

Multifidelity Approaches to Approximate Bayesian Computation

Thomas P. Prescott

Wolfson Centre for Mathematical Biology
University of Oxford

Banff International Research Station 11th – 16th November 2018

Multifidelity methods

Multifidelity modelling example: Repressilator

Multifidelity ABC Early accept/reject multifidelity ABC

Performance analysis Repressilator revisited

Implementation and future extensions

Early accept/reject multifidelity ABC

Bayesian parameter inference

- ▶ Real-world system defined by uncertain parameters $\theta \sim \pi(\cdot)$ belonging to a prior distribution.
 - ► Summary statistics, y_{obs}, are gathered from observed data.
- ▶ A model $p(\cdot \mid \theta)$ is a map from θ to a distribution.
 - ▶ Distribution $p(\cdot \mid \theta)$ on an output space containing y_{obs} .
 - ▶ Likelihood of observed data is $p(y_{obs} | \theta)$.
 - ▶ Simulation of a model is a draw $y \sim p(\cdot \mid \theta)$ from the distribution.
 - Cost of simulation is the time taken to simulate y.
- 'Model' here refers to combination of mathematical model and numerical implementation to generate y.

Bayesian parameter inference

Posterior distribution for parameters is:

$$p(\theta \mid y_{\text{obs}}) = \frac{p(y_{\text{obs}} \mid \theta)\pi(\theta)}{\int p(y_{\text{obs}} \mid \theta)\pi(\theta) \ d\theta}.$$

Assume that the likelihood, $p(y_{obs} \mid \theta)$, is unavailable.

Attempt 1: Approximate likelihood, $p(y_{obs} \mid \theta)$, using Monte Carlo simulation:

- ▶ Simulate $y \sim p(\cdot \mid \theta)$ and set $\hat{p}(y_{\text{obs}} \mid \theta) = \mathbb{I}(y = y_{\text{obs}})$.
- ► Expectation $\mathbb{E}(\hat{p}(y_{\text{obs}}) \mid \theta) = p(y_{\text{obs}} \mid \theta)$.

Attempt 1: Approximate likelihood, $p(y_{obs} \mid \theta)$, using Monte Carlo simulation:

- ▶ Simulate $y \sim p(\cdot \mid \theta)$ and set $\hat{p}(y_{\text{obs}} \mid \theta) = \mathbb{I}(y = y_{\text{obs}})$.
- ▶ Expectation $\mathbb{E}(\hat{p}(y_{\text{obs}}) \mid \theta) = p(y_{\text{obs}} \mid \theta)$.
- Impractical in large output space.

Attempt 2:

Consider neighbourhood $\Omega(\epsilon) = \{y \mid d(y, y_{\text{obs}}) < \epsilon\}$ around y_{obs} .

- ▶ Distance $d(y, y_{obs})$ in output space.
- ightharpoonup Threshold distance ϵ .

Attempt 2:

Consider neighbourhood $\Omega(\epsilon) = \{y \mid d(y, y_{\text{obs}}) < \epsilon\}$ around y_{obs} .

- ▶ Distance $d(y, y_{obs})$ in output space.
- ▶ Threshold distance ϵ .

ABC approximation to the likelihood: for $y \sim p(\cdot \mid \theta)$,

$$p(y_{\text{obs}} \mid \theta) \approx p(y \in \Omega(\epsilon) \mid \theta) =: p_{\text{ABC}}(y_{\text{obs}} \mid \theta)$$

Requires $\lim_{\epsilon \to 0} p(y \in \Omega(\epsilon) \mid \theta) = p(y_{\text{obs}} \mid \theta)$.

ABC: Monte Carlo rejection sampling

For i = 1, ..., N:

- ▶ Select $\theta_i \sim \pi(\cdot)$ from prior and simulate $y_i \sim p(\cdot \mid \theta_i)$.
- ▶ If $y_i \in \Omega(\epsilon)$ is in the ϵ -neighbourhood of y_{obs} then accept θ_i into sample, else reject.

Given θ_i , the accept/reject decision is a random weight

$$w(\theta_i) = \mathbb{I}(y_i \in \Omega(\epsilon))$$

with expectation $\mathbb{E}(w(\theta_i)) = p_{ABC}(y_{obs} \mid \theta_i) \approx p(y_{obs} \mid \theta_i)$.

Monte Carlo ABC: Computational bottleneck

Simulate $y_i \sim p(\cdot \mid \theta_i)$ for i = 1, ..., N for N large.

- Aim to reduce computational burden.
- ▶ Efficiently exploring parameter space can reduce *N*:
 - Markov chain Monte Carlo (MCMC);
 - Sequential Monte Carlo (SMC).

Monte Carlo ABC: Computational bottleneck

Simulate $y_i \sim p(\cdot \mid \theta_i)$ for i = 1, ..., N for N large.

- Aim to reduce computational burden.
- ▶ Efficiently exploring parameter space can reduce *N*:
 - Markov chain Monte Carlo (MCMC);
 - Sequential Monte Carlo (SMC).
- Goal: reduce simulation cost within rejection sampling framework.

Multifidelity methods Multifidelity modelling example: Repressilator

Multifidelity ABC
Early accept/reject multifidelity ABC

Performance analysis
Repressilator revisited

Implementation and future extensions

Alternative models

Original model $p(\cdot \mid \theta)$: distribution on output space containing y_{obs} .

- ightharpoonup Alternative summary statistics \tilde{y}_{obs} induce new output space.
- ▶ Consider new model $\tilde{p}(\cdot \mid \theta)$...
- ...with new cost, \tilde{c} , of simulating $\tilde{y} \sim \tilde{p}(\cdot \mid \theta)$.

We assume the new model is cheaper:

$$\mathbb{E}(\tilde{c}) \ll \mathbb{E}(c)$$
.

Cheaper simulations

- ▶ Early stopping: simulate to t < T;
- Coarser discretisations of space/time;
- Reduce model dimension;
- Langevin, mean field, or deterministic approximations;
- Surrogate models and regressions;
- Steady state analysis.

Note: we're assuming that θ well-defines both p and \tilde{p} .

Using alternative model \tilde{p} :

Consider neighbourhood $\tilde{\Omega}(\tilde{\epsilon}) = \{\tilde{y} \mid \tilde{d}(\tilde{y}, \tilde{y}_{\text{obs}}) < \tilde{\epsilon}\}$ around \tilde{y}_{obs} .

- ▶ Distance $\tilde{d}(\tilde{y}, \tilde{y}_{obs})$ in output space.
- ▶ Threshold distance $\tilde{\epsilon}$.

Using alternative model \tilde{p} :

Consider neighbourhood $\tilde{\Omega}(\tilde{\epsilon}) = \{\tilde{y} \mid \tilde{d}(\tilde{y}, \tilde{y}_{\text{obs}}) < \tilde{\epsilon}\}$ around \tilde{y}_{obs} .

- ▶ Distance $\tilde{d}(\tilde{y}, \tilde{y}_{obs})$ in output space.
- ▶ Threshold distance $\tilde{\epsilon}$.

ABC approximation to a different likelihood: for $\tilde{y} \sim \tilde{p}(\cdot \mid \theta)$,

$$\tilde{p}(\tilde{y}_{\text{obs}} \mid \theta) \approx \tilde{p}_{\text{ABC}}(\tilde{y}_{\text{obs}} \mid \theta) = \tilde{p}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}) \mid \theta).$$

Requires $\lim_{\epsilon \to 0} \tilde{p}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}) \mid \theta) = \tilde{p}(\tilde{y}_{\text{obs}} \mid \theta)$.

ABC: Monte Carlo rejection sampling

For i = 1, ..., N:

- ▶ Select $\theta_i \sim \pi(\cdot)$ from prior and simulate $\tilde{y}_i \sim \tilde{p}(\cdot \mid \theta_i)$.
- ▶ If $\tilde{y}_i \in \tilde{\Omega}(\tilde{\epsilon})$ is in the $\tilde{\epsilon}$ -neighbourhood of \tilde{y}_{obs} then accept θ_i into sample, else reject.

Given θ_i , the accept/reject decision is a random weight

$$\tilde{w}(\theta_i) = \mathbb{I}(\tilde{y}_i \in \tilde{\Omega}(\tilde{\epsilon}))$$

with expectation $\mathbb{E}(\tilde{w}(\theta_i)) = \tilde{p}_{ABC}(\tilde{y}_{obs} \mid \theta_i) \approx \tilde{p}(\tilde{y}_{obs} \mid \theta_i)$.

Multifidelity terminology

- ▶ High-fidelity model $p(\cdot \mid \theta)$:
 - ▶ HF simulation $y \sim p(\cdot \mid \theta)$ with cost c;
 - ▶ HF accept/reject weight $w(\theta) = \mathbb{I}(y \in \Omega(\epsilon))$.
- ▶ Low-fidelity model $\tilde{p}(\cdot \mid \theta)$:
 - ▶ LF simulation $\tilde{y} \sim \tilde{p}(\cdot \mid \theta)$ with cost \tilde{c} ;
 - ▶ LF accept/reject weight $\tilde{w}(\theta) = \mathbb{I}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}))$.

Example: Repressilator

Elowitz & Leibler, Nature, 2000.

Three genes G_1 , G_2 , and G_3 , transcribed and translated into proteins P_1 , P_2 , and P_3 .

- P₁ represses G₂ transcription;
- P₂ represses G₃ transcription;
- ► *P*₃ represses *G*₁ transcription.

Goal: identify n and K_h in repression $f(p) = K_h^n/(K_h^n + p^n)$.

Multifidelity models

Simulate network with:

- ▶ High fidelity Stochastic Simulation Algorithm (Gillespie).
- Low fidelity tau-leap discretisation.

Low-fidelity rejection sampling is biased

Distance $d(y, y_{\rm obs})$ varies with $\tilde{d}(\tilde{y}, \tilde{y}_{\rm obs})$ (left) and n (right). Each point $(N=10^4)$ corresponds to parameter sampled from uniform prior. Observed data $y_{\rm obs} = \tilde{y}_{\rm obs}$ is synthetic data using n=2.

Low-fidelity rejection sampling is biased

High fidelity:

$$\mathbb{E}(w(\theta)) = p(y \in \Omega(\epsilon) \mid \theta) \approx p(y_{\text{obs}} \mid \theta).$$

Low fidelity:

$$\mathbb{E}(\tilde{w}(\theta)) = \tilde{p}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}) \mid \theta) \approx \tilde{p}(\tilde{y}_{\mathrm{obs}} \mid \theta) \\
\neq p(y_{\mathrm{obs}} \mid \theta).$$

Can we combine low and high-fidelity models to reduce simulation costs, but without introducing bias?

Multifidelity methods

Multifidelity modelling example: Repressilato

Multifidelity ABC Early accept/reject multifidelity ABC

Performance analysis Repressilator revisited

Implementation and future extensions

13/11/18

First idea: Use low-fidelity simulation to decide when it's worth simulating the high fidelity model.

First idea: Use low-fidelity simulation to decide when it's worth simulating the high fidelity model.

- ▶ Simulate $\tilde{y}_i \sim \tilde{p}(\cdot \mid \theta_i)$.
- ▶ Define continuation probability $\alpha(\tilde{y}_i) \in (0,1]$.
- w.p. 1α :
 - Reject without simulating yi
- Else, simulate y_i:
 - ▶ If $y_i \in \Omega(\epsilon)$ then accept (with appropriate weight);
 - ► Else, reject.

Formulate as early rejection weight:

$$w_{\mathrm{er}}(\theta) = \frac{\mathbb{I}(U < \alpha(\tilde{y}))}{\alpha(\tilde{y})} w(\theta)$$

for unit uniform r.v. $U \sim U(0,1)$.

 $w_{\rm er}(\theta)$ is an unbiased estimator of $p(y \in \Omega(\epsilon) \mid \theta)$, and we avoid some high-fidelity simulations.

$$w_{\mathrm{er}}(\theta) = \frac{\mathbb{I}(U < \alpha(\tilde{y}))}{\alpha(\tilde{y})} w(\theta)$$

Choosing $\alpha(\tilde{y})$:

- ► Make $\alpha(\tilde{y})$ small when \tilde{y} suggests $y \notin \Omega(\epsilon)$ is likely.
- ► Converse requires larger $\alpha(\tilde{y})$ when $y \in \Omega(\epsilon)$ more likely.

See also: Lazy ABC (Prangle 2016), Delayed Acceptance ABC (Everitt & Rowinska 2017).

Re-examine converse

$$w_{\text{er}}(\theta) = \frac{\mathbb{I}(U < \alpha(\tilde{y}))}{\alpha(\tilde{y})} w(\theta).$$

▶ Larger $\alpha(\tilde{y})$ when $y \in \Omega(\epsilon)$ more likely.

Re-examine converse

$$w_{\text{er}}(\theta) = \frac{\mathbb{I}(U < \alpha(\tilde{y}))}{\alpha(\tilde{y})} w(\theta).$$

- ▶ Larger $\alpha(\tilde{y})$ when $y \in \Omega(\epsilon)$ more likely.
- More likely to simulate high-fidelity model if low-fidelity simulation is close to the data.
- Why not accept early without simulating?

Re-examine converse

$$w_{\text{er}}(\theta) = \frac{\mathbb{I}(U < \alpha(\tilde{y}))}{\alpha(\tilde{y})} w(\theta).$$

- ▶ Larger $\alpha(\tilde{y})$ when $y \in \Omega(\epsilon)$ more likely.
- More likely to simulate high-fidelity model if low-fidelity simulation is close to the data.
- Why not accept early without simulating?
- ▶ Early acceptance requires positive weight without high-fidelity simulation: not possible using w_{er} .

Early decision

Second idea: Sometimes make an early accept/reject decision based on the low-fidelity simulation alone.

13/11/18

Early decision

Second idea: Sometimes make an early accept/reject decision based on the low-fidelity simulation alone.

- ▶ Simulate $\tilde{y}_i \sim \tilde{p}(\cdot \mid \theta_i)$.
- ▶ Make an early decision \tilde{w} .
- ▶ Define probability $\eta \in (0,1]$.
- w.p. 1 − η:
 - Use early decision.
- Else, simulate y_i:
 - Correct early decision, based on w.
 - Correction appropriately weighted.

Early decision

Formulate as early decision weight:

$$w_{\mathrm{ed}}(\theta) = \tilde{w}(\theta) + \frac{\mathbb{I}(U < \eta)}{\eta} [w(\theta) - \tilde{w}(\theta)]$$

for unit uniform r.v. $U \sim U(0,1)$.

 $w_{\rm ed}(\theta)$ is an unbiased estimator of $p(y \in \Omega(\epsilon) \mid \theta)$, and we avoid some high-fidelity simulations.

Combining existing approaches

Early rejection — use \tilde{y} to determine when to generate y:

$$w_{\mathrm{er}} = \frac{\mathbb{I}(U < lpha(\widetilde{y}))}{lpha(\widetilde{y})} \mathbb{I}(y \in \Omega(\epsilon)).$$

Early decision — use \tilde{y} to determine the early decision:

$$w_{\mathrm{ed}} = \mathbb{I}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon})) + \frac{\mathbb{I}(U < \eta)}{\eta} \left(\mathbb{I}(y \in \Omega(\epsilon)) - \mathbb{I}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon})) \right).$$

Special cases of multifidelity ABC.

Combine approaches into a multifidelity weight:

$$w_{ ext{mf}}(heta) = \mathbb{I}(ilde{y} \in ilde{\Omega}(ilde{\epsilon})) + rac{\mathbb{I}(U < \eta(ilde{y}))}{\eta(ilde{y})} \left(\mathbb{I}(y \in \Omega(\epsilon)) - \mathbb{I}(ilde{y} \in ilde{\Omega}(ilde{\epsilon}))
ight)$$

Combine approaches into a multifidelity weight:

$$w_{ ext{mf}}(heta) = \mathbb{I}(ilde{y} \in ilde{\Omega}(ilde{\epsilon})) + rac{\mathbb{I}(ext{$U < \eta(ilde{y})$})}{\eta(ilde{y})} \left(\mathbb{I}(y \in \Omega(\epsilon)) - \mathbb{I}(ilde{y} \in ilde{\Omega}(ilde{\epsilon}))
ight)$$

Natural form of $\eta(\tilde{y})$ to give early accept/reject multifidelity ABC:

$$\eta(\tilde{y}) = \eta_1 \mathbb{I}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon})) + \eta_2 \mathbb{I}(\tilde{y} \notin \tilde{\Omega}(\tilde{\epsilon}))$$

for $\eta_1, \eta_2 \in (0, 1]$.

- $\mathbb{E}(w_{\mathrm{mf}}(\theta)) = p(y \in \Omega(\epsilon) \mid \theta).$
- ▶ $1 \eta_1$ and $1 \eta_2$ are early accept/reject probabilities.

There are 6 cases (at most 4 values) of $w_{\rm mf}(\theta)$:

$$w_{\mathrm{mf}}(\theta) = \begin{cases} 1 & \tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}) \ \& \ U \geq \eta_1 \\ 0 & \tilde{y} \notin \tilde{\Omega}(\tilde{\epsilon}) \ \& \ U \geq \eta_2 \\ 1 & \tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}) \ \& \ y \in \Omega(\epsilon) \ \& \ U < \eta_1 \\ 0 & \tilde{y} \notin \tilde{\Omega}(\tilde{\epsilon}) \ \& \ y \notin \Omega(\epsilon) \ \& \ U < \eta_2 \\ 1 - 1/\eta_1 & \tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}) \ \& \ y \notin \Omega(\epsilon) \ \& \ U < \eta_1 \\ 0 + 1/\eta_2 & \tilde{y} \notin \tilde{\Omega}(\tilde{\epsilon}) \ \& \ y \in \Omega(\epsilon) \ \& \ U < \eta_2 \end{cases}$$

There are 6 cases (at most 4 values) of $w_{\rm mf}(\theta)$:

$$w_{\rm mf}(\theta) = \begin{cases} 1 & \text{Predicted positive (unchecked)} \\ 0 & \text{Predicted negative (unchecked)} \\ 1 & \text{True positive (checked)} \\ 0 & \text{True negative (checked)} \\ 1 - 1/\eta_1 & \text{False positive (checked)} \\ 0 + 1/\eta_2 & \text{False negative (checked)} \end{cases}$$

Approximate Bayesian computation

Multifidelity methods

Multifidelity modelling example: Repressilator

Multifidelity ABC
Early accept/reject multifidelity ABC

Performance analysis
Repressilator revisited

Implementation and future extensions

Early accept/reject multifidelity ABC algorithm

For i = 1, ..., N:

- Generate $\theta_i \sim \pi(\cdot)$.
- ▶ Simulate (low-fidelity) $\tilde{y}_i \sim \tilde{p}(\cdot \mid \theta_i)$.
- Calculate $\tilde{w} = \mathbb{I}(\tilde{y}_i \in \tilde{\Omega}(\tilde{\epsilon}))$.
- Set $w_i = \tilde{w}$ and $\eta = \eta_1 \tilde{w} + \eta_2 (1 \tilde{w})$.
- If *U* < η:</p>
 - ▶ Simulate (high fidelity) $y_i \sim p(\cdot \mid \theta)$.
 - ▶ Calculate $w = \mathbb{I}(y_i \in \Omega(\epsilon))$.
 - Update $w_i = w_i + (w \tilde{w})/\eta$.

Return $\{w_i, \theta_i\}_{i=1}^N$.

Weighted sample

Input to algorithm is continuation probabilities η_1, η_2 .

Output of algorithm is weighted sample $\{w_i, \theta_i\}_{i=1}^N$.

Each weight w_i incurs simulation cost T_i .

Use sample in ABC estimator for a function, $F(\theta)$, of uncertain parameters:

$$\mu_{\text{ABC}}(F) = \frac{\sum_{i} w_{i} F(\theta_{i})}{\sum_{j} w_{j}} \approx \int F(\theta) p_{\text{ABC}}(y_{\text{obs}} \mid \theta) \pi(\theta) d\theta.$$

Quality of a sample

Monte Carlo sample $\{w_i, \theta_i\}_{i=1}^N$:

► Effective Sample Size:

ESS =
$$\frac{(\sum_{i} w_{i})^{2}}{\sum_{i} w_{i}^{2}} = N \frac{(\sum_{i} w_{i}/N)^{2}}{\sum_{i} w_{i}^{2}/N}$$

Simulation time:

$$T_{\rm tot} = \sum T_i$$

Efficiency is ratio of ESS and simulation time:

$$\frac{\text{ESS}}{T_{\text{tot}}} = \frac{(\sum_{i} w_i / N)^2}{(\sum_{i} w_i^2 / N) (\sum_{i} T_i / N)} \approx \frac{\mathbb{E}(w_i)^2}{\mathbb{E}(w_i^2) \mathbb{E}(T_i)}$$

Approximation is in the limit as $N \to \infty$.

Goal: Tune inputs η_1, η_2 to maximise efficiency (in the limit).

Maximising efficiency

$$rac{\mathrm{ESS}}{T_{\mathrm{tot}}} pprox rac{\mathbb{E}(w_{\mathrm{mf}})^2}{\mathbb{E}(w_{\mathrm{mf}}^2)\mathbb{E}(T)} \;\; ext{over} \; heta \sim \pi(\cdot)$$

▶ Numerator: $\mathbb{E}(w_{\mathrm{mf}}) = p(y \in \Omega(\epsilon))$ is independent of η_1, η_2 .

Maximising efficiency

$$rac{\mathrm{ESS}}{T_{\mathrm{tot}}} pprox rac{\mathbb{E}(w_{\mathrm{mf}})^2}{\mathbb{E}(w_{\mathrm{mf}}^2)\mathbb{E}(T)} \ \ ext{over} \ heta \sim \pi(\cdot)$$

- ▶ Numerator: $\mathbb{E}(w_{\mathrm{mf}}) = p(y \in \Omega(\epsilon))$ is independent of η_1, η_2 .
- ▶ Maximising efficiency over $\eta_1, \eta_2 \in (0, 1]$ equivalent to minimising product $\mathbb{E}(w_{\mathrm{mf}}^2)\mathbb{E}(T_i)$.

Tradeoff: Reduced computational burden...

Simulation times:

- ▶ Low-fidelity simulation $\tilde{y} \sim \tilde{p}(\cdot \mid \theta)$ costs \tilde{c} .
- ▶ High-fidelity simulation $y \sim p(\cdot \mid \theta)$ costs c.
- w_{mf} costs $T = \tilde{c} + c\mathbb{I}(U < \eta(\tilde{y}))$.

Expected time to construct $w_{\rm mf}(\theta)$ is therefore

$$\mathbb{E}(T) = \mathbb{E}(\tilde{c}) + \eta_1 \mathbb{E}[c\mathbb{I}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}))] + \eta_2 \mathbb{E}[c\mathbb{I}(\tilde{y} \notin \tilde{\Omega}(\tilde{\epsilon}))].$$

Depends on simulation cost c relative to \tilde{c} .

Tradeoff: ...for increased variance.

Second moment increases as η_i decreases:

$$\begin{split} \mathbb{E}(w_{\mathrm{mf}}^2) &= \mathbb{P}(y \in \Omega(\epsilon)) \\ &+ \left(\frac{1}{\eta_1} - 1\right) \mathbb{P}(\tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}) \cap y \notin \Omega(\epsilon)) \\ &+ \left(\frac{1}{\eta_2} - 1\right) \mathbb{P}(\tilde{y} \notin \tilde{\Omega}(\tilde{\epsilon}) \cap y \in \Omega(\epsilon)) \end{split}$$

Depends on false positive and false negative rates.

Optimal early accept/reject continuation probabilities

Analytical result: efficiency maximised at

$$(\eta_1^{\star},\eta_2^{\star}) = \frac{1}{\lambda} \left(\sqrt{\frac{\mathbb{P}(y \notin \Omega(\epsilon) \mid \tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}))}{\mathbb{E}(c \mid \tilde{y} \in \tilde{\Omega}(\epsilon))/\mathbb{E}(\tilde{c})}}, \sqrt{\frac{\mathbb{P}(y \in \Omega(\epsilon) \mid \tilde{y} \notin \tilde{\Omega}(\tilde{\epsilon}))}{\mathbb{E}(c \mid \tilde{y} \notin \tilde{\Omega}(\tilde{\epsilon}))/\mathbb{E}(\tilde{c})}} \right)$$

- ▶ If probability $\mathbb{P}(y \notin \Omega(\epsilon) \mid \tilde{y} \in \tilde{\Omega}(\tilde{\epsilon}))$ of needing to correct a positive prediction is small, then check less often.
- ▶ If the cost $\mathbb{E}(c \mid \tilde{y} \in \tilde{\Omega}(\epsilon))$ of checking a positive prediction is large relative to low-fidelity simulation cost $\mathbb{E}(\tilde{c})$, then check less often.
- Similar for negative predictions.
- ▶ Less effective when $\lambda = \sqrt{\mathbb{P}(y \in \Omega(\epsilon)) \mathbb{P}(w \neq \tilde{w})}$ is small.

Example: Construct realisations of early accept/reject samples

- ► Calculate $w_{\rm mf}(\theta_i)$ for $i = 1, ..., 10^4$.
- ▶ $\mathbb{I}(U < \eta(\tilde{y}_i))$ is the random decision.
- Evaluate ESS/T_{tot} for 500 realisations.

Optimal $(\eta_1^{\star}, \eta_2^{\star})$ taken from baseline dataset: compare to other continuation probabilities.

Example: Efficiency of different continuation probabilities

- Early decision: $\eta_1 = \eta_2$.
- Early rejection: $\eta_1 = 1$.
- Rejection sampling: $\eta_1 = \eta_2 = 1$.

Level sets are 99%, 95%, 90%, 85%, 80%, 75%, 60% of maximum efficiency.

Example: Distribution of observed efficiencies

Effective samples per second

0.15

0.10

0.20

0.25

Approximate Bayesian computation

Multifidelity methods

Multifidelity modelling example: Repressilato

Multifidelity ABC
Early accept/reject multifidelity ABC

Performance analysis
Repressilator revisited

Implementation and future extensions

Implementation of early accept/reject multifidelity ABC

Dealt with in recent work:

- ▶ No a priori knowledge of location of $(\eta_1^{\star}, \eta_2^{\star})$:
 - ► Simulation times and false positive/negative probabilities.
 - ▶ Use burn-in approach first, then estimate.
- Methods to reduce false positive/negative probabilities.
 - Coupling low and high fidelity simulations.
- Optimising efficiency in terms of estimating specific functions

$$\mathbb{E}_{ABC}(F(\theta)) \approx \sum_{i} w_{i} F(\theta_{i}) / \sum_{i} w_{i}$$

▶ Minimize $\mathbb{E}(w_{\mathrm{mf}}^2(F - \mathbb{E}_{\mathrm{ABC}}(F))^2)\mathbb{E}(T)$ instead.

Outlook: future work

- Applicability to MCMC/SMC methods.
 - ▶ Deal with $w_{\rm mf} < 0$.
- Multiple low-fidelity models.
 - Local hierarchies of accuracy/speed-up.
 - Parameter/estimator-specific low-fidelity model.
- ▶ Alternative forms for $\eta(\tilde{y})$ and \tilde{w} .
 - Parameter-dependent η .
- Analytic/computational bounds on error:
 - \triangleright \tilde{y} versus y;
 - $ightharpoonup \tilde{w}$ versus w.

Acknowledgements

UK Research and Innovation

Project: Next generation approaches to connect models and quantitative data. Pls: Ruth Baker & Michael Stumpf.