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Cone testing problem

@ Observation model: y =6 +ow, w ~ N(0,1)
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Cone testing problem

@ Observation model: y =6 +ow, w ~ N(0,1)
@ Inference problem: Hy: 6 € Cy vis. Hy: 0 e G\G

e (Cy C ( closed, convex cones (V x € C then ax € C, ¥V a > 0)

Yuting Wei (UC Berkeley) Geometric analysis of hypothesis testing Jan 30th, 2018



Applications

@ In the fields of

» detection of treatment effects
» signal detection in radar processing
» trend detection in econometrics
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Example: Treatment effect detection

@ average treatment effect of d = 10 different dosages of a drug
@ non-negative and un-ordered space

unknown average effect

01 0, 20
01 >0 02 >0 010>0
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Example: Treatment effect detection

@ average treatment effect of d = 10 different dosages of a drug
@ non-negative and un-ordered space

unknown average effect observed outcomes
Y1 Y, Yio
01 62 ‘910
0,>0 6,>0 010>0 .
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Example: Treatment effect detection

@ average treatment effect of d = 10 different dosages of a drug
@ non-negative and un-ordered space

unknown average effect observed outcomes Inference

Y1 Y, Yio

010 ?

0,>0 6,>0 010>0 . Ho:br=0r=---=01p=0

0, 0
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Example: Treatment effect detection

@ average treatment effect of d = 10 different dosages of a drug

@ monotonic space

unknown average effect

6, 0y 010

O < 0 -0 < bho
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Example: Treatment effect detection

@ average treatment effect of d = 10 different dosages of a drug

@ monotonic space

unknown average effect observed outcomes Inference
Y1 Y, Yio
0 0O [20) ?
®
O < 0 -0 < bho
Ho: 01 =02=---=bho
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Applications

@ In the fields of

» detection of treatment effects
» signal detection in radar processing
» trend detection in econometrics

Biihlmann'03, Meinshausen'03, Meyer'03, Sen and Meyer 17’
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Applications

@ In the fields of

» detection of treatment effects
» signal detection in radar processing
» trend detection in econometrics

@ More statistical models

> linear regression y = X+ w:=0+4+w
* Cp:={0} v.s. G :=range(X)

> fitness of a linear model: y = f(x]) + w : =60 + w,

* Co:={XB| B E€R"} v.s. G := convex cone

Biihlmann'03, Meinshausen'03, Meyer'03, Sen and Meyer 17’
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Overview

Q: How to solve these constrained testing problems?

Q: How to quantify the hardness of a constrained testing problem?

Q: How does the hardness depend on the geometry?

Yuting Wei (UC Berkeley)
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Generalized Likelihood Ratio Test

o Generalized Likelihood Ratio Test (GLRT)

65(y) = {1 =0

0 otherwise.

SUPge G, IP’e(y)>

where T = —-2lo
2 & <5Up0€C1 Py(y)

Robertson and Wegman'78, Raubertas et al.’86, Fan et al.’01...
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Generalized Likelihood Ratio Test

o Generalized Likelihood Ratio Test (GLRT)

s3(y) = {1 =8

0 otherwise.

supeerP%(y)>

where T = —-2lo
2 & <5UPeeC1 Py(y)

@ Cone based GLRT:
T(y) = min |y — 6|3 — min |ly — 6|3
(v) = min [ly —6ll2 — min [ly — 0]}

= INc I3 = INg(x)II3

Robertson and Wegman'78, Raubertas et al.’86, Fan et al.’01...
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Related results

o GLRT
» different aspects of GLRT e.g. Wilks phenomenon, fitness of parametric
model... [Warrack and Robertson’'84, Menéndez'92, Lehmann’06, Perlman and
Wu'99, Barlow 72, Lehamnn and Romano’06, Fan et al.’01, '07]
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Related results

o GLRT
» different aspects of GLRT e.g. Wilks phenomenon, fitness of parametric
model... [Warrack and Robertson’'84, Menéndez'92, Lehmann’06, Perlman and
Wu'99, Barlow 72, Lehamnn and Romano’06, Fan et al.’01, '07]

o Cone testing
» Raubertas, Lee & Nordheim studies the null distribution of GLRT
» Hu and Wright characterizes GLRT equivalences for various pairs of
cones
> Diimbgen’'95, Robertson'78, Warrack and Robertson'84, Brown'86, Cohan and
Sackrowitz'96, Rubertas et al'86, Menéndez'91

@ Minimax testing framework

» introduced in the seminal work of Ingster and co-authors
» different from the Neyman-Person testing framework

9/ 22
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@ Test 0 € Gy v.s. C1\ Gy
@ Uniform error for test 1:
error(v, €) := sup Eg[u(y)] + sup Eg[1 — ¥(y)],
0y 9€C1\BQ(€;C0)

/

~~

type | error type Il error
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@ Test 0 € Gy v.s. C1\ Gy
@ Uniform error for test 1:
error(¢), €) := sup Eg[y(y)] + sup B[l —o(y)],
0y 9€C1\BQ(€;C0)

/

~~

type | error type Il error

e Testing radius ey = distance at which null/alternative are “just
distinguishable” using class of tests W

hard critical easy
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Minimax optimal testing radius

@ Uniform error for test 1):

error(1, €) := sup Eg[to(y)] + sup Eo[1 — ¥ (y)],
0eCo 9€C1\Bz(€;C0)

type | error type Il error
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Minimax optimal testing radius

@ Uniform error for test 1):

error(1, €) := sup Eg[to(y)] + sup Eo[1 — ¥ (y)],
0eCo 9€C1\Bz(€;C0)

type | error type Il error

@ Minimax testing radius:
eopr(p) : = inf {e | il;lbf error(), €) < p}

[Ingster and Suslina’12, Ermakov'91, Lepski and Spokoiny’99, Lepski and Tsybakov'00]
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Minimax optimal testing radius

@ Uniform error for test 1):

error(1, €) := sup Eg[to(y)] + sup Eo[1 — ¥ (y)],
0eCo 9€C1\BQ(G;C0)

type | error type Il error

@ Minimax testing radius:
eopr(p) : = inf {e ] il;lbf error(), €) < p}

[Ingster and Suslina’12, Ermakov'91, Lepski and Spokoiny’99, Lepski and Tsybakov'00]

€GLRT

@ critical testing radius: €¢rr and copr copT

(@

Co

Yuting Wei (UC Berkeley) Geometric analysis of hypothesis testing Jan 30th, 2018



Main results

Theorem (W, Wainwright & Guntuboyina '17)
The GLRT testing radius satisfies

egm = ¢?min {Width term, geometric term}.

Yuting Wei (UC Berkeley) Geometric analysis of hypothesis testing Jan 30th, 2018 12 / 22



Main results

Theorem (W, Wainwright & Guntuboyina '17)
The GLRT testing radius satisfies

E[[Mewll2 2

2

- 2 min { Bl (= 1

€cLrTr ~ O mm{ || CWH inf <777 EncW>
width term necns

/

vV
geometric term

G=0 G=C

w ~ N(0,14)

Mew = argminyec [lg — ul)2
S — unit sphere in RY
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Main results

Theorem (W, Wainwright & Guntuboyina '17)
The GLRT testing radius satisfies
E[Mcwlla  \2
2
€GLRT - O- mln {EHI_ICWH ( |rgf5<77, EI—ICW>) }
’ n

width term ne

J/

Vv
geometric term

e Width term = E||N¢cw|2 where Mew : = argminyec [[w — ulf2

o E|Mc(w)|l2 = W(CNS) where

Gaussian width: W(A) :=E|[sup(u, w)]
ueA
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Main results

Theorem (W, Wainwright & Guntuboyina '17)
The GLRT testing radius satisfies
E[Mcwla 2
2
€2, pr < 0% min {EHI’ICWH ( irg;s(m IEI'ICW>> }

width term ne

vV
geometric term

@ Examples:

cone C \ width term \ geometric term
k-dimensional space Vk s
non-negative orthant Vd d
monotone cone Vlog d 00
ice cream cone Vd 1
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Ice Cream cone

y 10€ R (6, v) > cosal6]lle]}

-

; signal v
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Main results

Theorem (W, Wainwright & Guntuboyina '17)
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2
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vV
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Consequence for monotone cone

@ Ho:0=10y versus Hj:60 € M (monotone increasing sequence)

@ 0y is k piece-wise constant

- _ . ==iR

@ optimal testing radius satisfies

€2, (00, M; p) < 02\/ k(bo) log (k{éo)>

idea:

Ho:0=0, versus Hi:60¢€ Tri(bo)
tangent cone: Ti(fo) :={u €RY | 3t > 0 such that f + tu € M}
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Minimax lower bound

Theorem (W, Wainwright & Guntuboyina '17)

The minimax testing radius satisfies

: E[[Mewll2 2
Corr R 07 mm{\_EHI'IC—_/ng, ( sup (n IEHCW))
b
width term neCnsS

/

v
geometric term |l

2
E[Mcwll
inf (n,EMNcw)

@ geometric term = <
necns

@ GLRT is optimal whenever

inf (n, EMcw) < su , EMcw
nems<77 cw) necgsm cw)
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Optimal hypothesis testing

e GLRT is minimax optimal (up to constants) in all these cases,

cone C ‘ 2

6GLRT

k-dimensional space o2Vk

non-negative orthant o2V/d
monotone cone o%/log d
ice cream cone 0?1
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Is GLRT always optimal?

@ Consider a Cartesian product cone: Ice Creamy_1(a) x R
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Is GLRT always optimal?

@ Consider a Cartesian product cone: Ice Creamy_1(a) x R

> e < o?min{V/d, oo}

> pr < o?min{Vd, 1}
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Is GLRT always optimal?

@ Consider a Cartesian product cone: Ice Creamy_1(a) x R

> e < o?min{V/d, oo}

> pr < o?min{Vd, 1}

@ a simple test based on ||(Y1, Yy)|l2 — minimax optimal
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@ show difficulty of testing depends on geometry
(very different from estimation)
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@ show difficulty of testing depends on geometry
(very different from estimation)

@ interesting consequence for testing in monotone cone

@ the GLRT is NOT always optimal, and can be very poor even for
simple problems
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Thanks! Questions?
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Supplementary: general cones

@ cone pairs (Cp, (1) is said to be non-oblique if
Mg, (x) = Ng, (Mg (x)) for all x € RY.

[Warrack et al.’84, Menéndez'92a,92b, Hu and Wright’94]

e C=CNG

@ polar cone of any C:

C*;:{VeRde,u>§0 forallueC} o
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Supplementary: sub-optimality of GLRT

o Consider a Cartesian product cone: Ice Creamgy_1(a) x R
e Consider when signal lies only in the last coordinate: (0,...,0,604)
@ Difference on GLRT under the null and the alternative:

Me(wa, wa, ... wy)ll2 — [[Me(wi, wa, ... 0g + wy)l|2
=||(proj to ice cream, wy)|l2 — ||(proj to ice cream, 04 + wy)||2

where proj to ice cream = Mjc(w, ..., wg_1)

@ |04| > ||proj to ice creaml||,
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