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MBI Rules of Life summit

https://mbi.osu.edu/event/?id=1251.
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Acute respiratory disease
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What are ARIs?

• Acute respiratory infections (ARI) are infections of the respiratory
tract caused by viruses such as Adenovirus, Influenza A and B,
Parainfluenza, Respiratory Syncytial Virus (RSV), and Rhinovirus

• Responsible for mortality and morbidity worldwide, mainly affecting
children under 5 and adults above 65 years of age

• Influenza and Respiratory Syncytial Virus (RSV) are the leading
etiologic agents of seasonal Acute Respiratory Infections (ARI)

• Understanding the mechanisms of these diseases and the impact of
control measures helps public health to make decisions
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Some challenges in statistical inference for epidemics

• Realistic mathematical models of epidemics are often stochastic
with unknown transition probabilities

• Numerical methods for simulating these models (e.g. Euler -
Maruyama, Gillespie) are prohibitively expensive

• State space lies on a low-dimensional manifold that is difficult to
explore

Left: states on the 8-simplex obey conservation laws; Right: two-pathogen SIR model.
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Some challenges in statistical inference for ARIs

• ARIs typically exhibit similar symptoms and physician visit data does
not differentiate disease type, although additional genetic testing
data may be available.
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Inference from aggregate data on epidemic counts

A Bayesian hierarchical modeling approach incorporating a Linear Noise
Approximation of the governing equations allows parameter estimation
for a multi-pathogen model from a combination of aggregate physician
report data and laboratory samples
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Stochastic SIR model with two pathogens
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Stochastic SIR model with two pathogens

Xkl(t) denotes the number of individuals at time t in immunological
status k ∈ {S , I ,R} for pathogen 1 and immunological status
l ∈ {S , I ,R} for pathogen 2.
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Model parameters

Ω Average yearly population size

σ Cross-immunity or enhancement

λp Proportion of people infected with pathogen p ∈ {1, 2}

βp Baseline transmission rate for pathogen p ∈ {1, 2}

µ Birth/death rate

γ Recovery rate

Parametres defining the interacting pathogen model
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Chemical master equation for the system

Let aj(X ) be transition probabilities and let vj be stoichiometric vectors
corresponding to reaction type j = 1, . . . ,R.

The mechanism is encoded in the Kolmogorov forward equation
(chemical master equation) for the system:

d

dt
PX (t) =

R∑
j=1

{
aj(X − vj)PX−vj (t)− aj(X )PX (t)

}

Average yearly population in San Luis Potośı is Ω ≈ 2.5 million people.
We assume that the population is reasonably well mixed.
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Large-volume approximation for the latent states

For large Ω the system states X can be approximated by the sum of:

1 a deterministic term φ

2 a stochastic term ξ

X (t) = Ωφ(t) + Ω1/2ξ(t), t ∈ [0,T ]

Assuming constant average concentration, the size of the stochastic
component will increase as the square root of population size.

This result is known as the van Kampen expansion or Linear Noise
Approximation.
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Large-volume approximation for the latent states

1 Deterministic component φi (t) = limΩ,X−→∞ Xi/Ω,
i = 1, . . . , dim{X (t)} evolves as:

dφi (t)

dt
=
R∑
j=1

Sijaj(φ(t)), t ∈ (0,T ]

φi (0) = φ0,

2 Stochastic component ξ is governed by the Itô diffusion equation,

dξ(t) = A(t)ξ(t)dt +
√
B(t)dW (t), t ∈ [0,T ],

with Gaussian initial states, with A(t) =
∂S a(φ(t))

∂φ(t)
,

B(t) = S diag{a(φ(t))} S>, and W (t) denotes the R dimensional
Wiener process
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Large-volume approximation for the latent states

A further approximation characterizes the distribution of the Markov
process X (t), t ∈ [0,T ] as,

X (t) | θ ∼ N (Ωφ(t),ΩC (t, t)) ,

where θ are model parameters and C is the solution to a system of
ordinary differential equations parameterized by θ.
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Bayesian Hierarchical model
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Aggregated physician reported ARI counts

Due to the similarity in symptoms, we can only observe the total number
of infections of both kinds:

G>X (t) = XIS(t) + XIR(t) + XSI (t) + XRI (t)

That is,

G>X (t) | θ ∼ N
(

ΩG>φ(t),ΩG>C (t, t)G
)
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Aggregated physician reported ARI counts

Physician reported ARI counts are indirect observations of the Markov
process X (t) measured weekly,

Y (ti ) | X (ti ), θ, τ ∼ N
(
rG>X (ti ) + rΩα, r2ΩGTCG + Σ

)
,

i = 1, . . . , 52,

where r is a reporting proportion, α ∈ (0, 1) is a background term, and Σ
is the covariance matrix of the observation error.
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Laboratory sample of infants

T (ti ) represents the number of infants who were diagnosed with
Influenza out of a sample of N(ti ) infants tested.

T (ti ) | N(ti ),X (ti ), θ ∼ Bin (N(ti ),P(ti )) , i = 1, . . . , 52,
N(ti ) | X (ti ), θ ∼ δ(cX (ti )), i = 1, . . . , 52,

where c denotes the proportion in the population of children under 5
years of age who were tested for Influenza. Dependence on X and θ is
through the probability of a subject being diagnosed with Influenza:

P(ti ) =
XIS(ti ) + XIR(ti )

XIS(ti ) + XIR(ti ) + XSI (ti ) + XRI (ti )
, i = 1, . . . , 52,

Slide 18/22



i n f erence for stfocha st i c mult i - pathogen model s ok sana chkrebt i i

Model visualization

XY T

Nθτ

Arrows represent conditional dependence; nodes shaded in gray indicate
observed data.

π (θ, τ,X (t) | Y ,T ,N)

∝ p (Y | X (t), τ) p (T | N ,X (t)) p (N | X (t)) p (X (t) | θ, τ)π (θ, τ)
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Posterior sampling

Simultaneously modeling all years results in a relatively high dimensional
parameter space and strong posterior correlation.

Posterior functionals are estimated from a Markov chain Monte Carlo
sample employing parallel tempering.

Posterior samples over SIR model parameters
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Future work

• Model parameters may be related across years, which suggests a
random effects structure for the SIR model parameters.

• Introduce a more realistic model for the background infections,
which could be interpreted as a discrepancy term between the model
and the data.

• Better visualization tools (joint work with Xiao Zang and Sebastian
Kurtek)
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