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• Multiscale biological systems 

• A hybrid model of kidney branching morphogenesis  

• Comparison with data & summary statistics 

• Parameter inference via approximate approximate Bayesian 
computation 

• Identification of key parameters controlling kidney 
development   

• Summary & Outlook

Overview



Epithelial tissue branching morphogenesis is a complex 
 and multiscale process 
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Model:

Mesenchymal

Epithelial

• How is branching initiated in the nephric duct? 
• How do mesenchymal signals regulate branching? 
• What are the affects of spatial heterogeneity?

Questions

A hybrid model for kidney epithelial branching morphogenesis

SCALE 20 μm 200 μm 500 μm

Approach: couple cell-based interactions (division, migration) with continuous 
morphogen fields to describe the growth of the tissue
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Model:

Mesenchymal

Epithelial

A hybrid model for kidney epithelial branching morphogenesis

Mesenchymal-epithelial interactions 
mediated by GDNF (G)

Cellular automaton (CA) defines 
epithelial cell growth (pcd) and cell 
migration into neighboring grid cells, 
occurring with probability pi 
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Summary statistics
                        1. Epithelial area                       2. Number of branches (medial axis skeleton) 

Data:

Summary statistics for data-model comparison

Developmental time (days) Developmental time (days)

Simulation:

Watanabe & Costantini
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Summary statistics for data-model comparison: medial axis skeleton
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Topological model exploration: necessary conditions for branching
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• Simulation time of this model (and typically of ABMs) is prohibitive for inference by ABC

• Approach: replace the mechanistic model with a statistical model parameterized via an intermediate 
distribution (from ABC)

AABC: Approximate approximate Bayesian computation

xi = (x1i, x2i), i 2 (1, 2, ...,m)✓i

✓⇤

x⇤

Algorithm

1. ABC-Rejection: simulate the full model and, for    , accept datasets                                                 
where m is the number of parameter sets

2. Sample a new parameter set     from the prior, and calculate its weight according to an 
Epanechnikov kernel:

       where the indicator function selects the k shortest distances from 

3.  Draw a sample                   

4. Simulate a new dataset      by resampling from     with probabilities set by 

5. Calculate distance, and accept iff 

6. Repeat until convergence in the approximate posterior is reached 

✓⇤

� ⇠ Dir(!)

xi �

Buzbas and Rosenberg (2015), Theor Pop Biol 

||s⇤i � s0|| < ✏
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AABC parameters sufficient to induce branching

Bayesian inference of agent-based models: a tool for. . .
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Fig. 7 Approximate posteriors distributions for three model parameters as estimated by AABC. The
parameters c1 and c2 affect the location and sensitivity of the GDNF-mediated growth switch, and pmove
determines the relative likelihood of cell movement rather than cell division (see Sect. 2). a Accepted
trajectories in the posterior simulated from the model and their comparison with the ex vivo data (black
dots indicate means, and error bars show the range of the data). The experimental data are the means of
summary statistics extracted from three explant experiment videos in Watanabe and Costantini (2004). b
Posterior parameter distributions for single (on the diagonal) and joint pairs of parameters. See Table S1
for information about the parameter values used in the simulations

be included in the model. This was the case across all the parameter sets that we con-
sidered, however there may be isolated regions in parameter space in which branching
occurs via independent mechanisms not included in our model (e.g. due to mechan-
ical cell–cell interactions). Simulation studies demonstrated that GDNF-stimulated
tissue growth together with chemotaxis and anisotropic cell division provided the

123

Simulations with 
parameters sampled 
from the posterior:

Intermediate distribution (ABC) AABC posterior (estimate of the ABC posterior)

Priors chosen for the parameters:
• {c1, c2} determine the sensitivity of 

proliferation to GDNF level
• {pmove} probability of cell migration

Data

Simulation

P (✓|d(s⇤i , s0) < ✏)
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 AABC identifies parameters sufficient to induce branching

Bayesian inference of agent-based models: a tool for. . .
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Fig. 7 Approximate posteriors distributions for three model parameters as estimated by AABC. The
parameters c1 and c2 affect the location and sensitivity of the GDNF-mediated growth switch, and pmove
determines the relative likelihood of cell movement rather than cell division (see Sect. 2). a Accepted
trajectories in the posterior simulated from the model and their comparison with the ex vivo data (black
dots indicate means, and error bars show the range of the data). The experimental data are the means of
summary statistics extracted from three explant experiment videos in Watanabe and Costantini (2004). b
Posterior parameter distributions for single (on the diagonal) and joint pairs of parameters. See Table S1
for information about the parameter values used in the simulations

be included in the model. This was the case across all the parameter sets that we con-
sidered, however there may be isolated regions in parameter space in which branching
occurs via independent mechanisms not included in our model (e.g. due to mechan-
ical cell–cell interactions). Simulation studies demonstrated that GDNF-stimulated
tissue growth together with chemotaxis and anisotropic cell division provided the
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bJoint density marginal 
parameter distributions

• Branching is most sensitive to GDNF-sensitivity parameter c2

• Branching is robust to the migration probability

• c2 and c2 are closely correlated



Lambert*, MacLean* et al. (2018), J Math Biol 

B. Lambert et al.
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Fig. 6 Series of simulation results showing how the shape of the GDNF-mediated proliferation switch
influences the branching dynamics. For the results shown in each of the panels we ran simulations with
c1 = − 25 so that in the absence of GDNF cells would not divide, and we vary c2 across each of the panels:
for a c2 = 400, b c2 = 120 and c c2 = 20. The inset panels show the location of the proliferation switch
in GDNF-space (horizontal axis), against the probability of growth (vertical axis). In each panel the black
line and points represent the evolution of branches from an explant experiment in Watanabe and Costantini
(2004); the orange line represents the mean branching observed by model simulation (n=200) and the
shaded region indicates the 95% confidence interval. The parameter values used in each case are shown in
Table S1 (colour figure online)

identical GDNF switches. For the other two parameter pairs, the joint density plots
highlight what has been termed “sloppiness” (Gutenkunst et al. 2007): the explant
branching phenotype is robust to changes in the values of c1 and pmove. Parameter
sloppiness can be symptomatic of several problems, including insufficient data, or a
model that is overly complex for the available data. Additionally we cannot discount
the possibility that our summary statistics are suboptimal, although we believe that the
use of more detailed summary statistics may be excessive given the level of biological
and mechanical realism present in our CA model.

4 Discussion

We have developed a newmodel to describe branching morphogenesis in the develop-
ing kidney.While there are many agent-based models of other branching systems (e.g.
Fumoto et al. 2016; Iber and Menshykau 2013; Lindenmayer 1968; Merks and Kool-
wijk 2009; Schatten et al. 2007) to our knowledge, this is the first agent-basedmodel of
kidneymorphogenesis. A significant advantage of our approach is that unlike spatially-
averaged compartment-based methods (e.g. Menshykau and Iber 2013; Zubkov et al.
2015) it allows study of processes at the single-cell level. This spatial resolution may
be particularly important in determining the thresholds in the concentration of growth
factors at which branching occurs. The CA framework allows a cell-based description
of tissue morphogenesis and facilitates the future addition of other biophysical mech-
anisms and the subcellular signalling pathways, as well as extension to include other
cell types (e.g. mesenchymal cap cells, when considering kidney morphogenesis).

At present there is no consensus about whether diffusion-driven Turing pat-
terns of GDNF coupled with GDNF-regulated proliferation mechanisms can explain
branching, or whether other chemical and mechanical mechanisms are required. Our
simulation results indicate that the GDNF-mediated proliferation may suffice to gen-
erate branching in this system. We find that to recapitulate the branching behaviour of
the developing kidney, dynamic spatial patterning of epithelial cell proliferation had to
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Gradual switch Sharp switch
mid-threshold

High threshold

GDNF switching behavior:

 12

Fine-tuned growth sensitivity to GDNF is crucial for branching
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Summary

• Better summary statistics? 

• How to deal with large parameter spaces? What criteria can be used to give 
sufficient number of ABC samples?  

• Dealing with parameters across multiple scales? Not always straightforward to 
rescale model

Open Questions and Challenges

• Multiscale/hybrid/individual cell-based models can be too expensive for ABC 

• AABC provides an alternative in such cases 

• Applied to kidney development the model is successful at fitting explant 
epithelial data describing branching morphogenesis 

• We identify a GDNF-controlled sharp switching mechanism as a sufficient 
mechanism for branching
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