
A Parallel Variational
Mesh Quality Improvement Method
for Distributed Memory Machines

Suzanne M. Shontz1, Maurin A. Lopez Varilla2,
Weizhang Huang3

1Department of Electrical Engineering and Computer Science
University of Kansas

2Husky Injection Molding, Luxembourg

3Department of Mathematics, University of Kansas

Workshop on Adaptive Numerical Methods
for PDEs with Applications

Banff, Canada
May 28 - June 1, 2018

Motivation

There are numerous large-scale applications requiring mesh
adaptivity, e.g., computational fluid dynamics and weather
prediction.

Parallel processing (e.g., CPUs, GPUs, Phi co-processors, ...) is
needed in order to perform simulations involving parallel adaptive
meshes.

In this talk, we propose a parallel variational mesh quality
improvement method.

Our method is a parallel implementation of a serial variational
mesh quality improvement method by Huang and Kamenski.

Outline

1. Overview of Variational Mesh Adaptation

2. Serial Variational Mesh Adaptation Method

3. Moving Mesh PDE (MMPDE) Method

4. Parallel Variational Mesh Quality Improvement Method

5. Analysis of Parallel Method

6. Numerical Experiments

7. Conclusions and Future Work

Overview of Variational Mesh Adaptation

In the variational approach, an adaptive mesh is generated as
the image of a reference mesh under a coordinate
transformation.

The coordinate transformation is determined as the minimizer of
a meshing functional.

The mesh concentration is typically controlled through a
scalar or a matrix-valued function. This is referred to as the
metric tensor or monitor function.

Monitor functions are defined based on error estimates and/or
physical considerations.

Variational Mesh Adaptation Methods

Some example variational methods and meshing functionals:

I Equipotential method based on variable diffusion
(Winslow)

I Method combining mesh concentration, smoothness, and
orthogonality (Brackbill and Saltzman)

I Method based on the energy of harmonic mappings
(Dvinsky)

I Methods based on conditioning the Jacobian matrix of the
coordinate transformation (Knupp, Knupp and Robidoux)

I Methods based on the equidistribution and alignment
conditions (Huang, Huang and Russell)

Serial Variational Mesh Adaptation Method

Moving Mesh PDE (MMPDE) Method: (Huang, Ren, Russell,
1994)

New implementation: (Huang and Kamenski, 2015)

I Consider a domain Ω ⊂ Rd (d ≥ 1) and a simplicial mesh
Th = {K} of N elements and Nv vertices thereon.

I Denote the affine mapping FK : K̂ → K and its Jacobian
matrix by F ′K , where K̂ is the master element.

I Let the edge matrices for K and K̂ be EK and Ê .

I Assume that a metric tensor (or a monitor function)
M = M(x) is given on Ω which provides directional and
magnitude information for elements.

Moving Mesh PDE (MMPDE) Method

A key idea of the MMPDE method is to view an adaptive mesh as
a uniform one in the metric M:

I The size of all elements K in the metric MK is the same

I All elements K in the metric MK are similar to K̂

These give rise to the equidistribution and alignment conditions:

|K |
√

det(MK) =
σh
N
, ∀K ∈ Th

1

d
tr
(

(F ′K)TMKF
′
K

)
= det

(
(F ′K)TMKF

′
K

) 1
d
, ∀K ∈ Th

where |K | is the volume of K and σh =
∑
K

|K |
√

det(MK).

Moving Mesh PDE (MMPDE) Method

An energy function for the equidistribution and alignment
conditions is

I [Th] =
∑
K

√
det(MK) GK

GK =
1

3

(
tr(JM−1K JT)

)d
+

1

3
dd

(
det(J)√
det(MK)

)2

J = (F ′K)−1 = ÊE−1K

The MMPDE moving mesh equation is defined as the (modified)
gradient system of I [Th], i.e.,

dxi
dt

= −det(Mi)
1
d

τ

∂I [Th]

∂xi
, i = 1, ...,Nv

where τ > 0 is a parameter for adjusting the response time scale of
mesh movement to the change in M.

Moving Mesh PDE (MMPDE) Method

For quality improvement, we choose M = I, which means we want
the mesh to be as uniform as possible in the Euclidean
space. In this case, the moving mesh equation reads as

dxi
dt

=
∑
K∈ωi

|K |vKiK , i = 1, ...,Nv (1)

where ωi is the element patch associated with xi , iK is the local
index for xi on K , and viK is the nodal velocity associated with
node xi , (vK1)T

...
(vKd)T

 = GKE
−1
K + E−1K

∂GK

∂J
ÊE−1K +

∂GK

∂ det(J)

det(Ê)

det(EK)
E−1K

(vK0)T = −
d∑

j=1

(vKj)T

Moving Mesh PDE (MMPDE Method)

The nodal velocities of the boundary nodes are set to 0. (They
can also be modified so that the boundary nodes slide on the
boundary.)

Solve (1) using the adaptive fourth-order
Runge-Kutta-Fehlberg ODE solver (RKF45).

It is shown analytically and numerically in (Huang and Kamenski,
2018) that the mesh governed by the MMPDE moving mesh
equation will stay nonsingular (no crossing over nor tangling) if it
is nonsingular initially.

Parallel Variational Mesh Quality Improvement Method

Strategy: Develop a parallel algorithm for use on
distributed-memory HPC machines with p processors.

1. Partition the mesh into p connected components using the
multilevel k-way partitioning scheme in METIS (minimizing
the number of edge cuts).

2. Solve the discretized system of ODEs in a parallel,
distributed manner using the RKF45 method.

2.1 Key ingredient: Computation of the nodal velocities.
2.2 Each processor loops over the elements it owns and computes

the nodal velocities for the interior nodes.
2.3 Asynchronous communication occurs to compute the nodal

velocities for the shared nodes.
2.4 The step size, dt, is adapted based on the global error.

Parallel Variational Mesh Quality Improvement Method

Figure: Patch of elements with xm as one of its vertices.

Parallel Variational Mesh Quality Improvement Method

3. The computation terminates when the mesh quality is
acceptable.

We overlap the computation and the communication for
efficient performance.

We implement the parallel algorithm using MPI and C/C++.

Performance Gain: Parallel Algorithm Analysis

Total parallel time per iteration is bounded by:

TP =(d + 1) ∗ dN/peshtvn+Tctotal

+Nsh ∗ tc + dN/pe ∗ (d + 1) ∗ d ∗ te + log2(p)

+Nsh ∗ tc + dN/pe ∗ tq + log2(p),

where the four terms denote the time to compute nodal velocities,
overlapped computation and communication time for solving the
ODE, time to compute the max error, and time to compute the
average mesh quality.

Rearranging:

TP = 2(Nshtc + log2(p)) + (d + 1)(dN/peshtvn + dN/ped ∗ te)

+ dN/petq + Tctotal .

Performance Gain: Parallel Algorithm Analysis

Observation: The communication time increases by a factor
of log2(p) if the number of processors increases with the number
of elements (and the number of shared nodes).

Conclusion: Good strong scaling results are expected for our
implementation.

Numerical Experiments: Geometric Domains

Figure: Geometric domains: (a) bust, (b) bracket and (c) double cam tool

Numerical Experiments: Tetrahedral Mesh Sizes

Table: Size of the tetrahedral meshes

Mesh # Nodes # Elements

Bust 12,895,493 80,000,012
Double cam tool 7,089,753 41,405,684

Numerical Experiments: Mesh Quality Results

Figure: Average quality versus number of iterations for the 80M element
mesh on the bust domain

Numerical Experiments: Performance Results

Figure: (a) Total runtime and (b) speedup for the Parallel VMQI
algorithm for the 80M element mesh on the bust domain

Numerical Experiments: Mesh Quality Results

Figure: Average quality versus number of iterations for the 40M element
mesh on the double cam tool domain

Numerical Experiments: Performance Results

Figure: (a) Total runtime and (b) speedup for the Parallel VMQI
algorithm for the 40M elements tetrahedral mesh of the double cam tool
domain

Numerical Experiments: Overlapping Communication with
Computation

Figure: Communication and computation time to calculate the nodal
velocities in one region for one iteration: (a) 80M elements (b) 40M
elements

Numerical Experiments: Mesh Sizes for Weak Scaling

Table: Different mesh sizes for the bracket domain

Mesh # Nodes # Elements

450,960 2,500,032
864,028 5,000,025

bracket 1,716,222 9,999,990
3,269,784 19,999,978
6,497,224 40,000,000

12,957,609 80,000,037
24,177,335 159,745,245

Numerical Experiments: Performance Results for Weak
Scaling

Figure: Runtime vs. number of processors

Numerical Experiments: Mesh Quality Results for Weak
Scaling

Figure: Quality vs. number of iterations for the bracket domain with (a)
2.5M, (b) 10M, and (c) 40M elements

Conclusions and Future Work

We have proposed a parallel and distributed formulation of the
mesh quality improvement algorithm by Huang and Kamenski.

The RKF45 method is used to solve the system of ODEs
associated with the MMPDE method to obtain the nodal
velocities on the distributed mesh; this is done in parallel.

The communication and computation are overlapped in order
to obtain an efficient method.

Excellent strong scaling results and typical weak scaling results
were obtained.

For future work, various partitioning and communication
srategies will be employed.

Acknowledgments

I NSF CAREER Award ACI-1500487 (formerly ACI-1330054
and OCI-1054459)

I NSF PECASE Award

I Army Research Office Grant W911-NF-1510377
(cyberinfrastructure)

27th International Meshing Roundtable

I The 27th International Meshing Roundtable will be held in
Albuquerque, NM on October 1-5, 2018.

I Participants can give two kinds of talks: Talks on technical
papers and research notes.

I To give a talk on a technical paper, participants must be a
co-author of an accepted paper.

I NEW: For research notes, authors submit an (optional)
5-page paper. Alternatively, an abstract may be submitted.

I Paper submission deadline: May 30, 2018

I Research note deadline: August 8, 2018

KU Engineering Dean Search

I KU is searching for a dynamic leader to be Dean of the School
of Engineering.

I The School of Engineering has seen tremendous expansion
and growth in the numbers of students and faculty and the
facilities in the past five years.

I It’s an exciting time to work for the School of Engineering.

I Handouts are available with more information.

I Please consider applying for the position!

