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Example: Vegetation feedback

Complex feedbacks between
precipitation, temperature, vegetation

Climate models incorporate PDE
models for air- and waterflow

Add differential equations for clouds,
CO2 sources,...

Vegetation growth based on PDE as
well

Coupling of different models
implemented in different codes

Figure: Output of RCA-GUESS:
Leaf area index change
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Example: Steel forging

Inductive heating
Thermo-mechanical
forming

Local
air-cooling

Entire process chain is characterized by the exchange of energy

Crystalline structure of steel influenced by heat

Thermal interaction between air and steel needs to be modelled
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Applications of thermal FSI

Engines (rocket, car,...)

Heating of reentry vehicles in space
flight

Turbine blade cooling

Thermal anti-icing of airplanes

Generally cooling systems

Figure: Vulcain engine
for Ariane 5; CC-by-sa
3.0, Pline, Wikimedia
Commons

Goal: Solve this fast without too much pain
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What do we want?

Time adaptivity

High order in time

Reuse of existing codes (partitioned
approach)

Parallel execution of coupled codes

Loadbalancing

Different time steps in different models

Fast solvers for equation systems

Should be usable and robust for large
class of models

Figure:
Navier-Stokes (FV)
+ nonl. heat (FE)

For steel forging problem: Dirichlet-Neumann works well, but is not
parallel, Monge, B., Comp. Mech. 18
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Influence of Software

Good coders write great code, great coders use good coders code

Physics and mathematical models is not all

Software influences design of numerical methods

Option 1: Full access to code and willingness to edit it

Option 2: Only access to code of certain functions, allowed to call
some specific ones

Option 3: No access, allowed to call specific interface functions

Option 4: No access, Allowed only to call main function
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From ODE world: Waveform Iteration

Synchronize models at macro steps

In between, subsolvers run with their own time step

Need to use information from other model at microsteps

Is black box, but we require possibility to repeat a macrostep
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Model Problem: Coupled heat equations

Coupled PDEs: Nonoverlapping Domain Decomposition

αm
∂um(x, t)

∂t
−∇ · (λm∇um(x, t)) = 0,

t ∈ [t0, tf ], x ∈ Ωm ⊂ Rd , m = 1, 2

um(x, t) = 0, x ∈ ∂Ωm\Γ
u1(x, t) = u2(x, t), x ∈ Γ

λ2
∂u2(x, t)

∂n2
= −λ1

∂u1(x, t)

∂n1
, x ∈ Γ

um(x, 0) = gm(x) x ∈ Ωm

In the weak sense equivalent to

α(x)
∂um(x, t)

∂t
−∇ · (λ(x)∇um(x, t)) = 0 x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω, u(x, 0) = gm(x), x ∈ ∂Ω
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Neumann-Neumann multirate waveform method

Neumann-Neumann method

Given initial guess for values at boundary, iterate

1 Solve Dirichlet problems in both domains with that data

2 Solve Neumann problems in both domains with derivatives from above

3 Get new Dirichlet data, do relaxation step

Can be done in parallel!

Gander, Kwok, Mandal, ETNA ’16: Fully continuous version with all
material parameters one

Prove optimal relaxation parameter of 1/4

With this, exact solution at interface after one step!!
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Neumann-Neumann waveform relaxation (NNWR)

1.Dirichlet :


αm

∂uk+1
m (x,t)
∂t −∇ · (λm∇uk+1

m (x, t)) = 0, x ∈ Ωm,

uk+1
m (x, t) = 0, x ∈ ∂Ωm\Γ,

uk+1
m (x, t) = gk(x, t), x ∈ Γ,

uk+1
m (x, 0) = u0

1(x), x ∈ Ωm.

2.Neumann :


αm

∂ψk+1
m (x,t)
∂t −∇ · (λm∇ψk+1

m (x, t)) = 0, x ∈ Ωm,

ψk+1
m (x, t) = 0, x ∈ ∂Ωm\Γ,
λm

∂ψk+1
m (x,t)
∂n1

= λ1
∂uk+1

1 (x,t)
∂n1

+ λ2
∂uk+1

2 (x,t)
∂n2

, x ∈ Γ,

ψk+1
m (x, 0) = 0, x ∈ Ωm.

3.Relaxation : gk+1(x, t) = gk(x, t)−Θ(ψk+1
1 (x, t) + ψk+1

2 (x, t)), x ∈ Γ.
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Going discrete: Multirate

Nonmatching time grids at the interface, linear interpolation

Time discretization: Implicit Euler and SDIRK2 - Order is acchieved
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Multirate 1D solution using NNWR algorithm
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Relaxation parameter

Q: How to choose the relaxation parameter Θ?

Write iteration in terms of interface unknowns at final time, uΓ(Tf ):

uk+1,Tf
Γ = Σ(Θ)uk,Tf

Γ + Ψ

Do only one time step only

Find Θ that minimizes the spectral radius of Σ(Θ)

Θopt = ρ(2 + S(1)−1
S(2) + S(2)−1

S(1))

Give exact formula for model discretization

Space discretization: equidistant FE/FE in 1D

Matching space grid at the interface, unknowns on interface

Time integration: nonmultirate Implicit Euler or SDIRK2
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One-dimensional analysis, several pages later

Use eigendecomposition of tridiagonal Toeplitz matrices M/∆t + A to get

Θopt =
(

2 + (6∆x(α2∆x2+3λ2∆t)−(α2∆x2−6λ2∆t)2s2)
(6∆x(α1∆x2+3λ1∆t)−(α1∆x2−6λ1∆t)2s1)

+ (6∆x(α1∆x2+3λ1∆t)−(α1∆x2−6λ1∆t)2s1)
(6∆x(α2∆x2+3λ2∆t)−(α2∆x2−6λ2∆t)2s2)

)−1
.

with

sm =
N∑
i=1

3∆x2 sin2(iπ∆x)

2αm∆x2 + 6λm∆t + (αm∆x2 − 6λm∆t) cos(iπ∆x)
.

Asymptotics: 1D FEM/FEM

Temporal limit of Θopt : Θ{c→0} = α1α2
(α1+α2)2 .

Spatial limit of Θopt : Θ{c→∞} = λ1λ2
(λ1+λ2)2 .
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Convergence Rates, observed in 2D

Air-Steel

0 0.5 1 1.5 2

x 10
−3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Θ

C
on

v.
 R

at
es

 

 

Σ(Θ)
IE (C−C)
IE (C−F)
SDIRK2 (C−C)
SDIRK2 (C−F)

Air-Water

0 0.2 0.4 0.6 0.8 1

x 10
−3

10
−4

10
−2

10
0

Θ

C
on

v.
 R

at
es

 

 

Σ(Θ)
IE (C−C)
IE (C−F)
SDIRK2 (C−C)
SDIRK2 (C−F)

Simplifications in analysis don’t affect location of Θopt .
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And now once more, with time adaptivity!

Add two step size controllers on the Dirichlet problems

Problem: Θopt depends on αm, λm, m = 1, 2, ∆x and ∆t

Initial iteration: Θ = (Θ{c→0} + Θ{c→∞})/2

Then take average of time steps on each domain
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If ∆t1 < ∆t2, Θk+1 = Θopt(∆t2); else, Θk+1 = Θopt(∆t1)
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Numerical results: Air-Steel
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Time Adaptive

Multirate

Multirate uses respective minimal timestep from adaptive method

See Monge, B.: A time adaptive Neumann-Neumann waveform
relaxation method for thermal fluid-structure interaction, DD25,
submitted
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Where are we?

Time adaptivity

High order in time

Parallel execution of coupled codes

Loadbalancing to be done

Different time steps in different models

Fast solvers for equation systems

Is being implemented in open source coupling software framework
PreCICE (with B. Rueth, B. Ueckermann, M. Mehl)

Robustness problematic: Relaxation parameter sensitive. Now look at
Dirichlet-Neumann again with waveform relaxation with pipeline
implementation

Specific to thermal FSI
More at: Monge, B., A multirate Neumann-Neumann waveform relaxation method for heterogeneous coupled heat equations,
SISC, submitted, arXiv:1805.04336
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Discretely asynchronous

Consider one macro step and solution operators φx , φy

Use adaptive numerical method for both problems

Gauß-Seidel waveform iteration not parallel

Jacobi waveform iteration parallel, but in fact double the work

Use continuous interpolations x[tn,tn+1],k(t), y[tn,tn+1],k(t) in time.

Update interpolations after every microstep

xm+1 = xm + Φx(xm, y[tm,tm+1],k(t))

ym+1 = ym + Φy (ym, x[tm,tm+1],k(t))

Is multiphysics, multirate, parallel and adaptive

See also Frommer, Szyld 2000
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Preliminary results using MPI Window, Put, Get

Figure: Averaged iterations for 1000 runs for 2-component linear system
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Where are we with this?

Time adaptivity

High order in time

Parallel execution of coupled codes

Loadbalancing to be done

Different time steps in different models

Fast solvers for equation systems: Not clear

Robustness unclear
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