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Let G be a graph with vertex set V = {1, 2, . . . , n}.
A coloring κ of G is a map κ : V → N such that adjacent vertices
are mapped to different integers (“colors”).

Definition. The chromatic symmetric function XG is

XG :=
∑

κ

xκ(1)xκ(2) · · · xκ(n),

where the sum is over all colorings κ of G .

Example.

XG = 6(x1x2x3 + x1x2x4 + · · · ) + (x21x2 + x22x1 + x21x3 + x23x1 + · · · )

= 6e3 + e1e2 − 3e3

= 3e3 + e1e2.
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polynomial in the ei with nonnegative coefficients.
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a set of (distinct) closed unit intervals on the real line, and in
which two intervals are adjacent if and only if they overlap.

Conjecture (Stanley–Stembridge, 1993). For every indifference
graph G , XG is e-positive.



Indifference graphs

Note that in the above example, XG is e-positive; i.e., it is a
polynomial in the ei with nonnegative coefficients.

This is not true for all graphs; however. . .

Definition. An indifference graph is a graph whose vertex set is
a set of (distinct) closed unit intervals on the real line, and in
which two intervals are adjacent if and only if they overlap.

Conjecture (Stanley–Stembridge, 1993). For every indifference
graph G , XG is e-positive.

Note. The original Stanley–Stembridge conjecture was seemingly
more general; Guay-Paquet reduced it to the statement above.
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Schur function expansion of XG

Theorem (Haiman 1993, Gasharov 1996). If G is an indifference
graph then XG is s-positive, i.e., a nonnegative linear combination
of Schur functions. The coefficients count “P-tableaux.”

Question. If G is an indifference graph, is XG = ch ρ for some
“naturally occurring” representation ρ, where ch denotes the
characteristic map?

Conjecture (Shareshian–Wachs, 2011). ch ρ = ωXG where ρ is
the dot action on the cohomology of a regular semisimple
Hessenberg variety and ω is the involution on symmetric functions
corresponding to tensoring with the sign representation. In fact,
ωXG naturally decomposes into summands corresponding to each
cohomology group H2d separately.

Our main result is a proof of this conjecture (2015). Independently
and almost simultaneously, Guay-Paquet gave a proof using
completely different methods (Hopf algebras).
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Classification of indifference graphs

Let m = (m1, . . . ,mn−1) be a weakly increasing sequence of
integers such that i ≤ mi ≤ n for all i (sometimes called a
Hessenberg function).

Example. If n = 3 then m ∈ {(1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}.

Let G (m) be the graph with vertex set {1, 2, . . . , n} and in which i

and j are adjacent if i < j ≤ mi .

Example. If mi = i + 1 for all i then G (m) is a path.

Fact (implicit in earlier literature, explicit in Shareshian–Wachs).
G (m) is an indifference graph, and every indifference graph is
isomorphic to some G (m).
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(Type A) Hessenberg varieties

A complete flag in an n-dimensional (complex) vector space V is
a nested sequence of subspaces F1 ⊆ F2 ⊆ · · · ⊆ Fn = V such that
dimFi = i for all i . The set of all complete flags forms a space
called the complete flag variety.

Let m = (m1, . . . ,mn−1) be a weakly increasing sequence of
integers such that i ≤ mi ≤ n for all i .

Definition (De Mari–Procesi–Shayman). Let s ∈ gln(V ). Then
the Hessenberg variety H (m, s) is defined by

H (m, s) := {complete flags such that sFi ⊆ Fmi
for all i .}

If s is diagonalizable, we say H (m, s) is semisimple. If the Jordan
blocks of s have distinct eigenvalues, we say H (m, s) is regular.
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Hessenberg varieties have no odd-dimensional cohomology, so in
particular, Goresky–Kottwitz–MacPherson theory tells us that
the T -equivariant cohomology can be completely described by a
combinatorial object called the moment graph.

The vertices of the moment graph are the T -fixed points and the
edges are the one-dimensional T -orbits.
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Diagonal matrices form a torus T that acts on H (m, s).

Hessenberg varieties have no odd-dimensional cohomology, so in
particular, Goresky–Kottwitz–MacPherson theory tells us that
the T -equivariant cohomology can be completely described by a
combinatorial object called the moment graph.

The vertices of the moment graph are the T -fixed points and the
edges are the one-dimensional T -orbits.

Ordinary cohomology is a quotient of equivariant cohomology.
Tymoczko defined an action, the dot action, of the symmetric
group on the cohomology of a regular semisimple Hessenberg
variety H (m, s). The action depends only on m and not on the
choice of regular semisimple s.





The dot action

◮ An equivariant cohomology class c is an assignment of a
polynomial c(w) in the t’s to each vertex w such that
polynomials on adjacent vertices differ by a multiple of the
edge label.

◮ If σ ∈ Sn then (σc)(w) is obtained by taking c(σ−1w) (where
σ−1w means letting σ−1 act on the numbers of w) and then
applying σ to the subscripts of the t’s.

◮ Equivariant cohomology classes comprise a free module over
C[t1, . . . , tn]. Write down matrices for the above
representation with respect to some basis, and then take the
constant terms of the entries to get the dot action on the
cohomology.





Linchpin of proof

Theorem. Let λ be a partition of n. Let Sλ := Sλ1 × · · · × Sλℓ
be

a Young subgroup of Sn. Let s be a regular matrix with Jordan
type λ. Then the dimension of the subspace of H2d fixed by Sλ
under the dot action on a regular semisimple Hessenberg variety
equals the Betti number β2d of H (m, s).
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Theorem. Let λ be a partition of n. Let Sλ := Sλ1 × · · · × Sλℓ
be

a Young subgroup of Sn. Let s be a regular matrix with Jordan
type λ. Then the dimension of the subspace of H2d fixed by Sλ
under the dot action on a regular semisimple Hessenberg variety
equals the Betti number β2d of H (m, s).

Standard fact. The dimensions of the above fixed subspaces are
the coefficients of the monomial symmetric function expansion.
In particular, knowing all these numbers completely specifies the
representation of Sn.

Therefore the above theorem reduces the computation of the dot
action to the computation of regular (but not necessarily
semisimple) Hessenberg varieties.
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The combinatorial part of the proof

Tymoczko has already obtained a combinatorial description of the
cohomology of H (m, s) for all s.

Connecting Tymoczko’s work to XG takes two steps.

1. We generalize a combinatorial reciprocity theorem of Chow
to obtain a combinatorial description of the coefficients in the
monomial symmetric function expansion of ωXG (t).

2. We describe an explicit bijection between our combinatorial
description and Tymoczko’s combinatorial description when s

is regular.

Corollary. The Betti numbers of a regular Hessenberg variety form
a palindromic sequence. (Follows from a theorem of Shareshian
and Wachs. Note that regular Hessenberg varieties are not
smooth, and the corollary is not true if s is not regular. This
corollary has since been generalized to other types by Precup.)



Reciprocity

Loosely speaking, a reciprocity theorem yields a combinatorial
interpretation of the involution ω.

Our reciprocity theorem yields a combinatorial interpretation of the
monomial symmetric function expansion of ωXG (t).

The key idea is to consider directed graphs and to associate a
certain quasisymmetric function ΞD(t) with any directed graph D

that enumerates ordered path covers of D according to the
number of ascents.

1. For any poset P , ΞD(P)(t) = XG(P)(t), where u → v in D(P)
iff u < v in P and G (P) is the incomparability graph of P .

2. If D̄ is the complement of D then ωΞD(t) = ΞD̄(t).



Reciprocity example (t = 1)

ΞD = XG = m21 + 6m111

ωΞD = 4m3 + 5m21 + 6m111 = ΞD̄



Betti Numbers of Regular Hessenberg Varieties

Theorem (Tymoczko). A regular Hessenberg variety H (m, s) of
Jordan type λ is paved by affines. The nonempty cells are in
bijection with tableaux T of shape λ such that k is immediately to
the left of j iff k ≤ mj . The dimension of a nonempty cell is the
sum of

1. the number of pairs k < i in T such that
◮ i and k are in the same row, with i left of k ,
◮ if j is immediately right of k then i ≤ mj ; and

2. the number of pairs k < i in T such that
◮ i appears in a lower row than k , and
◮ i ≤ mk .
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Theorem (Tymoczko). A regular Hessenberg variety H (m, s) of
Jordan type λ is paved by affines. The nonempty cells are in
bijection with tableaux T of shape λ such that k is immediately to
the left of j iff k ≤ mj . The dimension of a nonempty cell is the
sum of

1. the number of pairs k < i in T such that
◮ i and k are in the same row, with i left of k ,
◮ if j is immediately right of k then i ≤ mj ; and

2. the number of pairs k < i in T such that
◮ i appears in a lower row than k , and
◮ i ≤ mk .

The paths in an ordered path cover of D(m) correspond naturally
to rows in T . But showing that the number of pairs k < i in
Tymoczko’s theorem coincides with the number counted by
Ξ
D(m)

(t) requires a combinatorial argument.
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the equivariant cohomology of a regular semisimple Hessenberg
variety. We show that this monodromy action is the same as
Tymoczko’s dot action, thereby relating the Sλ invariants to a
space of local invariant cycles.

Work of Beilinson–Bernstein–Deligne on perverse sheaves then
implies that there is a surjection from the cohomology of regular
Hessenberg varieties to the space of local invariant cycles.
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The geometric part of the proof

There is a natural monodromy action of the symmetric group on
the equivariant cohomology of a regular semisimple Hessenberg
variety. We show that this monodromy action is the same as
Tymoczko’s dot action, thereby relating the Sλ invariants to a
space of local invariant cycles.

Work of Beilinson–Bernstein–Deligne on perverse sheaves then
implies that there is a surjection from the cohomology of regular
Hessenberg varieties to the space of local invariant cycles.

We then show that the palindromicity of the Betti numbers implies
that the surjection is actually an isomorphism.

Note. Abe–Harada–Horiguchi–Masuda had previously proved the
relationship between the invariants and the cohomology in the
special case of regular nilpotent s, but not using a local invariant
cycle theorem.


