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Multiscale Systems
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Inverse problems for multiscale chemical reaction
networks

Not able to accurately observe the fast variables (POMP
model)
Subset of the reaction parameters will be unobservable
Likelihood is invariant to moves along manifolds in parameter
space
Posterior distribution concentrated close to such a manifold
Without knowledge of the manifold:

Metropolis-Hastings and other single-state algorithms perform
poorly, proposing off the manifold frequently, slow mixing along
manifold
Importance sampling schemes have poor proposal
distributions
Slow convergence, or even instability (importance weight
collapse)
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QSSA: Simple Example

Consider the system:

∅
k1

−−−−→ X1

k2x1

−−−−−−−→
←−−−−−−−

k3x2

X2
k4x2
−−−−→ ∅

Effective system:

∅
k1

−−−−→ S
k̂4s

−−−−→ ∅

Fast subsystem: k1, k4 → 0

X1

k2x1

−−−−→
←−−−−

k3x2

X2, S = X1 + X2
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QSSA: Simple Example

X1

k2x1

−−−−→
←−−−−

k3x2

X2, S = X1 + X2

Invariant distribution

X2 ∼ B(S, λ2) = π(X2)

[λ1, λ2] =
[

k3
k2+k3

, k2
k2+k3

]
steady state solution of mean field

ODE:
k2λ1 = k3λ2, λ1 + λ2 = 1

Compute expectation of the rate of reaction R4

α̂4 = E(α4|S) = k4E(X2|S) =
k2k4S
k2 + k3
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Multiscale approximations: Simple Example

Therefore if we only observe the slow variable S = X1 + X2
k1 observable
k2, k3, k4 unobservable
QSSA: k2k4

k2+k3
observable, effective degradation rate of S

Constrained method (details omitted)
Effective rate (and observable): k2k4

k2+k3+k4

Multiscale approximations required in order to approximate
intractable likelihood
Likelihood is invariant to moves along the manifolds defined
by effective rates

SLC, “Constrained approximation of effective generators for multiscale
stochastic reaction networks and application to conditioned path sampling”,
Journal of Computational Physics, 2016
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Constrained approximation: Simple Example
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Figure: CMA approximation of the posterior arising from observations of
the slow variable S = X1 + X2, concentrated around a manifold
k1(k2+k3+k4)

k2k4
= C, i.e. more challenging than this plot suggests. (Any

visualisation suggestions?)
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Importance Sampling

Posterior measure has density π
Proposal density ν
Take N samples from ν, {xi}Ni=1

Compute respective weights wi = π(xi)/ν(xi)

Eπ(f ) ≈
1∑
j wj

N∑
i=1

f (xi)wi

The xi are unequally weighted samples from π

Very efficient when π and ν are close
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Advantages of Importance Sampling: 102 samples
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Advantages of Importance Sampling: 105 samples
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Advantages of Importance Sampling: Weights
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Disadvantages of Importance Sampling: 102 samples
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Disadvantages of Importance Sampling: 105 samples
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Disadvantages of Importance Sampling: Weights
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Parallel Adaptive Importance Sampling

An ensemble importance sampling method
Proposal distribution in k th iteration informed by M ensemble
members

χ(k) =
1
M

M∑
i=1

q(·; θ(k)i , β)

q(·; ·, β) a transition kernel, e.g. Gaussian, MALA proposal,
etc
Resampling step; ensemble transform method (or for large M,
greedy approximation)
If Coverheads � Clikelihood, big parallelisation payoff
Error scales superlinearly with M−1/2

C. Cotter, SLC, P. Russell, “Parallel adaptive importance sampling”,
submitted to SIAM JUQ.

S. Reich, “A non-parametric ensemble transform method for Bayesian
inference”, SISC 2013.

Simon Cotter Transport map PAIS 17 / 32



Parallel Adaptive Importance Sampling

An ensemble importance sampling method
Proposal distribution in k th iteration informed by M ensemble
members

χ(k) =
1
M

M∑
i=1

q(·; θ(k)i , β)

q(·; ·, β) a transition kernel, e.g. Gaussian, MALA proposal,
etc
Resampling step; ensemble transform method (or for large M,
greedy approximation)
If Coverheads � Clikelihood, big parallelisation payoff
Error scales superlinearly with M−1/2

C. Cotter, SLC, P. Russell, “Parallel adaptive importance sampling”,
submitted to SIAM JUQ.

S. Reich, “A non-parametric ensemble transform method for Bayesian
inference”, SISC 2013.

Simon Cotter Transport map PAIS 17 / 32



Parallel Adaptive Importance Sampling

An ensemble importance sampling method
Proposal distribution in k th iteration informed by M ensemble
members

χ(k) =
1
M

M∑
i=1

q(·; θ(k)i , β)

q(·; ·, β) a transition kernel, e.g. Gaussian, MALA proposal,
etc
Resampling step; ensemble transform method (or for large M,
greedy approximation)
If Coverheads � Clikelihood, big parallelisation payoff
Error scales superlinearly with M−1/2

C. Cotter, SLC, P. Russell, “Parallel adaptive importance sampling”,
submitted to SIAM JUQ.

S. Reich, “A non-parametric ensemble transform method for Bayesian
inference”, SISC 2013.

Simon Cotter Transport map PAIS 17 / 32



Parallel Adaptive Importance Sampling

An ensemble importance sampling method
Proposal distribution in k th iteration informed by M ensemble
members

χ(k) =
1
M

M∑
i=1

q(·; θ(k)i , β)

q(·; ·, β) a transition kernel, e.g. Gaussian, MALA proposal,
etc
Resampling step; ensemble transform method (or for large M,
greedy approximation)
If Coverheads � Clikelihood, big parallelisation payoff
Error scales superlinearly with M−1/2

C. Cotter, SLC, P. Russell, “Parallel adaptive importance sampling”,
submitted to SIAM JUQ.

S. Reich, “A non-parametric ensemble transform method for Bayesian
inference”, SISC 2013.

Simon Cotter Transport map PAIS 17 / 32



Parallel Adaptive Importance Sampling

An ensemble importance sampling method
Proposal distribution in k th iteration informed by M ensemble
members

χ(k) =
1
M

M∑
i=1

q(·; θ(k)i , β)

q(·; ·, β) a transition kernel, e.g. Gaussian, MALA proposal,
etc
Resampling step; ensemble transform method (or for large M,
greedy approximation)
If Coverheads � Clikelihood, big parallelisation payoff
Error scales superlinearly with M−1/2

C. Cotter, SLC, P. Russell, “Parallel adaptive importance sampling”,
submitted to SIAM JUQ.

S. Reich, “A non-parametric ensemble transform method for Bayesian
inference”, SISC 2013.

Simon Cotter Transport map PAIS 17 / 32



Parallel Adaptive Importance Sampling

An ensemble importance sampling method
Proposal distribution in k th iteration informed by M ensemble
members

χ(k) =
1
M

M∑
i=1

q(·; θ(k)i , β)

q(·; ·, β) a transition kernel, e.g. Gaussian, MALA proposal,
etc
Resampling step; ensemble transform method (or for large M,
greedy approximation)
If Coverheads � Clikelihood, big parallelisation payoff
Error scales superlinearly with M−1/2

C. Cotter, SLC, P. Russell, “Parallel adaptive importance sampling”,
submitted to SIAM JUQ.

S. Reich, “A non-parametric ensemble transform method for Bayesian
inference”, SISC 2013.

Simon Cotter Transport map PAIS 17 / 32



Parallel Adaptive Importance Sampling: Prior and
Posterior
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Parallel Adaptive Importance Sampling: Current State
Xi
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Parallel Adaptive Importance Sampling: MALA
Proposals
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Parallel Adaptive Importance Sampling: Aggregate
Proposal
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Parallel Adaptive Importance Sampling: Aggregate
Proposal and Weight Function
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Parallel Adaptive Importance Sampling: Samples from
Proposal
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Parallel Adaptive Importance Sampling: Sample
Weights
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Parallel Adaptive Importance Sampling: Resampled
States
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PAIS - pros and cons

PROS:
Possible big speed-ups with parallelisation
Well-informed proposals
Reduces variance of importance weights
Adaptive to global differences in scales of parameters

CONS:
Posterior concentrated on lower dimensional manifold:

Stability issues
Slow convergence
Requires large ensemble size (expensive)

Particle transition kernel q needs to “know” about the manifold
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Motivation
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Transport maps

Posteriors concentrated on lower dimensional manifolds lead
to poor mixing
Transport maps simplify the problem
Find homeomorphism T : Rd → Rd which maps target
measure π to an easily explored reference measure πr

µ(T−1(A)) = µr (A)

Simple proposal densities on πr map to complex informed
densities on π via T−1

v ∼ T−1(q(·,u;β))
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Transport maps

Exists subject to conditions, but not necessarily invertible
Find invertible map T which minimises KL divergence
between π and |JT̃ (θ)|πr ◦ T̃ = π̃ where πr = N (0, I)
In practice, find finite dimensional monotonic map T which
minimises the Monte Carlo approximation of KL divergence
from samples from π

DKL(π‖π̃) = Eπ
[
log

(
π(θ)

π̃(θ)

)]
= Eπ

[
log π(θ)− log πr (T̃ (θ))− log |JT̃ (θ)|

]

M. Parno, Y. Marzouk, “Transport Map Accelerated Markov Chain Monte
Carlo”, SIAM journal on uncertainty quantification, 2018.
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Transport map simplification of Rosenbrock
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Figure: The effect of the approximate transport map T̃ on a sample from
the Rosenbrock target density.
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Outline of approach

Run standard PAIS with transport map equal to the identity
Periodically train the transport map on the current
importance-weighted sample
Proposal distribution becomes sum of pullback of Gaussians
through the transport map
Learns local correlations and structure
Allows complex targets to be described more accurately by
sum of fewer kernels
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Rosenbrock density
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Figure: Visualisation of the Rosenbrock density.
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Rosenbrock density
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Multiscale stochastic reaction network example
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Figure: CMA approximation of the posterior arising from observations of
the slow variable S = X1 + X2, concentrated around a manifold
k1(k2+k3+k4)

k2k4
= C, i.e. more challenging than this suggests.
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Multiscale stochastic reaction network example
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Figure: Sampling algorithms with a log preconditioner for T̃ .
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Multiscale stochastic reaction network example
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Figure: Comparison of the approximate marginal densities for the
quantities k̂QEA

4 = k2k4
k2+k3

and k̂CMA
4 = k2k4

k2+k3+k4
for the posteriors arising

from (i) fast and slow data (blue), and slow data using (ii) constrained
(red) and (iii) QSSA (cyan) multiscale approximations.
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Conclusions

Noisily observed multiscale systems often result in inverse
problems with density concentrated near a manifold
Transport maps can accelerate sampling of complex
probability distributions
Importantly for importance sampling schemes, they can
improve stability significantly, reduce number of required
particles
The map requires a good initial sample from the posterior
Numerical result appears to validate constrained multiscale
approximation method
Methodology also works very well for multimodal targets
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