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Robust optimization

Computing optimal adjustable policy is intractable




Policy Approximations

= Static Policies
= Single solution feasible for all scenarios
= Highly tractable but can be very conservative

= Affine Policy (or Linear Decision Rules)
= Recourse solution is an affine function of past uncertainties
= Tractable and good empirical performance
= Worst case performance can be bad

= More general policies
» Piecewise static policies
» Piecewise affine policies
= |mproved performance but significantly more difficult to compute



Policy Approximations

= Static Policies
= Single solution feasible for all scenarios
= Highly tractable but can be very conservative

= Affine Policy (or Linear Decision Rules)
= Recourse solution is an affine function of past uncertainties
= Tractable and good empirical performance
= Worst case performance can be bad

= More general policies
= Piecewise static policies
= Piecewise affine policies
= |mproved performance but significantly more difficult to compute



Performance of Affine Policies

Provably Optimal for a Worst-case bound
small class of problems 0( /dim(U))

How to bridge the gap?

Observed empirical
performance is near-optimal

This Talk: We provide a theoretical justification of the contrast between the
observed empirical performance and worst-case performance of affine policies




Affine Policies: Empirical Performance

* Synthetic Data

= Randomly generated problem instances

= Commonly used Uncertainty Sets
= Budget of uncertainty sets
» |ntersection of budget of uncertainty sets

This Talk: Analyze Performance of affine for randomly generated
instances and for budget of uncertainty sets




Two-stage Adjustable Robust problem

ZAR = mm c’'x + maxmind’ y(h)

held y(h)
Ax + By(h) > h
x,y(h) € RY

Decision, x Decision, y(h)
50 ) X
[ () il

Adversary picks h

= Many applications
= facility location, capacity planning, network design

= computationally intractable in general

» Even approximating LP within an factor of O(log n/log log n) is NP-hard [Feige et al.’07]




Affine Policy approximation

Affine approximation

min ¢’z + maxd’ (Ph + q)
y(h) = Ph +q z,P,q heud

Ax+ B(Ph+q) > h
Ph+q > 0, xRl

Second-stage decision is an affine function of
the uncertainty

= Introduced by Ben-Tal et al. (2004)
= Can be computed efficiently
= Optimal for simplex uncertainty sets and very good empirical performance more generally

= Worst case bound is O(4/m) (Bertsimas and G (2011))
» Improved bounds for some special uncertainty sets (Bertsimas and Bidkhori (2015))




Random Instances: Performance of Affine Policies

Two-stage Adjustable Problem Affine approximation
T T
z —mmc x + maxmind” y(h T
AR hett ol y(h) inﬁri, clx+ r’?gglcd (Ph+q)
Az + By(h) > h Az + B(Ph+q) > h

Theorem. Suppose coefficients B;; are i.i.d. according to
bounded distribution or with sub- gaUSSIan tails, then

affine policy is “near optimal” with high probability for any c, A
and polyhedral uncertainty set U




Random instances with i.i.d. bounded distributions

Suppose B;; are i.i.d. according to a bounded distribution with support in [0,b] and E(B;;)=u

Theorem. For n sufficiently large compared to log m, with

probability at least 1 — % we have
b

pu(l—e)

ZAR < ZAff < ZAR

Examples:

* Bjj are i.i.d. Uniform [0,1]:
Affine policy gives a 2-approximation to the two-stage adjustable problem

* Bjj are i.i.d. Bernoulli(p):
Affine policy gives a % -approximation to the two-stage adjustable problem.



Random instances with i.i.d. unbounded distributions

Suppose B;; are i.i.d. according to absolute value of a standard Gaussian distribution

Theorem. For n sufficiently large compared to log m, with
- 1
probability at least 1 — —, We have
ZAR < ZAff < K.ZAR
where k = 0(/logm + logn)

* Result extends to distributions with sub-gaussian tails



Proof (Sketch)

Based on duality in constraints and uncertainty set (Bertsimas and de Ruiter (2016))

Primal two-stage problem Dual two-stage problem
7 7T
ZAR = mm c' x + maxmind” y(h) T T T
hetl (k) mm c'x+ &av}\cj ir(lgl) (Az)" w + r* A(w)

Az + By(h) > h
z,y(h) € RY

R A\(w) > w
A(w) € RY, x € R

Primal uncertainty set Dual uncertainty set

U={hcR|Rh <7} W={weR?|B'w<d}

Theorem [Bertsimas and De ruiter 2016] : Affine approximation of the primal and dual are
equivalent

We get a new two-stage adjustable problem
mmmmm) where uncertainty set depends on the random
matrix B




Proof (Sketch)

W= {w e R | B'w < d}

We show with high probability that W can be approximated by a simplexwhen B;; are i.i.d.

Example

.d. Uniform [0,1]

|

B,

Near-optimality of affine policies follows from the optimality for simplex uncertainty sets



Numerical Performance

Comparison of affine and adjustable policy in terms of performance and running times

Bj i.i.d. Uniform [0,1]

B i.i.d. Folded Normal

M | Tavg | Tmax | TAR(S) | Tafr(S)
10 | 1.01 | 1.03 10.55 0.01
20 | 1.02 | 1.04 | 110.57 0.23
30 | 1.01 | 1.02 | 761.21 1.29
50 | ** ok ok 14.92

(a) Uniform

M | Tavg | Tmax | TAR(S) | Tas(S)
10 | 1.00 | 1.03 12.95 0.01
20 | 1.01 | 1.03 | 217.08 0.39
30 | 1.01 | 1.03 | 594.15 1.15
50 | ** ok ok 13.87

(b) Folded Normal
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No Smoothed Analysis: Family of Bad Instances

Family of bad instances

n=m, A=0, ¢c=0, d=e
1
U=-conv(0,e,...,en,V1,...,V,;) where I/Z-:T(e—ei) Vi € [m].
m
2 1 it 4= - . .
B;; = 1|~ if L where for all ¢ # j, 4;; are i.i.d. uniform|0, 1].
\/—m'uw 1 7’#.7

Coefficients are not i.i.d. !!!

Theorem. For the above instance, we have with probability at

1
least 1 — —,
m

ZAff = Q(Vm). zyg
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Performance of Affine Policies

= Real world instances are Not random
= Affine policies exhibit good empirical performance more generally

= Commonly used Uncertainty Set

Budget of Uncertainty Set: U= {h e [0,1]™

i W,'h,' S F}
=1

= Very commonly used class of uncertainty sets
» More general: intersection of budget of uncertainty sets
= Captures confidence interval sets and CLT based sets

Hardness (Feige et al. 2007): Adjustable problem is hard to approximate

within a factor Q (101;‘(’:) Z n) for budget of uncertainty sets.
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Performance of Affine Policies

Budget of Uncertainty Set: U = {h e [0,1]™

i W,'h,' S F}
=1

Theorem. Affine policy gives 0(log n)-approximation for budget of
uncertainty sets

Optimal approximation: nearly matches the hardness bound
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Intersection of Budget of Uncertainty Sets

= Partition Matroid (Intersection of Budget of disjoint subsets)
» (Generalization of budget of uncertainty
= I,,1,,..., I, is a partition of [m].

U = hE[O,l]m‘ S hi<k VE=1,...,L
€1y

Theorem. Affine policy gives 0(log? n)-approximation for partition
matroid uncertainty sets
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Intersection of Budget of Uncertainty Sets

Theorem. For U given by intersection of L budget constraints, affine
policy gives:

= O(lognlog L)-approximation if U is permutation invariant

= O(L log n)-approximation in general.

Example of permutation invariant budgeted set: CLT based set

U = {he[()l ‘Zh <~ VS C[m ]With|8|:l~c}
1€S
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Special Constraint Matrix: B Totally-Unimodular

Theorem. If the second-stage constraint matrix is totally unimodular,
affine policy gives a 5-approximation for budget of uncertainty sets.

 Many applications where B is TU
 facility location
» transportation problems
« supply chain network design

« The bounds also extend to the case of intersection of L budget sets
* O(logl) for permutation invariant sets
 0O(L) for general intersection of budgeted sets




Proof (Sketch for budget of uncertainty set)

Budget of Uncertainty Set

u:{hemJW

Em:h,-<k}

=1

» Show existence of a good affine solution.
= Exploit the instance constraints: A, B and costs: ¢, d unlike analysis in prior work



Proof (Sketch)

i hi < k}
i=1

Budget of Uncertainty Set |U/ = {h e [0,1]™

Step 1: Pruning Inexpensive Scenarios

9; = min {dTy ‘ By >e;, y> 0} y*(e;) : Optimal solution
y

I, = {z € [m] ‘ 6, < O(logn) - %}

Cover all components in |, in second stage by a linear solution

y(h) = Z y*(ez) - h; Cost increases by a factor log n
€74




Proof (Sketch): Remaining components

Step 2 (Remaining Components) I, = [m]\ Z;

= cover remaining components using a static solution

& € argmin{ d’z |Bzx > Z e, t >0
€1

What about the cost of x ?

Lemma: Cost of X is at most O(OPT).

= Each remaining componentis more than (log n OPT)/K
= Total cost of any subset of size K is at most OPT

» Usingthese two properties we show the existence of a good solution
= Adapt arguments from Gupta et al. (2011))



Faster algorithm for Approximate affine policies

Based on insights from the proof of performance bounds

0; = min{dTy ‘ By >e;, y> 0}
y

Suppose 6, >60,>...>0,,

Try the following m affine solutions

Forj=1...m

= Cover ey,..., g with a static first stage solution
= Affine solution:

m

y(h) = Y y*(e) - hi

i—j+1

Return the solution with minimum cost




Numerical Performance of Faster algorithm

m | Tar(s) | Taig(s) | Alg/Aff
10 0.009 0.004 1.146
20 0.176 0.011 1.106
30 0.587 0.024 1.143
40 2.395 0.039 1.145
50 9.718 0.063 1.097
60 17.40 0.087 1.155
70 52.36 0.118 1.101
80 108.8 0.155 1.128
90 188.7 0.205 1.133
100 | 270.7 0.247 1.146




Conclusions

Affine policies are Near-optimal for random instances
generated from a large class of distribution

Provide Optimal approximation for budget of
uncertainty sets that are widely used in practice

Faster algorithm to compute near-optimal affine policies

Extend insights to more general policies
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Thank You.
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