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Dynamic Optimization
Decisions Decisions Decisions

Uncertain 
Events

Uncertain 
Events

Uncertain 
Events

Cost/Profit

Stochastic optimization Robust optimization

Hybrid Model: Distributionally Robust Optimization

Computing optimal adjustable policy is intractable



Policy Approximations
§ Static Policies

§ Single solution feasible for all scenarios
§ Highly tractable but can be very conservative

§ Affine Policy (or Linear Decision Rules)
§ Recourse solution is an affine function of past uncertainties
§ Tractable and good empirical performance
§ Worst case performance can be bad

§ More general policies
§ Piecewise static policies
§ Piecewise affine policies
§ Improved performance but significantly more difficult to compute
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Performance of Affine Policies
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This Talk: We provide a theoretical justification of the contrast between the 
observed empirical performance and worst-case performance of affine policies 

Provably Optimal for a 
small class of problems

How to bridge the gap?
Observed empirical 

performance is near-optimal

Worst-case bound 
𝜣( 𝐝𝐢𝐦	(𝑼)	� )  



Affine Policies: Empirical Performance
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§ Synthetic Data
§ Randomly generated problem instances

§ Commonly used Uncertainty Sets
§ Budget of uncertainty sets
§ Intersection of budget of uncertainty sets

This Talk: Analyze Performance of affine for randomly generated 
instances and for budget of uncertainty sets
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Two-stage Adjustable Robust problem

zAR(U) = min c

T
x + max

h2U
min
y(h)

d

T
y(h)

Ax + By(h) � h

x , y(h) 2 Rn
+

Demand uncertainty in facility location, network design, inventory
management, supply chain . . .

Optimal adjustable solution hard to compute (Feige et al. 2007).
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§ Many applications
§ facility location, capacity planning, network design

§ computationally intractable in general

§ Even approximating LP within an factor of O(log n/log log n)  is NP-hard [Feige et al.’07]



Affine Policy approximation

𝒚 𝒉 = 𝑷𝒉 + 𝒒

Second-stage decision is an affine function of 
the uncertainty
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Affine approximation

§ Introduced by Ben-Tal et al. (2004)

§ Can be computed efficiently

§ Optimal for simplex uncertainty sets and very good empirical performance more generally

§ Worst case bound is                (Bertsimas and G (2011))
§ Improved bounds for some special uncertainty sets (Bertsimas and Bidkhori (2015))
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Affine approximation
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Two-stage Adjustable Problem

Theorem. Suppose coefficients 𝐵12 are i.i.d. according to 
bounded distribution or with sub-gaussian tails, then
affine policy is “near optimal” with high probability for any c, A 
and polyhedral uncertainty set U



Random instances with  i.i.d. bounded distributions

Theorem. For n sufficiently large compared to log	𝑚,	with 
probability at least 1 − :

;
, we have

𝑧=> ≤ 𝑧=@@ ≤
A

B(:CD)
𝑧=>

Suppose 𝐵12 are i.i.d. according to a bounded distribution with support in [0,𝑏] and 𝔼(𝐵12 )=𝜇

Examples:

• 𝑩𝒊𝒋 are i.i.d. Uniform [0,1]:                                                                                                      
Affine policy gives a 2-approximation to the two-stage adjustable problem

• 𝑩𝒊𝒋 are i.i.d. Bernoulli(p):  
Affine policy gives a :

K
	-approximation to the two-stage adjustable problem.



Random instances with  i.i.d. unbounded distributions

Theorem. For n sufficiently large compared to log	𝑚, with
probability at least 1 − :

;
, we have
𝑧=> ≤ 𝑧=@@ ≤ 𝜅. 𝑧=>

where 𝜅 = 𝑂 log𝑚 + log𝑛�

Suppose 𝐵12 are i.i.d. according to absolute value of a standard Gaussian distribution

• Result extends to distributions with sub-gaussian tails



Proof (Sketch)
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Primal two-stage problem Dual two-stage problem
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Primal uncertainty set Dual uncertainty set
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We get a new two-stage adjustable problem 
where uncertainty set depends on the random 

matrix 𝑩

Based on duality in constraints and uncertainty set (Bertsimas and de Ruiter (2016))

Theorem [Bertsimas and De ruiter 2016] : Affine approximation of the primal and dual are 
equivalent
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We show with high probability that 𝒲	can be approximated by a simplex when 𝐵12 are i.i.d. 

Example:
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Bij i.i.d. Uniform [0,1]

simplex

Proof (Sketch)

Near-optimality of affine policies follows from the optimality for simplex uncertainty sets



Numerical Performance

14

which can be linearized using additional variable γijk and standard linear inequalities: γijk ≤ βij ,
γijk ≤ αik, γijk + 1 ≥ αik + βij . The complete MIP formulation and the proof of correctness is
presented in Appendix C.

For general A ̸= 0, we need to solve a sequence of MIPs to find the optimal adjustable solution.
In order to compute the optimal adjustable solution in a reasonable time, we assume A = 0, c = 0
in our experimental setting so that we only need to solve one MIP.

Results. In our experiments, we observe that the empirical performance of affine policy is near-
optimal. In particular, the performance is significantly better than the theoretical performance
bounds implied in Theorem 2.1 and Theorem 2.6. For instance, Theorem 2.1 implies that affine
policy is a 2-approximation with high probability for random instances from a uniform distribution.
However, in our experiments, we observe that the optimality gap for affine policies is at most 4%
(i.e. approximation ratio of at most 1.04). The same observation holds for Gaussian distributions
as well Theorem 2.6 gives an approximation bound of O(

√

log(mn)). We would like to remark
that we are not able to report the ratio r for large values of m because the adjustable problem is
computationally very challenging and for m ≥ 40, MIP does not solve within a time limit of 3 hours
for most instances . On the other hand, affine policy scales very well and the average running time
is few seconds even for large values of m. This demonstrates the power of affine policies that can
be computed efficiently and give good approximations for a large class of instances.

m ravg rmax TAR(s) TAff(s)
10 1.01 1.03 10.55 0.01
20 1.02 1.04 110.57 0.23
30 1.01 1.02 761.21 1.29
50 ** ** ** 14.92

(a) Uniform

m ravg rmax TAR(s) TAff(s)
10 1.00 1.03 12.95 0.01
20 1.01 1.03 217.08 0.39
30 1.01 1.03 594.15 1.15
50 ** ** ** 13.87

(b) Folded Normal

Table 1: Comparison on the performance and computation time of affine policy and optimal
adjustable policy for uniform and folded normal distributions. For 20 instances, we compute
zAff(B̃)/zAR(B̃) and present the average and max ratios. Here, TAR(s) denotes the running time for
the adjustable policy and TAff(s) denotes the running time for affine policy in seconds. ** Denotes
the cases when we set a time limit of 3 hours. These results are obtained using Gurobi 7.0.2 on a
16-core server with 2.93GHz processor and 56GB RAM.

14

Comparison of affine and adjustable policy in terms of performance and running times 

Bij i.i.d. Uniform [0,1] Bij i.i.d. Folded Normal



No Smoothed Analysis: Family of Bad Instances
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n = m, A = 0, c = 0, d = e

U = conv (0, e1, . . . , em,⌫1, . . . ,⌫m) where ⌫i =
1p
m
(e� ei) 8i 2 [m].

˜Bij =

(
1 if i = j
1p
m

· ũij if i 6= j where for all i 6= j, ũij are i.i.d. uniform[0, 1].

(0.7)

2

Family of bad instances

Coefficients are not i.i.d. !!! 

Theorem. For the above instance, we have with probability at 
least 1 − :

;
,

𝑧=@@ = Ω 𝑚� . 𝑧=>
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§ Real world instances are Not random
§ Affine policies exhibit good empirical performance more generally

§ Commonly used Uncertainty Set

This talk

Tight Characterization for important classes of uncertainty sets
Budget uncertainty sets:

U =

(
h 2 [0, 1]m

����
mX

i=1

wihi  �

)

Very commonly used class of uncertainty sets.
Captures confidence interval sets and CLT sets.
Adjustable problem is ⌦(log n)-Hard even for sets with wi = 1

Intersection of Budget uncertainty sets
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§ Very commonly used class of uncertainty sets
§ More general: intersection of budget of uncertainty sets
§ Captures confidence interval sets and CLT based sets

Hardness (Feige et al. 2007): Adjustable problem is hard to approximate 
within a factor Ω RST U

RST RST U
for budget of uncertainty sets.

Budget of Uncertainty Set:
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This talk

Tight Characterization for important classes of uncertainty sets
Budget uncertainty sets:

U =

(
h 2 [0, 1]m

����
mX

i=1

wihi  �

)

Very commonly used class of uncertainty sets.
Captures confidence interval sets and CLT sets.
Adjustable problem is ⌦(log n)-Hard even for sets with wi = 1

Intersection of Budget uncertainty sets
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Budget of Uncertainty Set:

Theorem. Affine policy gives 𝑂 𝑙𝑜𝑔 𝑛 -approximation for budget of 
uncertainty sets

Optimal approximation: nearly matches the hardness bound 



Intersection of Budget of Uncertainty Sets
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Theorem. Affine policy gives 𝑂 𝑙𝑜𝑔2 𝑛 -approximation for partition 
matroid uncertainty sets

§ Partition Matroid (Intersection of Budget of disjoint subsets)
§ Generalization of budget of uncertainty
§ 𝐼:, 𝐼[,… , 𝐼] is a partition of [m].

2 Partition Matroids

U =

8
<

:h 2 [0, 1]m
���
X

i2I`

hi  k` 8` = 1, . . . , L

9
=

;

Theorem 2.1. For partition matroid sets

zA↵(U) = O(log(n)2) · zAR(U)

3 Intersection of budgets

U =

(
h 2 [0, 1]m

���
mX

i=1

wi`hi  k` 8` = 1, . . . , L

)
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Intersection of Budget of Uncertainty Sets
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Theorem. For 𝑈 given by intersection of L budget constraints, affine 
policy gives:
§ 𝑂 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝐿 -approximation if 𝑈 is permutation invariant

§ 𝑂 𝐿 𝑙𝑜𝑔 𝑛 -approximation in general.

• Example of permutation invariant budgeted set: CLT based set
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Special Constraint Matrix: 𝑩 Totally-Unimodular

Theorem. If the second-stage constraint matrix is totally unimodular, 
affine policy gives a 5-approximation for budget of uncertainty sets. 

• Many applications where 𝑩 is TU
• facility location
• transportation problems
• supply chain network design 

• The bounds also extend to the case of intersection of L budget sets
• 𝑂(log	𝐿)	for permutation invariant sets
• 𝑂(𝐿) for general intersection of budgeted sets 



Proof (Sketch for budget of uncertainty set)
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Captures confidence interval sets and CLT sets.
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§ Show existence of a good affine solution.
§ Exploit the instance constraints: 𝐴,𝐵	and costs: 𝑐, 𝑑 unlike analysis in prior work
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Step 1: Pruning Inexpensive Scenarios

Our Analysis (sketch)

Step 2 (Pruning Second Stage). Let

✓i = min
y

⇢
d

T
y

���� By � e i , y � 0
�

I2 =

⇢
i 2 [m]

���� ✓i  O(log(n)) · OPT
k

�

Cover I2 by a linear solution
X

i2I2

y

⇤(e i ) · hi

Cost increases only by a factor O(log n)
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Cover all components in I1 in second stage by a linear solution
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: Optimal solution
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Proof (Sketch): Remaining components
Step 2 (Remaining Components)

§ cover remaining components using a static solution

Lemma: Cost of 𝒙d	 is at most O(OPT).

What about the cost of 𝒙d	?

§ Each remaining component is more than (log n OPT)/K

§ Total cost of any subset of size K is at most OPT

§ Using these two properties we show the existence of a good solution
§ Adapt arguments from Gupta et al. (2011))
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Faster algorithm for Approximate affine policies
Denote

cost(r) = min c

T
x+ d

T
y

Ax+By � r

x,y � 0

and for all i 2 [m], we define

✓i = min
y

⇢
d

T
y

���� By � ei, y � 0

�

Algorithm 1 Computing zAlg(U)
1: Initialize zAlg(U) = cost(e)
2: Sort ✓(1)  ✓(2)  . . .  ✓(m)

3: for i = 2, . . . ,m do

4: Static = cost(e(i) + . . .+ e(m))
5: A↵ = ✓(i�k+1) + . . .+ ✓(i)
6: zAlg(U) = min(Static+ A↵, zAlg(U))
7: end for

8: return zAlg(U)

m Ta↵(s) TAlg(s) Avg

10 0.009 0.004 1.146
20 0.176 0.011 1.106
30 0.587 0.0245 1.143
40 2.395 0.0395 1.145
50 9.718 0.063 1.097
60 17.406 0.087 1.155
70 52.369 0.1185 1.101
80 108.874 0.155 1.128
90 188.762 0.205 1.133
100 270.787 0.247 1.146

Table 1: Comparison on the performance and computation time of the optimal a�ne policy and

our algorithm. For 20 instances, we compute Avg =
zAlg(U)
zA↵(U) for U a budget of uncertainty set

with a budget k = c
p
m where for each instance we generate c uniformly from [1, 2]. Here, TAlg(s)

denotes the running time for our piecewise a�ne policy and Ta↵(s) denotes the running time for
a�ne policy in seconds.

6 Conclusions
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• Based on insights from the proof of performance bounds
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Suppose
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Numerical Performance of Faster algorithm

Denote
cost(r) = min c
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3: for i = 2, . . . ,m do
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6: zAlg(U) = min(Static+ A↵, zAlg(U))
7: end for

8: return zAlg(U)

m Ta↵(s) TAlg(s) Alg/A↵

10 0.009 0.004 1.146
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Table 1: Comparison on the performance and computation time of the optimal a�ne policy and

our algorithm. For 20 instances, we compute Avg =
zAlg(U)
zA↵(U) for U a budget of uncertainty set

with a budget k = c
p
m where for each instance we generate c uniformly from [1, 2]. Here, TAlg(s)

denotes the running time for our piecewise a�ne policy and Ta↵(s) denotes the running time for
a�ne policy in seconds.
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Conclusions
§ Affine policies are Near-optimal for random instances 

generated from a large class of distribution

§ Provide Optimal approximation for budget of 
uncertainty sets that are widely used in practice

§ Faster algorithm to compute near-optimal affine policies

§ Extend insights to more general policies
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