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Goal

» To improve copy number calling at copy number
polymorphic (CNP) regions in large-scale studies

» To extend these methods to trio-based study designs



Pancreatic cancer case-control consortium

> = 8000 participants genotyped on the Illumina
Omni-Exome array

» Inherited variants in ATM, BRCA2, and PALB2 known to
increase risk

» 80% of familial clustering for this disease is unexplained



Arrays and capture-based sequencing (one genome)
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Another sample
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Dependency of data quality on batch
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Arrays and capture-based sequencing (one region)
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» different studies / different regions



A known CNP region with 4 SNPs
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Arrays: Cardin et al., 2011 (Genetic Epidemiology)
Sequencing: XHMM, Conifer, CLAMMS, and others



A known CNP region with 4 SNPs
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Recap

By genome:

» Bin-to-bin (or probe-to-probe) technical variation within a
sample greatly limits resolution

GC content and other unmodeled sequence characteristics that
influence PCR and measured abundances

> Latent factors that cause groups of sample to appear very
different (batch effects) are completely ignored

By region:

» Sequence-induced variation of abundances is less critical
» Batch effects can be estimated and modeled
» Not great for rare CNVs



Marginal distribution
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Marginal distribution
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Marginal distribution

Densities
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Challenges

» Consequences of batch effects similar to copy number
» We do not know the batches

— Time is often a surrogate for the unknown batch effects
Samples are processed on hundreds of chemistry plates in large
samples



Data processing in the Pancreatic Cancer Consortium

DNA extracted
from 9 centers

Randomization to
plate by
case status
and study center

Scan date
of array

Sample index



Surrogate variable analysis (SVA) for latent batch
effects

» SVA would also remove variation from the latent biological
subclasses (here, the latent copy number states)



Simple approach

» Provisionally define batch using commonly available
metadata available on the samples in a study

» This information is too granular for mixture models

hundreds of chemistry plates
— scan / sequencing date



eCDFs of the individual chemistry plates
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Combine plates with similar eCDFs
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Batches are mostly location shifts
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Model abundances hierarchically as a mixture of ¢
distributions
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Chemistry plate was just a guess
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» Marginal likelihoods for 300 CNP regions
> Suggests timing explained more of the technical variation

» Or, study center / DNA extraction method was too coarse



Mixture components need not correspond to differences
in latent copy number (unfortunately)

» batch estimates do not always account for skewed /
heavy-tailed data
> merge components by amount of overlap
distinct copy number states with substantial overlap
— same copy number state with small overlap
merging does not genotype components
» the actual copy number is critical for improving trio-based
inference



Components with substantial overlap
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Approach: fit yet another mixture model
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» What copy number states maximize the likelihood of the
observed allele frequencies?



Log likelihoods for the allele frequencies
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Mapped components
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Components with substantial overlap
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Duplication polymorphism
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CNPBayes

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor

CNPBayes

» Software Packages » CNPBayes

platforms [all Jll downloads top 50% | posts [0 in Bioc [3'years
build | Warnings:

DOI: 10.18129/89.bioc.chpBayes K1

Bayesian mixture models for copy number polymorphisms

Bioconductor version: Release (3.7)
Bayesian hierarchical mixture models for batch effects and copy number.
Author: Stephen Cristiano, Robert Scharpf, and Jacob Carey

Maintainer: Jacob Carey <jcarey15 at jhu.edu>

Citation (from within R, enter citation("cnpaayes™)):

Cristiano S, Scharpf R, Carey J (2018). CNPBayes: Bayesian mixture models for copy number
polymorphisms. R package version 1.10.0, https://github.com/scristia/CNPBayes.

Installation

To install this package, start R and enter:

## try http:// if https:// URLs are not supported
source("https: //bioconductor.org/biocLite.R")
biocLite("cNPBayes")

Developers About

Documentation »
Bioconductor

Package vignettes and manuals.
Workflows for learning and use.
Course and conference material.
Video:

Community resources and tutorials.

R/ CRAN packages and documentation

Support »

Please read the posting quide. Post
questions about Bioconductor to one of
the following locations:

* Support site - for questions about
Bioconductor packages

+ Bioc-devel mailing list - for package
developers




Conclusions

» Batches are inevetible in large scale studies

» Be careful using principal components to summarize copy
number

» Metadata on the samples can be used to provisionally
define batch

» Copy number (not mixture component indices) critical for
extension to trio-based studies
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