## Estimating velocity from time traces of molecular motors.

Mathematical and Statistical Challenges in Bridging Model Development, Parameter Identification and Model Selection in the Biological Sciences.
BIRS
11.15.2018

John Fricks
School of Mathematical and Statistical Sciences Arizona State University

https://en.wikipedia.org/wiki/Tardigrade


## Acknowledgements

Peter Kramer (Rensselaer Polytechnic Institute. Mathematical Sciences.) Scott McKinley (Tulane University. Mathematics.) William Hancock (Penn State U. Bioengineering.) John Hughes (U Colorado. Biostatistics.)
Shankar Shastry (Penn State U. Bioengineering.)

NSF (DMS-0714939) and NIH (R01-GM122082) through the DMS/NIGMS program in mathematical biology.

## Overview

- Brief introduction to motor-based transport.
- Stochastic models and renewal-reward framework.
- Empirical asymptotic velocity.
- Current-future work.


## Kinesin

- What does the molecular motor Kinesin do?
- Stepping is the interaction of diffusion and kinetics.
- What type of data can be obtained from what type of experiment?
- What are some of the quantities of interest and basic models?


## Motor-based Neuronal Transport



Copyright (ㄷ) 2006 Nature Publishing Group Nature Reviews | Neuroscience

Pasinelli and Brown Nature Reviews Neuroscience 7, 710-723 (September 2006) | doi: 10.1038/nrn1971

## Kinesin, Myosin, and Dynein



R Vale, Cell, 2003

## Kinesin



## Single Motor Experiments



Block Lab:http://www.stanford.edu/group/blocklab/kinesin/kinesin.html


M Schnitzer et al, Nature Cell Biology, 2000



Svoboda et al, Nature, 1993

Single Motor Experiments


## Quantities of Interest

Asymptotic Velocity $\quad V_{a}=\lim _{t \rightarrow \infty} \frac{E[X(t)]}{t}$ or $V_{a}=\lim _{t \rightarrow \infty} \frac{X(t)}{t}$

Effective Diffusion

$$
D_{\text {eff }}=\lim _{t \rightarrow \infty} \frac{\operatorname{Var}[X(t)]}{2 t}
$$

Randomness Parameter $\quad R=\frac{2 D_{\text {eff }}}{L V_{2}}$ (Fano Factor)

Processivity: expected number of steps before detachment.

## Periodic Discrete Space Markov Process



Diffusion in a Tilted Periodic Potential


## Flashing Ratchet

$$
d X(t)=a_{K(t)}(X(t)) d t+\sigma d B(t)
$$



Heiner Linke (http://www.phys.unsw.edu.au/STAFF/RESEARCH/linke.html)

## Role of diffusion in the hydrolysis cycle

- The kinetics of the hydrolysis cycle is important, but what about the movement through space of the free head?
- How does an applied force affect the stepping speed?




## Renewal-Reward Framework

$$
X(t)=\sum_{i=1}^{N(t)} Z_{i} \quad N(t)=\max \left\{n: \sum_{i=1}^{n} \tau_{i} \leq t\right\}
$$



Note: work of Arjun Krishnan (Utah)

## Functional Central Limit Theorem

Define

$$
\begin{gathered}
S(t)=\sum_{i=0}^{\lfloor t\rfloor} Z_{i} \quad T(t)=\sum_{i=0}^{\lfloor t\rfloor} \tau_{i} \\
n^{-1 / 2}\binom{S(n t)-\mu_{Z} n t}{T(n t)-\mu_{\tau} n t} \Rightarrow\binom{B_{1}(t)}{B_{2}(t)}
\end{gathered}
$$

where the covariance matrix is

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{Z}^{2} & \sigma_{Z, \tau} \\
\sigma_{Z, \tau} & \sigma_{\tau}^{2}
\end{array}\right)
$$

## Functional Central Limit Theorem

Note that $X(t)=S\left(T^{-1}(t)\right)$.
Now, if we define

$$
X_{n}(t)=n^{-1 / 2}\left(S\left(T^{-1}(n t)\right)-\frac{\mu_{Z}}{\mu_{\tau}} n t\right),
$$

and we apply a continuous mapping theorem.

$$
X_{n}(t) \Rightarrow B_{1}\left(\frac{t}{\mu_{\tau}}\right)-\frac{\mu_{Z}}{\mu_{\tau}} B_{2}\left(\frac{t}{\mu_{\tau}}\right) .
$$

## Or

$$
\begin{gathered}
X_{n}(t)=n^{-1 / 2}\left(X(n t)-\frac{\mu_{z}}{\mu_{\tau}} n t\right) \Rightarrow \sqrt{\frac{\sigma_{Z}^{2}}{\mu_{\tau}}+\frac{\mu_{Z}^{2} \sigma_{\tau}^{2}}{\mu_{\tau}^{3}}-2 \frac{\mu_{Z} \sigma_{Z, \tau}}{\mu_{\tau}^{2}}} B(t) \\
X(n t) \approx \frac{\mu_{z}}{\mu_{\tau}} n t+n^{1 / 2} \sqrt{\frac{\sigma_{Z}^{2}}{\mu_{\tau}}+\frac{\mu_{z}^{2} \sigma_{\tau}^{2}}{\mu_{\tau}^{3}}-2 \frac{\mu_{Z} \sigma_{Z, \tau}}{\mu_{\tau}^{2}}} B(t)
\end{gathered}
$$

## Standard Quantities

$$
\begin{gathered}
V_{\infty}=\lim _{t \rightarrow \infty} \frac{X(t)}{t}=\lim _{t \rightarrow \infty} \frac{L \sum_{i=1}^{N(t)} Z_{i}}{t}=L \frac{\mu_{Z}}{\mu_{\tau}} \\
D=\frac{L^{2}}{2}\left(\frac{\mu_{Z}^{2} \sigma_{\tau}^{2}}{\mu_{\tau}^{3}}+\frac{\sigma_{Z}^{2}}{\mu_{\tau}}-2 \frac{\mu_{Z} \sigma_{Z, \tau}}{\mu_{\tau}^{2}}\right) \\
n^{-1 / 2}\left(X(n t)-V_{\infty} n t\right) \Rightarrow \sqrt{2 D} B(t)
\end{gathered}
$$

- In the modeling community, processivity (distance/time traveled) has been under-emphasized.
- One type of data obtainable from each type of experiment is distance/time till detachment.
- How can we connect randomly-detached motor data to our models?


## Random Stopping and Asymptotic Velocity

## Asymptotic distribution of empirical velocity

$$
\widehat{V}=\frac{\sum_{i=1}^{N} Z_{i}}{\sum_{i=1}^{N} \tau_{i}}
$$

$$
f(x)=\frac{1}{\sigma \beta\left(\alpha-\frac{1}{2}, \frac{1}{2}\right)}\left(1+\left(\frac{x-\mu}{\sigma}\right)^{2}\right)^{-\alpha}
$$

## Pearson VII distribution

$$
\frac{1}{\sqrt{n}}\left(\widehat{V}-\frac{\mu_{Z}}{\mu_{\tau}}\right) \Rightarrow P_{V I I}
$$

$$
f(x)=\frac{1}{2 \sigma}\left(1+\left(\frac{x-\mu}{\sigma}\right)^{2}\right)^{-3 / 2}
$$

John Hughes, Shankar Sastry, William O. Hancock, and John Fricks (2013). Estimating Velocity for Processive Motor Proteins with Random Detachment. Journal of Agricultural, Biological, and Environmental Statistics. 18, No. 2, 204-217.

## How?

$$
\begin{aligned}
& S(t)=\sum_{i=0}^{\lfloor t\rfloor} Z_{i} \quad T(t)=\sum_{i=0}^{\lfloor t\rfloor} \tau_{i} \\
& \eta_{n}=\frac{1}{n} T(N) \Rightarrow \eta=\mu_{\tau} \varepsilon \\
& n^{-1 / 2}\left(\frac{S\left(T^{-1}(n t)\right)}{t}-\frac{\mu_{Z}}{\mu_{\tau}} n\right) \Rightarrow \sqrt{2 D} \frac{B(t)}{t}
\end{aligned}
$$

$$
\begin{aligned}
& n^{-1 / 2}\left(\frac{S\left(T^{-1}\left(n \eta_{n}\right)\right)}{\eta_{n}}-\frac{\mu_{Z}}{\mu_{\tau}} n\right) \Rightarrow \sqrt{2 D} \frac{B(\eta)}{\eta} \\
& n^{-1 / 2}\left(\frac{S(N)}{T(N)}-\frac{\mu_{Z}}{\mu_{\tau}}\right) \Rightarrow \sqrt{2 D} \frac{B(\eta)}{\eta}
\end{aligned}
$$

## Does the data match the Pearson VII?



Using K-S test, reject the null hypothesis of a normal distribution with p-value 0.0468.
Fail to reject the null hypothesis of a Pearson-VII with $p$-value 0.618 .

## MLE for Pearson VII




## An alternative approach

$$
\hat{V}_{c}=\frac{\sum_{j=1}^{m} S_{j}\left(N_{j}\right)}{\sum_{j=1}^{m} T_{j}\left(N_{j}\right)}
$$

Note that

$$
\sqrt{m}\left(\binom{\frac{1}{m} \sum_{j=1}^{m} S_{j}\left(N_{j}\right)}{\frac{1}{m} \sum_{j=1}^{m} T_{j}\left(N_{j}\right)}-\binom{\frac{1}{p} \mu_{Z}}{\frac{1}{p} \mu_{\tau}}\right)
$$

converges to multivariate normal with zero mean and covariance

$$
\left(\begin{array}{cc}
\frac{1}{p} \sigma_{Z}^{2}+\frac{1-p}{p^{2}} \mu_{Z}^{2} & \frac{1}{p} \sigma_{Z, \tau}+\frac{1-p}{p^{2}} \mu_{Z} \mu_{\tau} \\
\frac{1}{p} \sigma_{Z, \tau}+\frac{1-p}{p^{2}} \mu_{Z} \mu_{\tau} & \frac{1}{p} \sigma_{\tau}^{2}+\frac{1-p}{p^{2}} \mu_{\tau}^{2}
\end{array}\right)
$$

Now, we apply the delta method

$$
\sqrt{m}\left(\frac{\sum_{j=1}^{m} S_{j}\left(N_{j}\right)}{\sum_{j=1}^{m} T_{j}\left(N_{j}\right)}-\frac{\mu_{Z}}{\mu_{\tau}}\right)
$$

converges in distribution to a zero-mean normal distribution with variance

$$
\left(\begin{array}{cc}
\frac{1}{\frac{1}{p} \mu_{\tau}} & \frac{-\mu_{Z}}{\frac{1}{p} \mu_{\tau}^{2}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{p} \sigma_{Z}^{2}+\frac{1-p}{p^{2}} \mu_{Z}^{2} & \frac{1}{p} \sigma_{Z, \tau}+\frac{1-p}{p^{2}} \mu_{Z} \mu_{\tau} \\
\frac{1}{p} \sigma_{Z, \tau}+\frac{1-p}{p^{2}} \mu_{Z} \mu_{\tau} & \frac{1}{p} \sigma_{\tau}^{2}+\frac{1-p}{p^{2}} \mu_{\tau}^{2}
\end{array}\right)\binom{\frac{1}{\frac{1}{p} \mu_{\tau}}}{\frac{-\mu_{Z}}{\frac{1}{p} \mu_{\tau}^{2}}}
$$

or

$$
\frac{1}{\frac{1}{p} \mu_{\tau}}\left(\frac{\sigma_{Z}^{2}}{\mu_{\tau}}-2 \frac{\mu_{Z} \sigma_{Z, \tau}}{\mu_{\tau}^{2}}+\frac{\sigma_{\tau}^{2} \mu_{Z}^{2}}{\mu_{\tau}^{3}}\right)
$$

## Alternative Models to ToW









## Thanks.

