters $\tilde{\mathbf{z}}_{\mathcal{T}_t}$ to the appropriate action in \mathbb{R}^{N_t} .
- let

$$\boldsymbol{A}(\boldsymbol{z}) = \left[\boldsymbol{A}^{0}(\boldsymbol{z}) \; \boldsymbol{A}^{1}(\boldsymbol{z}) \; \dots \; \boldsymbol{A}^{T}(\boldsymbol{z})\right], \; \; \boldsymbol{x}(\boldsymbol{z}) = \left(\boldsymbol{x}^{0}, \boldsymbol{x}^{1}(\boldsymbol{z}_{T_{1}}), \dots, \boldsymbol{x}^{T}(\boldsymbol{z}_{T_{T}})\right)$$

of appropriate dimensions so that

$$\mathbf{A}(\mathbf{z})\mathbf{x}(\mathbf{z}) = \mathbf{A}^0(\mathbf{z})\mathbf{x}^0 + \sum_{t \in [T]} \mathbf{A}^t(\mathbf{z})\mathbf{x}^t(\mathbf{z}_{T_t}).$$

adjustable t-model for multi-stage decision making, cont.

formulate the adjustable T-model as follows:

$$\begin{array}{ll} \max & \sum_{k \in [K]} \ln \mathbb{P} \left(\underline{\alpha}_k \leq \widetilde{z}_k \leq \overline{\alpha}_k \right) \\ \mathrm{s.t.} & \boldsymbol{A}(\boldsymbol{z}) \boldsymbol{x}(\boldsymbol{z}) \geq \boldsymbol{b}(\boldsymbol{z}) & \forall \boldsymbol{z} \in [\underline{\alpha}, \overline{\alpha}] \\ & \boldsymbol{x}(\boldsymbol{z}) \in \mathcal{X} & \forall \boldsymbol{z} \in \mathcal{W} \\ & \boldsymbol{x}^t \in \mathcal{R}(|\mathcal{T}_t|, N_t) & \forall t \in [T] \\ & \underline{\alpha} \leq \overline{\alpha}, \ \underline{\alpha}, \overline{\alpha} \in \mathcal{W}, \end{array}$$

where $\mathcal{R}(m, n)$ denotes the family of all measurable functions that map from \mathbb{R}^m to \mathbb{R}^n .

• under fixed recourse assumptions and our monotonicity condition, equivalent to solving a one-stage problem.

stochastic maximum coverage facility location problem

given:

- \mathcal{I} candidate facility locations; \mathcal{J} customer demands \widetilde{d}_{j}
- network is "sparse": each customer can be covered by approx. 15% - 40% of all facilities
- available budget B;
 facility construction costs
 c_i; capacities a_i

stochastic maximum coverage facility location problem

select facilities that maximize the probability that all demands can be satisfied:

initial p-model for maximum coverage problem, hard to solve

$$\begin{aligned} & \max \quad \ln \mathbb{P} \left(\sum_{i \in \mathcal{I}_j} y_{ij}(\tilde{\boldsymbol{z}}) \geq \tilde{z}_j \ \, \forall j \in \mathcal{J} \right) \\ & \text{s.t.} \quad \sum_{j \in \mathcal{J}_i} y_{ij}(\boldsymbol{z}) \leq a_i x_i & \forall \boldsymbol{z} \in \mathcal{W}, i \in \mathcal{I} \\ & \sum_{i \in \mathcal{I}} c_i x_i \leq B \\ & y_{ij}(\boldsymbol{z}) \geq 0 & \forall \boldsymbol{z} \in \mathcal{W}, i \in \mathcal{I}, j \in \mathcal{J}_i \\ & y_{ij}(.) \in \mathcal{R}(|\mathcal{J}|, 1) & \forall i \in \mathcal{I}, j \in \mathcal{J}_i \\ & x_i \in \{0, 1\} & \forall i \in \mathcal{I}, \end{aligned}$$

t-models and monte carlo benchmarks

t-models:

- T-1: branch-and-cut for log-concave densities
 - maximizes the probability that each demand is met
 - assumes knowledge of the probability distribution
- T-2: sample based model (discrete distribution)
 - L data samples (scenarios)
 - maximizes # of outcomes that are feasible in constraints
 - no assumptions about probability distributions

SAA models with L data samples:

- P-1: maximizing feasibility probability
 - maximizes the number of feasible scenarios (obj.: P-model)
- E: minimizing expected demand shortfall
 - minimizes the expected demand shortfall (obj.: expected value)

computational settings

problem instances (total of 60):

- # customers $|\mathcal{J}| \in \{100, 250, 500, 1000, 2000\}$
- # facilities $|\mathcal{I}| \in \{0.5|\mathcal{J}|, |\mathcal{J}|, 2|\mathcal{J}|\}$
- network density $A_p \in \{15, 20, 30, 40\}$
- ullet $ilde{d}_j \sim N\left(\mu_j, (0.5\mu_j)^2
 ight); \quad \mu_j \sim U\left(1, 100
 ight)$
- budget B set 1.05 times the costs required to satisfy the average demand

computational settings:

- CPLEX 12.6.1 with standard parameters
- 12hrs computing time limit, 24gb memory limit
- evaluation via Monte Carlo simulation (100,000 samples)

customers - scalability of the model T-1

$\overline{ \mathcal{J} }$	succ.	demand	time		
	rate %	shortfall	(minutes)		
100	84.41	2.0	22.7		
250	82.76	4.2	2.7		
500	99.93	0.0	3.4		
1000	96.60	1.2	30.7		
2000	95.97	2.2	426.9		
all	92.06	1.9	98.5		

Table: Out-of-sample performance study for different problem sizes, reporting average success rate (%), average demand shortfall (in 10 units), average computing time (in minutes)

- solves all instances
- high success rates and low shortfalls for all problem sizes
- reasonable computing times

L - scalability: data samples based models

average over all 60 instances

L	succ. rate %	T-2 short fall	time	# ns	succ. rate %	P-1 short fall	time	# ns	succ. rate %	E short fall	time	# ns
5	88.73	350.9	44.9	2	64.65	2,440.8	207.0	16	70.10	1,743.6	181.2	12
10	85.39	699.8	62.5	4	43.99	3,335.8	379.1	29	52.69	2,826.7	354.8	22
15	88.41	351.0	75.3	2	35.06	3,523.0	448.7	35	41.85	3,037.6	463.2	30
_50	86.64	525.4	54.9	3	20.37	3,627.7	606.7	45	26.54	3,370.2	569.8	39

- # ns: number of instances without feasible solution
- models P-1 and E hard to solve as L increases
- model T-2 remains relatively stable

L - scalability & robustness

average [min, max] among averages of 10 replications increasing L: all instances

	D 1						
J	P-1	E	T-2				
	L=5	L=5	L=5	L=15	L=50	L=100	L=500
100	80.70	76.29	80.41	80.56	84.69	84.57	84.47
	[71.7, 86.8]	[66.4, 85.8]	[64.0, 87.3]	[70.7, 86.3]	[82.2, 86.9]	[81.3, 87.1]	[80.6, 86.8]
250	81.11	82.51	80.44	80.80	81.57	82.38	82.43
	[69.1, 82.8]	[82.3, 82.8]	[75.4, 82.7]	[75.6, 82.5]	[75.8, 82.7]	[81.9, 82.5]	[81.8, 82.5]
500	96.66	95.69	98.29	99.92	99.92	99.92	99.92
	[91.7, 99.9]	[86.9, 99.9]	[91.8, 99.9]	[99.9, 99.9]	[99.9, 99.9]	[99.9, 99.9]	[99.9, 99.9]
1000	47.90	70.96	96.58	96.62	96.63	96.63	96.63
	[23.7, 63.4]	[60.2, 88.5]	[96.5, 96.7]	[96.6, 96.6]	[96.6, 96.6]	[96.6, 96.6]	[96.6, 96.6]
2000	0.77	26.84	73.97	72.41	73.19	82.63	77.93
	[0.0, 7.7]	[20.3, 31.3]	[63.0, 86.5]	[63.0, 78.7]	[63.0, 86.6]	[63.0, 94.5]	[63.0, 94.5]
all	61.25	70.40	86.03	86.15	87.24	89.30	88.34
	[56.1, 65.2]	[67.6, 77.4]	[82.5, 88.8]	[84.0, 88.5]	[85.4, 88.9]	[85.8, 91.7]	[85.5, 91.9]

Table: Comparison of average [minimum, maximum] success rates (%) over all problem instances among 10 replications for Models P-1 and E with same sample size L=5, and for Model T-2 with different sample sizes.

investment study: success rates

average intervals between min/max among 10 runs

$$(L = 5, |\mathcal{I}| = 500, |\mathcal{J}| = 1000)$$

P-1 and E models unstable; T-2 model stable at highest success rates

PJ (MIT) Banff March 8, 2018 29 / 33

investment study: demand shortfall

average intervals between min/max among 10 runs (L=5, $|\mathcal{I}|=500$, $|\mathcal{J}|=1000$)

• P-1 and E models unstable; T-2 model stable at lowest shortfalls

30 / 33

conclusions

contributions:

- introduction of the s-model
 - flexible adjustment of uncertainty sets
 - generalizes the p-model
 - provides link to general chance-constrains and robust optimization problems
- general framework: allows for many tractable implementations, e.g., the t-model
- exemplified for continuous and discrete/empiric distributions
 - log-concave density functions: cut-based solution methods
 - data sampling/discrete distributions: efficient reformulation to mixed-integer program

conclusions

contributions - computational experiments:

- maximum coverage facility location problem
- large problem instances
- benchmark approaches (SAA) cannot handle large sample sizes
- t-models scale well for all instances
 - knowledge about probability distribution helps
 - without available distributions, large sample size results in stable results for all instances

future research directions

- simple idea and easy to implement
 - relevant for decision makers in practice
 - applicable to many (difficult) problems
 - $\bullet \ \, \text{high performance} \to \text{competitive alternative to traditional sampling} \\ \text{methods}$
- cut-based method has been explored for NP-hard MIP
 - likely to be very quick for linear programs (cutting plane)
- further implementations of the S-model
 - other cases may yield tractable models for important problems
- scalability of data-driven approach
 - may handle even larger data sets when solved by advanced optimization methods - big data/machine learning?