KULEUVEN

An introduction to C*-algebras

Workshop Model Theory and Operator Algebras BIRS, Banff

Gábor Szabó
KU Leuven
November 2018

We will denote by \mathcal{H} a complex Hilbert space with inner product $\langle\cdot \mid \cdot\rangle$, and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators $\mathcal{H} \rightarrow \mathcal{H}$. It becomes a Banach algebra with the operator norm.

We will denote by \mathcal{H} a complex Hilbert space with inner product $\langle\cdot \mid \cdot\rangle$, and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators $\mathcal{H} \rightarrow \mathcal{H}$. It becomes a Banach algebra with the operator norm.

Recall

For $a \in \mathcal{B}(\mathcal{H})$, the adjoint operator $a^{*} \in \mathcal{B}(\mathcal{H})$ is the unique operator satisfying the formula

$$
\left\langle a \xi_{1} \mid \xi_{2}\right\rangle=\left\langle\xi_{1} \mid a^{*} \xi_{2}\right\rangle, \quad \xi_{1}, \xi_{2} \in \mathcal{H}
$$

Then the adjoint operation $a \mapsto a^{*}$ is an involution, i.e., it is anti-linear and satisfies $(a b)^{*}=b^{*} a^{*}$.

We will denote by \mathcal{H} a complex Hilbert space with inner product $\langle\cdot \mid \cdot\rangle$, and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators $\mathcal{H} \rightarrow \mathcal{H}$. It becomes a Banach algebra with the operator norm.

Recall

For $a \in \mathcal{B}(\mathcal{H})$, the adjoint operator $a^{*} \in \mathcal{B}(\mathcal{H})$ is the unique operator satisfying the formula

$$
\left\langle a \xi_{1} \mid \xi_{2}\right\rangle=\left\langle\xi_{1} \mid a^{*} \xi_{2}\right\rangle, \quad \xi_{1}, \xi_{2} \in \mathcal{H}
$$

Then the adjoint operation $a \mapsto a^{*}$ is an involution, i.e., it is anti-linear and satisfies $(a b)^{*}=b^{*} a^{*}$.

Observation

One always has $\left\|a^{*} a\right\|=\|a\|^{2}$.
Proof: Since $\left\|a^{*}\right\|=\|a\|$ is rather immediate from the definition, " \leq " is clear. For " \geq ", observe

$$
\|a \xi\|^{2}=\langle a \xi \mid a \xi\rangle=\left\langle\xi \mid a^{*} a \xi\right\rangle \leq\left\|a^{*} a \xi\right\|, \quad\|\xi\|=1
$$

Definition

An (abstract) C^{*}-algebra is a complex Banach algebra A with an involution $a \mapsto a^{*}$ satisfying the C^{*}-identity

$$
\left\|a^{*} a\right\|=\|a\|^{2}, \quad a \in A
$$

We say A is unital, if there exists a unit element $\mathbf{1} \in A$.

Definition

An (abstract) C^{*}-algebra is a complex Banach algebra A with an involution $a \mapsto a^{*}$ satisfying the C^{*}-identity

$$
\left\|a^{*} a\right\|=\|a\|^{2}, \quad a \in A
$$

We say A is unital, if there exists a unit element $1 \in A$.

Definition

A concrete C^{*}-algebra is a self-adjoint subalgebra $A \subseteq \mathcal{B}(\mathcal{H})$, for some Hilbert space \mathcal{H}, which is closed in the operator norm.

Definition

An (abstract) C^{*}-algebra is a complex Banach algebra A with an involution $a \mapsto a^{*}$ satisfying the C^{*}-identity

$$
\left\|a^{*} a\right\|=\|a\|^{2}, \quad a \in A
$$

We say A is unital, if there exists a unit element $1 \in A$.

Definition

A concrete C^{*}-algebra is a self-adjoint subalgebra $A \subseteq \mathcal{B}(\mathcal{H})$, for some Hilbert space \mathcal{H}, which is closed in the operator norm.

As the operator norm satisfies the C^{*}-identity, every concrete C^{*}-algebra is an abstract C^{*}-algebra.

Example

For some compact Hausdorff space X, we may consider

$$
\mathcal{C}(X)=\{\text { continuous functions } X \rightarrow \mathbb{C}\} .
$$

With pointwise addition and multiplication, $\mathcal{C}(X)$ becomes a commutative abstract C^{*}-algebra if we equip it with the adjoint operation

$$
f^{*}(x)=\overline{f(x)}
$$

and the norm

$$
\|f\|_{\infty}=\sup _{x \in X}|f(x)| .
$$

Example

For some compact Hausdorff space X, we may consider

$$
\mathcal{C}(X)=\{\text { continuous functions } X \rightarrow \mathbb{C}\} .
$$

With pointwise addition and multiplication, $\mathcal{C}(X)$ becomes a commutative abstract C^{*}-algebra if we equip it with the adjoint operation

$$
f^{*}(x)=\overline{f(x)}
$$

and the norm

$$
\|f\|_{\infty}=\sup _{x \in X}|f(x)| .
$$

Fact (Spectral theory)

As an abstract C^{*}-algebra, $\mathcal{C}(X)$ remembers X.

The goal for this lecture is to go over the spectral theory of Banach algebras and C^{*}-algebras, culminating in:

Theorem (Gelfand-Naimark)

Every (unital) commutative C^{*}-algebra is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X.

The goal for this lecture is to go over the spectral theory of Banach algebras and C^{*}-algebras, culminating in:

Theorem (Gelfand-Naimark)

Every (unital) commutative C^{*}-algebra is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X.

The goal for the next lecture is to showcase some applications, and discuss the GNS construction, in particular:

Theorem (Gelfand-Naimark-Segal)

Every abstract C*-algebra can be expressed as a concrete C*-algebra.

The goal for this lecture is to go over the spectral theory of Banach algebras and C^{*}-algebras, culminating in:

Theorem (Gelfand-Naimark)

Every (unital) commutative C^{*}-algebra is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X.

The goal for the next lecture is to showcase some applications, and discuss the GNS construction, in particular:

Theorem (Gelfand-Naimark-Segal)

Every abstract C*-algebra can be expressed as a concrete C*-algebra.
The goal for tomorrow is to cover examples and advanced topics.

From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot \mathbf{1}$.

Observation (Neumann series)
If $x \in A$ with $\|\mathbf{1}-x\|<1$, then x is invertible. In fact

$$
x^{-1}=\sum_{n=0}^{\infty}(\mathbf{1}-x)^{n} .
$$

From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot \mathbf{1}$.

Observation (Neumann series)

If $x \in A$ with $\|\mathbf{1}-x\|<1$, then x is invertible. In fact

$$
x^{-1}=\sum_{n=0}^{\infty}(\mathbf{1}-x)^{n} .
$$

Proof: $\left.x \sum_{n=0}^{\infty}(\mathbf{1}-x)^{n}=\sum_{n=0}^{\infty}\left((\mathbf{1}-x)^{n}-(\mathbf{1}-x)^{n+1}\right)\right)=\mathbf{1}$.

From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot \mathbf{1}$.

Observation (Neumann series)

If $x \in A$ with $\|\mathbf{1}-x\|<1$, then x is invertible. In fact

$$
x^{-1}=\sum_{n=0}^{\infty}(\mathbf{1}-x)^{n} .
$$

Proof: $\left.x \sum_{n=0}^{\infty}(\mathbf{1}-x)^{n}=\sum_{n=0}^{\infty}\left((\mathbf{1}-x)^{n}-(\mathbf{1}-x)^{n+1}\right)\right)=\mathbf{1}$.

Observation

The set of invertibles in A is open.
Proof: If z is invertible and x is any element with $\|z-x\|<\left\|z^{-1}\right\|^{-1}$, then $\left\|\mathbf{1}-z^{-1} x\right\|<1$. By the above $z^{-1} x$ is invertible, but then x is also invertible.

Definition

For an element $x \in A$, its spectrum is defined as

$$
\sigma(x)=\{\lambda \in \mathbb{C} \mid \lambda-x \text { is not invertible in } A\} \subseteq \mathbb{C} .
$$

Definition

For an element $x \in A$, its spectrum is defined as

$$
\sigma(x)=\{\lambda \in \mathbb{C} \mid \lambda-x \text { is not invertible in } A\} \subseteq \mathbb{C} .
$$

Elements in the spectrum may be seen as generalized eigenvalues of an operator.

Definition

For an element $x \in A$, its spectrum is defined as

$$
\sigma(x)=\{\lambda \in \mathbb{C} \mid \lambda-x \text { is not invertible in } A\} \subseteq \mathbb{C} .
$$

Elements in the spectrum may be seen as generalized eigenvalues of an operator.

Observation

The spectrum $\sigma(x)$ is a compact subset of $\{\lambda||\lambda| \leq\|x\|\}$. One defines the spectral radius of x as $r(x)=\max _{\lambda \in \sigma(x)}|\lambda| \leq\|x\|$.

Definition

For an element $x \in A$, its spectrum is defined as

$$
\sigma(x)=\{\lambda \in \mathbb{C} \mid \lambda-x \text { is not invertible in } A\} \subseteq \mathbb{C} .
$$

Elements in the spectrum may be seen as generalized eigenvalues of an operator.

Observation

The spectrum $\sigma(x)$ is a compact subset of $\{\lambda||\lambda| \leq\|x\|\}$. One defines the spectral radius of x as $r(x)=\max _{\lambda \in \sigma(x)}|\lambda| \leq\|x\|$.

Theorem

The spectrum $\sigma(x)$ of every element $x \in A$ is non-empty.
(The proof involves a non-trivial application of complex analysis.)

Definition

A character on A is a non-zero multiplicative linear functional $A \rightarrow \mathbb{C}$.

Definition

A character on A is a non-zero multiplicative linear functional $A \rightarrow \mathbb{C}$.

Observation

A character $\varphi: A \rightarrow \mathbb{C}$ is automatically continuous, in fact $\|\varphi\|=1$.
Proof: As φ is non-zero, we have $0 \neq \varphi(\mathbf{1})=\varphi(\mathbf{1})^{2}$, hence $\varphi(\mathbf{1})=1$. If x were to satisfy $|\varphi(x)|>\|x\|$, then $\varphi(x)-x$ is invertible by the Neumann series trick. However, it lies in the kernel of φ, which yields a contradiction.

Definition

A character on A is a non-zero multiplicative linear functional $A \rightarrow \mathbb{C}$.

Observation

A character $\varphi: A \rightarrow \mathbb{C}$ is automatically continuous, in fact $\|\varphi\|=1$.
Proof: As φ is non-zero, we have $0 \neq \varphi(\mathbf{1})=\varphi(\mathbf{1})^{2}$, hence $\varphi(\mathbf{1})=1$. If x were to satisfy $|\varphi(x)|>\|x\|$, then $\varphi(x)-x$ is invertible by the Neumann series trick. However, it lies in the kernel of φ, which yields a contradiction.

Definition

For commutative A, we define its spectrum (aka character space) as

$$
\hat{A}=\{\text { characters } \varphi: A \rightarrow \mathbb{C}\}
$$

Due to the Banach-Alaoglu theorem, we see that the topology of pointwise convergence turns \hat{A} into a compact Hausdorff space.

Observation

If $J \subset A$ is a maximal ideal in a (unital) Banach algebra, then J is closed. If A is commutative, then $A / J \cong \mathbb{C}$ as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in A. So \bar{J} is a proper ideal, hence $J=\bar{J}$ by maximality.

Observation

If $J \subset A$ is a maximal ideal in a (unital) Banach algebra, then J is closed. If A is commutative, then $A / J \cong \mathbb{C}$ as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in A. So \bar{J} is a proper ideal, hence $J=\bar{J}$ by maximality. Part 2: The quotient is a Banach algebra in which every non-zero element is invertible. If it has a non-scalar element $x \in A / J$, then $\lambda-x \neq 0$ is invertible for all $\lambda \in \mathbb{C}$, which is a contradiction to $\sigma(x) \neq \emptyset$.

Observation

If $J \subset A$ is a maximal ideal in a (unital) Banach algebra, then J is closed. If A is commutative, then $A / J \cong \mathbb{C}$ as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in A. So \bar{J} is a proper ideal, hence $J=\bar{J}$ by maximality.
Part 2: The quotient is a Banach algebra in which every non-zero element is invertible. If it has a non-scalar element $x \in A / J$, then $\lambda-x \neq 0$ is invertible for all $\lambda \in \mathbb{C}$, which is a contradiction to $\sigma(x) \neq \emptyset$.

Observation

For commutative A, the assignment $\varphi \mapsto \operatorname{ker} \varphi$ is a 1-1 correspondence between \hat{A} and maximal ideals in A.

Proof: Clearly the kernel of a character is a maximal ideal as it has codimension 1 in A. Since we have $\varphi(\mathbf{1})=1$ for every $\varphi \in \hat{A}$ and $A=\mathbb{C} 1+\operatorname{ker} \varphi$, every character is uniquely determined by its kernel. Conversely, if $J \subset A$ is a maximal ideal, then $A / J \cong \mathbb{C}$, so the quotient map gives us a character.

A is still commutative.

Theorem

Let $x \in A$. Then

$$
\sigma(x)=\{\varphi(x) \mid \varphi \in \hat{A}\} .
$$

Proof: Let $\lambda \in \mathbb{C}$. If $\lambda=\varphi(x)$, then $\lambda-x \in \operatorname{ker}(\varphi)$, so $\lambda-x$ is not invertible. Conversely, if $\lambda-x$ is not invertible, then it is inside a (proper) maximal ideal. By the previous observation, this means $(\lambda-x) \in \operatorname{ker} \varphi$ for some $\varphi \in \hat{A}$, or $\lambda=\varphi(x)$.

A is still commutative.

Theorem

Let $x \in A$. Then

$$
\sigma(x)=\{\varphi(x) \mid \varphi \in \hat{A}\} .
$$

Proof: Let $\lambda \in \mathbb{C}$. If $\lambda=\varphi(x)$, then $\lambda-x \in \operatorname{ker}(\varphi)$, so $\lambda-x$ is not invertible. Conversely, if $\lambda-x$ is not invertible, then it is inside a (proper) maximal ideal. By the previous observation, this means $(\lambda-x) \in \operatorname{ker} \varphi$ for some $\varphi \in \hat{A}$, or $\lambda=\varphi(x)$.

Theorem (Spectral radius formula)

For any Banach algebra A and $x \in A$, one has

$$
r(x)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|x^{n}\right\|}
$$

Proof: The " \leq " part follows easily from the above (for A commutative). The " \geq " part is another clever application of complex analysis.

For commutative A, consider the usual embedding

$$
\iota: A \hookrightarrow A^{* *}, \quad \iota(x)(f)=f(x) .
$$

Since every element of $A^{* *}$ is a continuous function on $\hat{A} \subset A^{*}$ in a natural way, we have a restriction mapping $A^{* *} \rightarrow \mathcal{C}(\hat{A})$. The composition of these two maps yields:

For commutative A, consider the usual embedding

$$
\iota: A \hookrightarrow A^{* *}, \quad \iota(x)(f)=f(x) .
$$

Since every element of $A^{* *}$ is a continuous function on $\hat{A} \subset A^{*}$ in a natural way, we have a restriction mapping $A^{* *} \rightarrow \mathcal{C}(\hat{A})$. The composition of these two maps yields:

Definition (Gelfand transform)

The Gelfand transform is the unital homomorphism $A \rightarrow \mathcal{C}(\hat{A}), x \mapsto \hat{x}$ given by $\hat{x}(\varphi)=\varphi(x)$.

For commutative A, consider the usual embedding

$$
\iota: A \hookrightarrow A^{* *}, \quad \iota(x)(f)=f(x) .
$$

Since every element of $A^{* *}$ is a continuous function on $\hat{A} \subset A^{*}$ in a natural way, we have a restriction mapping $A^{* *} \rightarrow \mathcal{C}(\hat{A})$. The composition of these two maps yields:

Definition (Gelfand transform)

The Gelfand transform is the unital homomorphism $A \rightarrow \mathcal{C}(\hat{A}), x \mapsto \hat{x}$ given by $\hat{x}(\varphi)=\varphi(x)$.

Observation

The Gelfand transform is norm-contractive. In fact, for $x \in A$ we have $\hat{x}(\hat{A})=\sigma(x)$ and hence $\|\hat{x}\|=r(x) \leq\|x\|$ for all $x \in A$.

Definition

Let A be a unital C^{*}-algebra. An element $x \in A$ is
(1) normal, if $x^{*} x=x x^{*}$.
(2) self-adjoint, if $x=x^{*}$.
(3) positive, if $x=y^{*} y$ for some $y \in A$.

Write $x \geq 0$.
(c) a unitary, if $x^{*} x=x x^{*}=1$.

Definition

Let A be a unital C^{*}-algebra. An element $x \in A$ is
(1) normal, if $x^{*} x=x x^{*}$.
(2) self-adjoint, if $x=x^{*}$.
(3) positive, if $x=y^{*} y$ for some $y \in A$. Write $x \geq 0$.
(9) a unitary, if $x^{*} x=x x^{*}=1$.

Definition

Let A be a unital C^{*}-algebra. An element $x \in A$ is
(1) normal, if $x^{*} x=x x^{*}$.
(2) self-adjoint, if $x=x^{*}$.
(3) positive, if $x=y^{*} y$ for some $y \in A$.

Observation

Any element $x \in A$ can be written as $x=x_{1}+i x_{2}$ for the self-adjoint elements

$$
x_{1}=\frac{x+x^{*}}{2}, \quad x_{2}=\frac{x-x^{*}}{2 i} .
$$

Definition

Let A be a unital C^{*}-algebra. An element $x \in A$ is
(1) normal, if $x^{*} x=x x^{*}$.
(2) self-adjoint, if $x=x^{*}$.
(3) positive, if $x=y^{*} y$ for some $y \in A$.

(9) a unitary, if $x^{*} x=x x^{*}=1$.

Observation

Any element $x \in A$ can be written as $x=x_{1}+i x_{2}$ for the self-adjoint elements

$$
x_{1}=\frac{x+x^{*}}{2}, \quad x_{2}=\frac{x-x^{*}}{2 i} .
$$

Observation

If $x \in A$ is self-adjoint, then it follows for all $t \in \mathbb{R}$ that

$$
\|x+i t\|^{2}=\|(x-i t)(x+i t)\|=\left\|x^{2}+t^{2}\right\| \leq\|x\|^{2}+t^{2} .
$$

Proposition

If $x \in A$ is self-adjoint, then $\sigma(x) \subset \mathbb{R}$.
Proof: Step 1: The spectrum of x inside A is the same as the spectrum of x inside its bicommutant $A \cap\{x\}^{\prime \prime} .{ }^{1}$ As x is self-adjoint, this is a commutative C^{*}-algebra. So assume A is commutative.
${ }^{1}$ This holds in any Banach algebra.

Proposition

If $x \in A$ is self-adjoint, then $\sigma(x) \subset \mathbb{R}$.
Proof: Step 1: The spectrum of x inside A is the same as the spectrum of x inside its bicommutant $A \cap\{x\}^{\prime \prime} .{ }^{1}$ As x is self-adjoint, this is a commutative C^{*}-algebra. So assume A is commutative.
Step 2: For $\varphi \in \hat{A}$, we get

$$
|\varphi(x)+i t|^{2}=\left|\varphi(x+i t)^{2}\right| \leq\|x\|^{2}+t^{2}, \quad t \in \mathbb{R}
$$

But this is only possible for $\varphi(x) \in \mathbb{R}$, as the left-hand expression will otherwise outgrow the right one as $t \rightarrow(\pm) \infty .^{2}$

[^0]
Proposition

Let A be a commutative C^{*}-algebra. Then every character $\varphi \in \hat{A}$ is *-preserving, i.e., it satisfies $\varphi\left(x^{*}\right)=\overline{\varphi(x)}$ for all $x \in A$.

Proof: Write $x=x_{1}+i x_{2}$ as before and use the above for

$$
\varphi\left(x^{*}\right)=\varphi\left(x_{1}-i x_{2}\right)=\varphi\left(x_{1}\right)-i \varphi\left(x_{2}\right)=\overline{\varphi\left(x_{1}\right)+i \varphi\left(x_{2}\right)}=\overline{\varphi(x)}
$$

Proposition

Let A be a commutative C^{*}-algebra. Then every character $\varphi \in \hat{A}$ is *-preserving, i.e., it satisfies $\varphi\left(x^{*}\right)=\overline{\varphi(x)}$ for all $x \in A$.

Proof: Write $x=x_{1}+i x_{2}$ as before and use the above for

$$
\varphi\left(x^{*}\right)=\varphi\left(x_{1}-i x_{2}\right)=\varphi\left(x_{1}\right)-i \varphi\left(x_{2}\right)=\overline{\varphi\left(x_{1}\right)+i \varphi\left(x_{2}\right)}=\overline{\varphi(x)}
$$

Corollary

For a commutative C^{*}-algebra A, the Gelfand transform

$$
A \rightarrow \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi)=\varphi(x)
$$

is a *-homomorphism.

Let A be a C^{*}-algebra and $B \subseteq A$ a C^{*}-subalgebra.

Observation

An element $x \in A$ is invertible if and only if $x^{*} x$ and $x x^{*}$ are invertible.

Let A be a C^{*}-algebra and $B \subseteq A$ a C^{*}-subalgebra.

Observation

An element $x \in A$ is invertible if and only if $x^{*} x$ and $x x^{*}$ are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.
Proof: By the above we may assume $x=x^{*}$. We know $\sigma_{B}(x) \subset \mathbb{R}$, so $x_{n}=x+\frac{i}{n} \xrightarrow{n \rightarrow \infty} x$ is a sequence of invertibles in B. We know $\left\|x_{n}-x\right\|<\left\|x_{n}^{-1}\right\|^{-1}$ implies that x is invertible in B.

Let A be a C^{*}-algebra and $B \subseteq A$ a C^{*}-subalgebra.

Observation

An element $x \in A$ is invertible if and only if $x^{*} x$ and $x x^{*}$ are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.
Proof: By the above we may assume $x=x^{*}$. We know $\sigma_{B}(x) \subset \mathbb{R}$, so $x_{n}=x+\frac{i}{n} \xrightarrow{n \rightarrow \infty} x$ is a sequence of invertibles in B. We know $\left\|x_{n}-x\right\|<\left\|x_{n}^{-1}\right\|^{-1}$ implies that x is invertible in B. So if x is not invertible in B, then $\left\|x_{n}^{-1}\right\| \rightarrow \infty$. Since inversion is norm-continuous on the invertibles in any Banach algebra, it follows that x cannot be invertible in A.

Let A be a C^{*}-algebra and $B \subseteq A$ a C^{*}-subalgebra.

Observation

An element $x \in A$ is invertible if and only if $x^{*} x$ and $x x^{*}$ are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.
Proof: By the above we may assume $x=x^{*}$. We know $\sigma_{B}(x) \subset \mathbb{R}$, so $x_{n}=x+\frac{i}{n} \xrightarrow{n \rightarrow \infty} x$ is a sequence of invertibles in B. We know $\left\|x_{n}-x\right\|<\left\|x_{n}^{-1}\right\|^{-1}$ implies that x is invertible in B. So if x is not invertible in B, then $\left\|x_{n}^{-1}\right\| \rightarrow \infty$. Since inversion is norm-continuous on the invertibles in any Banach algebra, it follows that x cannot be invertible in A.

Corollary

We have $\sigma_{B}(x)=\sigma_{A}(x)$ for all $x \in B .^{3}$

[^1]Let A be a C^{*}-algebra.

Observation

$x \in A$ is normal if and only if $\mathrm{C}^{*}(x, \mathbf{1}) \subseteq A$ is commutative. In this case the spectrum of $\mathrm{C}^{*}(x, \mathbf{1})$ is homeomorphic to $\sigma(x)$.

Let A be a C^{*}-algebra.

Observation

$x \in A$ is normal if and only if $\mathrm{C}^{*}(x, \mathbf{1}) \subseteq A$ is commutative. In this case the spectrum of $\mathrm{C}^{*}(x, \mathbf{1})$ is homeomorphic to $\sigma(x)$.

Proposition

For a normal element $x \in A$, we have $r(x)=\|x\|$.
Proof: Observe from the C^{*}-identity that

$$
\|x\|^{4}=\left\|x^{*} x\right\|^{2}=\left\|x^{*} x x^{*} x\right\|=\left\|\left(x^{2}\right)^{*} x^{2}\right\|=\left\|x^{2}\right\|^{2} .
$$

By induction, we get $\left\|x^{2^{n}}\right\|=\|x\|^{2^{n}}$. By the spectral radius formula, we have

$$
r(x)=\lim _{n \rightarrow \infty} \sqrt[2^{n}]{\left\|x^{2^{n}}\right\|}=\|x\|
$$

Let A be a C^{*}-algebra.

Observation

$x \in A$ is normal if and only if $\mathrm{C}^{*}(x, \mathbf{1}) \subseteq A$ is commutative. In this case the spectrum of $\mathrm{C}^{*}(x, \mathbf{1})$ is homeomorphic to $\sigma(x)$.

Proposition

For a normal element $x \in A$, we have $r(x)=\|x\|$.
Proof: Observe from the C^{*}-identity that

$$
\|x\|^{4}=\left\|x^{*} x\right\|^{2}=\left\|x^{*} x x^{*} x\right\|=\left\|\left(x^{2}\right)^{*} x^{2}\right\|=\left\|x^{2}\right\|^{2} .
$$

By induction, we get $\left\|x^{2^{n}}\right\|=\|x\|^{2^{n}}$. By the spectral radius formula, we have

$$
r(x)=\lim _{n \rightarrow \infty} \sqrt[2^{n}]{\left\|x^{2^{n}}\right\|}=\|x\|
$$

Corollary

For all $x \in A$, we have $\|x\|=\sqrt{\left\|x^{*} x\right\|}=\sqrt{r\left(x^{*} x\right)}$.

Theorem (Gelfand-Naimark)

For a commutative C^{*}-algebra A, the Gelfand transform

$$
A \rightarrow \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi)=\varphi(x)
$$

is an isometric *-isomorphism.
Proof: We have already seen that it is a $*$-homomorphism.

Theorem (Gelfand-Naimark)

For a commutative C^{*}-algebra A, the Gelfand transform

$$
A \rightarrow \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi)=\varphi(x)
$$

is an isometric $*$-isomorphism.
Proof: We have already seen that it is a $*$-homomorphism.
As every element $x \in A$ is normal, we have $\|x\|=r(x)=\|\hat{x}\|$, hence the Gelfand transform is isometric.

Theorem (Gelfand-Naimark)

For a commutative C^{*}-algebra A, the Gelfand transform

$$
A \rightarrow \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi)=\varphi(x)
$$

is an isometric $*$-isomorphism.
Proof: We have already seen that it is a $*$-homomorphism.
As every element $x \in A$ is normal, we have $\|x\|=r(x)=\|\hat{x}\|$, hence the Gelfand transform is isometric.
For surjectivity, observe that the image of A in $\mathcal{C}(\hat{A})$ is a closed unital self-adjoint subalgebra, and which separates points. By the Stone-Weierstrass theorem, it follows that it is all of $\mathcal{C}(\hat{A})$.

Observation

Let $x \in A$ be a normal element in a C^{*}-algebra. Let $A_{x}=\mathrm{C}^{*}(x, \mathbf{1})$ be the commutative C^{*}-subalgebra generated by x. Then $\hat{A}_{x} \cong \sigma(x)$ by observing that for every $\lambda \in \sigma(x)$ there is a unique $\varphi \in \hat{A}_{x}$ with $\varphi(x)=\lambda$. Under this identification $\hat{x} \in \mathcal{C}\left(\hat{A}_{x}\right)$ becomes the identity map on $\sigma(x)$.

Observation

Let $x \in A$ be a normal element in a C^{*}-algebra. Let $A_{x}=\mathrm{C}^{*}(x, \mathbf{1})$ be the commutative C^{*}-subalgebra generated by x. Then $\hat{A}_{x} \cong \sigma(x)$ by observing that for every $\lambda \in \sigma(x)$ there is a unique $\varphi \in \hat{A}_{x}$ with $\varphi(x)=\lambda$. Under this identification $\hat{x} \in \mathcal{C}\left(\hat{A}_{x}\right)$ becomes the identity map on $\sigma(x)$.

Theorem (functional calculus)

Let $x \in A$ be a normal element in a (unital) C^{*}-algebra. There exists a unique (isometric) *-homomorphism

$$
\mathcal{C}(\sigma(x)) \rightarrow A, \quad f \mapsto f(x)
$$

that sends $\operatorname{id}_{\sigma(x)}$ to x.
Proof: Take the inverse of the Gelfand transform

$$
A_{x} \rightarrow \mathcal{C}\left(\hat{A}_{x}\right) \cong \mathcal{C}(\sigma(x))
$$

Theorem

An element $x \in A$ is positive if and only if x is normal and $\sigma(x) \subseteq \mathbb{R}^{\geq 0}$.
Proof: If the latter is true, then $y=\sqrt{x}$ satisfies $y^{*} y=y^{2}=x$. So x is positive. The "only if" part is much trickier.

Theorem

An element $x \in A$ is positive if and only if x is normal and $\sigma(x) \subseteq \mathbb{R}^{\geq 0}$.
Proof: If the latter is true, then $y=\sqrt{x}$ satisfies $y^{*} y=y^{2}=x$. So x is positive. The "only if" part is much trickier.

Observation

$x=x^{*} \in A$ is positive if and only if $\|r-x\| \leq r$ for some (or all) $r \geq\|x\|$.

Theorem

An element $x \in A$ is positive if and only if x is normal and $\sigma(x) \subseteq \mathbb{R}^{\geq 0}$.
Proof: If the latter is true, then $y=\sqrt{x}$ satisfies $y^{*} y=y^{2}=x$. So x is positive. The "only if" part is much trickier.

Observation

$x=x^{*} \in A$ is positive if and only if $\|r-x\| \leq r$ for some (or all) $r \geq\|x\|$.

Corollary

For $a, b \in A$ positive, the sum $a+b$ is positive.
Proof: Apply the triangle inequality: We have $\|a+b\| \leq\|a\|+\|b\|$ and

$$
\|(\|a\|+\|b\|)-(a+b)\| \leq\| \| a\|-a\|+\| \| b\|-b\| \leq\|a\|+\|b\|
$$

Theorem

Every algebraic (unital) *-homomorphism $\psi: A \rightarrow B$ between (unital) C^{*}-algebras is contractive, and hence continuous. ${ }^{4}$

Proof: It is clear that $\sigma(\psi(x)) \subseteq \sigma(x)$ for all $x \in A$. By the spectral characterization of the norm, it follows that

$$
\|\psi(x)\|^{2}=r\left(\psi\left(x^{*} x\right)\right) \leq r\left(x^{*} x\right)=\|x\|^{2} .
$$

${ }^{4}$ This generalizes to the non-unital case as well!

Theorem

Every algebraic (unital) *-homomorphism $\psi: A \rightarrow B$ between (unital) C^{*}-algebras is contractive, and hence continuous. ${ }^{4}$

Proof: It is clear that $\sigma(\psi(x)) \subseteq \sigma(x)$ for all $x \in A$. By the spectral characterization of the norm, it follows that

$$
\|\psi(x)\|^{2}=r\left(\psi\left(x^{*} x\right)\right) \leq r\left(x^{*} x\right)=\|x\|^{2} .
$$

Observation

For $x \in A$ normal and $f \in \mathcal{C}(\sigma(x))$, we have $\psi(f(x))=f(\psi(x))$.
Proof: Clear for $f \in\left\{{ }^{*}\right.$-polynomials $\}$. The general case follows by continuity of the assignments $[f \mapsto f(x)]$ and $[f \mapsto f(\psi(x))$] and the Weierstrass approximation theorem.
${ }^{4}$ This generalizes to the non-unital case as well!

Theorem

Every injective $*$-homomorphism $\psi: A \rightarrow B$ is isometric.
Proof: By the C^{*}-identity, it suffices to show $\|\psi(x)\|=\|x\|$ for positive $x \in A$. Suppose we have $\|\psi(x)\|<\|x\|$. Choose a non-zero continuous function $f: \sigma(x) \rightarrow \mathbb{R}^{\geq 0}$ with $f(\lambda)=0$ for $\lambda \leq\|\psi(x)\|$.

Theorem

Every injective $*$-homomorphism $\psi: A \rightarrow B$ is isometric.
Proof: By the C^{*}-identity, it suffices to show $\|\psi(x)\|=\|x\|$ for positive $x \in A$. Suppose we have $\|\psi(x)\|<\|x\|$. Choose a non-zero continuous function $f: \sigma(x) \rightarrow \mathbb{R}^{\geq 0}$ with $f(\lambda)=0$ for $\lambda \leq\|\psi(x)\|$.

Theorem

Every injective $*$-homomorphism $\psi: A \rightarrow B$ is isometric.
Proof: By the C^{*}-identity, it suffices to show $\|\psi(x)\|=\|x\|$ for positive $x \in A$. Suppose we have $\|\psi(x)\|<\|x\|$. Choose a non-zero continuous function $f: \sigma(x) \rightarrow \mathbb{R}^{\geq 0}$ with $f(\lambda)=0$ for $\lambda \leq\|\psi(x)\|$.

Then $f(x) \neq 0$, but

$$
\psi(f(x))=f(\psi(x))=0
$$

which means ψ is not injective.

Definition

Let A be a C^{*}-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi: A \rightarrow \mathcal{B}(\mathcal{H})$.

Definition

Let A be a C^{*}-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi: A \rightarrow \mathcal{B}(\mathcal{H})$. It is said to be
(1) faithful, if it is injective.

Definition

Let A be a C^{*}-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi: A \rightarrow \mathcal{B}(\mathcal{H})$. It is said to be
(1) faithful, if it is injective.
(2) non-degenerate if $\overline{\operatorname{span}} \pi(A) \mathcal{H}=\mathcal{H}$.

Definition

Let A be a C^{*}-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi: A \rightarrow \mathcal{B}(\mathcal{H})$. It is said to be
(1) faithful, if it is injective.
(2) non-degenerate if $\overline{\operatorname{span}} \pi(A) \mathcal{H}=\mathcal{H}$.
(3) cyclic, if there exists a vector $\xi \in \mathcal{H}$ with $\overline{\pi(A) \xi}=\mathcal{H}$. For $\|\xi\|=1$, we say that (π, \mathcal{H}, ξ) is a cyclic representation.

Definition

Let A be a C^{*}-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi: A \rightarrow \mathcal{B}(\mathcal{H})$. It is said to be
(1) faithful, if it is injective.
(2) non-degenerate if $\overline{\operatorname{span}} \pi(A) \mathcal{H}=\mathcal{H}$.
(3) cyclic, if there exists a vector $\xi \in \mathcal{H}$ with $\overline{\pi(A) \xi}=\mathcal{H}$. For $\|\xi\|=1$, we say that (π, \mathcal{H}, ξ) is a cyclic representation.
(c) irreducible, if $\overline{\pi(A) \xi}=\mathcal{H}$ for all $0 \neq \xi \in \mathcal{H}$.

Let A be a C*-algebra.
Definition
A functional $\varphi: A \rightarrow \mathbb{C}$ is called positive, if $\varphi(a) \geq 0$ whenever $a \geq 0$.

Let A be a C*-algebra.

Definition

A functional $\varphi: A \rightarrow \mathbb{C}$ is called positive, if $\varphi(a) \geq 0$ whenever $a \geq 0$.

Observation

Every positive functional $\varphi: A \rightarrow \mathbb{C}$ is continuous.
Proof: Suppose not. By functional calculus, every element $x \in A$ can be written as a linear combination of at most four positive elements

$$
x=\left(x_{1}^{+}-x_{1}^{-}\right)+i\left(x_{2}^{+}-x_{2}^{-}\right)
$$

with norms $\left\|x_{1}^{+}\right\|,\left\|x_{1}^{-}\right\|,\left\|x_{2}^{+}\right\|,\left\|x_{2}^{-}\right\| \leq\|x\|$. So φ is unbounded on the positive elements.

Let A be a C*-algebra.

Definition

A functional $\varphi: A \rightarrow \mathbb{C}$ is called positive, if $\varphi(a) \geq 0$ whenever $a \geq 0$.

Observation

Every positive functional $\varphi: A \rightarrow \mathbb{C}$ is continuous.
Proof: Suppose not. By functional calculus, every element $x \in A$ can be written as a linear combination of at most four positive elements

$$
x=\left(x_{1}^{+}-x_{1}^{-}\right)+i\left(x_{2}^{+}-x_{2}^{-}\right)
$$

with norms $\left\|x_{1}^{+}\right\|,\left\|x_{1}^{-}\right\|,\left\|x_{2}^{+}\right\|,\left\|x_{2}^{-}\right\| \leq\|x\|$. So φ is unbounded on the positive elements.
Given $n \geq 1$, one may choose $a_{n} \geq 0$ with $\left\|a_{n}\right\|=1$ and $\varphi\left(a_{n}\right) \geq n 2^{n}$. Then $a=\sum_{n=1}^{\infty} 2^{-n} a_{n}$ is a positive element in A. By positivity of φ, we have $\varphi(a) \geq \varphi\left(2^{-n} a_{n}\right) \geq n$ for all n, a contradiction.

Observation

For a positive functional $\varphi: A \rightarrow \mathbb{C}$, we have $\varphi\left(x^{*}\right)=\overline{\varphi(x)}$.

Observation

For a positive functional $\varphi: A \rightarrow \mathbb{C}$, we have $\varphi\left(x^{*}\right)=\overline{\varphi(x)}$.

Corollary

For a positive functional φ, the assignment $(x, y) \mapsto \varphi\left(y^{*} x\right)$ defines a positive semi-definite, anti-symmetric, sesqui-linear form. In particular, it is subject to the Cauchy-Schwarz inequality

$$
\left|\varphi\left(y^{*} x\right)\right|^{2} \leq \varphi\left(x^{*} x\right) \varphi\left(y^{*} y\right)
$$

Theorem

Let A be a unital C^{*}-algebra. A linear functional $\varphi: A \rightarrow \mathbb{C}$ is positive if and only if $\|\varphi\|=\varphi(\mathbf{1})$.

Proof: For the "only if" part, observe for $\|y\| \leq 1$ that

$$
|\varphi(y)|^{2}=|\varphi(\mathbf{1} y)|^{2} \leq \varphi(\mathbf{1}) \varphi\left(y^{*} y\right) \leq \varphi(\mathbf{1})\|\varphi\| .
$$

Taking the supremum over all such y yields $\|\varphi\|=\varphi(\mathbf{1})$.

Theorem

Let A be a unital C^{*}-algebra. A linear functional $\varphi: A \rightarrow \mathbb{C}$ is positive if and only if $\|\varphi\|=\varphi(\mathbf{1})$.

Proof: For the "only if" part, observe for $\|y\| \leq 1$ that

$$
|\varphi(y)|^{2}=|\varphi(\mathbf{1} y)|^{2} \leq \varphi(\mathbf{1}) \varphi\left(y^{*} y\right) \leq \varphi(\mathbf{1})\|\varphi\| .
$$

Taking the supremum over all such y yields $\|\varphi\|=\varphi(\mathbf{1})$. For the "if" part, suppose $\varphi(\mathbf{1})=1=\|\varphi\|$. Let $a \geq 0$. Repeating an argument we have used for characters, we know $\varphi(a) \in \mathbb{R}$.

Theorem

Let A be a unital C^{*}-algebra. A linear functional $\varphi: A \rightarrow \mathbb{C}$ is positive if and only if $\|\varphi\|=\varphi(\mathbf{1})$.

Proof: For the "only if" part, observe for $\|y\| \leq 1$ that

$$
|\varphi(y)|^{2}=|\varphi(\mathbf{1} y)|^{2} \leq \varphi(\mathbf{1}) \varphi\left(y^{*} y\right) \leq \varphi(\mathbf{1})\|\varphi\| .
$$

Taking the supremum over all such y yields $\|\varphi\|=\varphi(\mathbf{1})$.
For the "if" part, suppose $\varphi(\mathbf{1})=1=\|\varphi\|$. Let $a \geq 0$. Repeating an argument we have used for characters, we know $\varphi(a) \in \mathbb{R}$. Suppose $\varphi(a)<0$. As $\sigma(x) \subseteq \mathbb{R}^{\geq 0}$, we observe

$$
\varphi(a) \notin\left\{\lambda \in \mathbb{C}\left|\left|\lambda_{0}-\lambda\right| \leq \rho\right\} \supseteq \sigma(a),\right.
$$

where $\lambda_{0}=\frac{1}{2}(\max \sigma(a)+\min \sigma(a))$ and $\rho=\frac{1}{2}(\max \sigma(a)-\min \sigma(a))$.

Theorem

Let A be a unital C^{*}-algebra. A linear functional $\varphi: A \rightarrow \mathbb{C}$ is positive if and only if $\|\varphi\|=\varphi(\mathbf{1})$.

Proof: For the "only if" part, observe for $\|y\| \leq 1$ that

$$
|\varphi(y)|^{2}=|\varphi(\mathbf{1} y)|^{2} \leq \varphi(\mathbf{1}) \varphi\left(y^{*} y\right) \leq \varphi(\mathbf{1})\|\varphi\| .
$$

Taking the supremum over all such y yields $\|\varphi\|=\varphi(\mathbf{1})$.
For the "if" part, suppose $\varphi(\mathbf{1})=1=\|\varphi\|$. Let $a \geq 0$. Repeating an argument we have used for characters, we know $\varphi(a) \in \mathbb{R}$. Suppose $\varphi(a)<0$. As $\sigma(x) \subseteq \mathbb{R} \geq 0$, we observe

$$
\varphi(a) \notin\left\{\lambda \in \mathbb{C}\left|\left|\lambda_{0}-\lambda\right| \leq \rho\right\} \supseteq \sigma(a),\right.
$$

where $\lambda_{0}=\frac{1}{2}(\max \sigma(a)+\min \sigma(a))$ and $\rho=\frac{1}{2}(\max \sigma(a)-\min \sigma(a))$.
Then $y=\lambda_{0}-a$ is self-adjoint, hence $\|y\|=r(y)=\rho$, but $\varphi(y)=\lambda_{0}-\varphi(a)>\rho$, a contradiction to $\|\varphi\|=1$.

Corollary

For an inclusion of (unital) C*-algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn-Banach and the previous slide.

Corollary

For an inclusion of (unital) C*-algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn-Banach and the previous slide.

Definition

A state on a C^{*}-algebra is a positive functional with norm one.

Corollary

For an inclusion of (unital) C^{*}-algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn-Banach and the previous slide.

Definition

A state on a C^{*}-algebra is a positive functional with norm one.

Observation

For $x \in A$ normal, there is a state φ with $\|x\|=|\varphi(x)|$.
Proof: Pick $\lambda_{0} \in \sigma(x)$ with $\left|\lambda_{0}\right|=\|x\|$. We know

$$
A_{x}=\mathrm{C}^{*}(x, \mathbf{1}) \cong \mathcal{C}(\sigma(x))
$$

so that $x \mapsto$ id. The evaluation map $f \mapsto f\left(\lambda_{0}\right)$ corresponds to a state on A_{x} with the desired property. Extend it to a state φ on A.

Let A be a C^{*}-algebra.

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if $b-a$ is positive.

Let A be a C*-algebra.

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if $b-a$ is positive.

Observation

- The order " \leq " is compatible with sums.
- For all self-adjoint $a \in A$, we have $a \leq\|a\|$.
- If $a \leq b$ and $x \in A$ is any element, then $x^{*} a x \leq x^{*} b x$.

Let A be a C*-algebra.

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if $b-a$ is positive.

Observation

- The order " \leq " is compatible with sums.
- For all self-adjoint $a \in A$, we have $a \leq\|a\|$.
- If $a \leq b$ and $x \in A$ is any element, then $x^{*} a x \leq x^{*} b x$.

For proving the last part, write $b-a=c^{*} c$. Then

$$
x^{*} b x-x^{*} a x=x^{*}(b-a) x=x^{*} c^{*} c x=(c x)^{*} c x \geq 0 .
$$

Given a state φ on A, we have observed that $(x, y) \mapsto \varphi\left(y^{*} x\right)$ forms a positive semi-definite, anti-symmetric, sesqui-linear form.

Observation

For all $a, x \in A$, we have $\varphi\left(x^{*} a^{*} a x\right) \leq\|a\|^{2} \varphi\left(x^{*} x\right)$. The null space $N_{\varphi}=\left\{x \in A \mid \varphi\left(x^{*} x\right)=0\right\}$ is a closed left ideal in A.

Given a state φ on A, we have observed that $(x, y) \mapsto \varphi\left(y^{*} x\right)$ forms a positive semi-definite, anti-symmetric, sesqui-linear form.

Observation

For all $a, x \in A$, we have $\varphi\left(x^{*} a^{*} a x\right) \leq\|a\|^{2} \varphi\left(x^{*} x\right)$. The null space $N_{\varphi}=\left\{x \in A \mid \varphi\left(x^{*} x\right)=0\right\}$ is a closed left ideal in A.

Observation

The quotient $H_{\varphi}=A / N_{\varphi}$ carries the inner product

$$
\langle[x] \mid[y]\rangle_{\varphi}=\varphi\left(y^{*} x\right),
$$

and the left A-module structure satisfies $\|[a x]\|_{\varphi} \leq\|a\| \cdot\|[x]\|_{\varphi}$ for all $a, x \in A$.

Definition (Gelfand-Naimark-Segal construction)

For a state φ on a C^{*}-algebra A, let \mathcal{H}_{φ} be the Hilbert space completion $\mathcal{H}_{\varphi}={\overline{H_{\varphi}}}^{\|} \cdot \|_{\varphi}$. Then \mathcal{H}_{φ} carries a unique left A-module structure which extends the one on H_{φ} and is continuous in \mathcal{H}_{φ}. This gives us a representation

$$
\pi_{\varphi}: A \rightarrow \mathcal{B}\left(\mathcal{H}_{\varphi}\right) \quad \text { via } \quad \pi_{\varphi}(a)([x])=[a x]
$$

for all $a, x \in A$.

Definition (Gelfand-Naimark-Segal construction)

For a state φ on a C^{*}-algebra A, let \mathcal{H}_{φ} be the Hilbert space completion $\mathcal{H}_{\varphi}={\overline{H_{\varphi}}}^{\|} \cdot \|_{\varphi}$. Then \mathcal{H}_{φ} carries a unique left A-module structure which extends the one on H_{φ} and is continuous in \mathcal{H}_{φ}. This gives us a representation

$$
\pi_{\varphi}: A \rightarrow \mathcal{B}\left(\mathcal{H}_{\varphi}\right) \quad \text { via } \quad \pi_{\varphi}(a)([x])=[a x]
$$

for all $a, x \in A$.
The only non-tautological part is that π_{φ} is compatible with adjoints. For this we observe

$$
\langle[a x] \mid[y]\rangle_{\varphi}=\varphi\left(y^{*} a x\right)=\varphi\left(\left(a^{*} y\right)^{*} x\right)=\left\langle[x] \mid\left[a^{*} y\right]\right\rangle_{\varphi},
$$

which forces $\pi_{\varphi}(a)^{*}=\pi_{\varphi}\left(a^{*}\right)$.

Definition (Gelfand-Naimark-Segal construction)

For a state φ on a C^{*}-algebra A, let \mathcal{H}_{φ} be the Hilbert space completion $\mathcal{H}_{\varphi}={\overline{H_{\varphi}}}^{\|} \cdot \|_{\varphi}$. Then \mathcal{H}_{φ} carries a unique left A-module structure which extends the one on H_{φ} and is continuous in \mathcal{H}_{φ}. This gives us a representation

$$
\pi_{\varphi}: A \rightarrow \mathcal{B}\left(\mathcal{H}_{\varphi}\right) \quad \text { via } \quad \pi_{\varphi}(a)([x])=[a x]
$$

for all $a, x \in A$.
The only non-tautological part is that π_{φ} is compatible with adjoints. For this we observe

$$
\langle[a x] \mid[y]\rangle_{\varphi}=\varphi\left(y^{*} a x\right)=\varphi\left(\left(a^{*} y\right)^{*} x\right)=\left\langle[x] \mid\left[a^{*} y\right]\right\rangle_{\varphi},
$$

which forces $\pi_{\varphi}(a)^{*}=\pi_{\varphi}\left(a^{*}\right)$.

Definition

In the (unital) situation above, set $\xi_{\varphi}=[\mathbf{1}] \in \mathcal{H}_{\varphi}$. Then $\left\|\xi_{\varphi}\right\|=1$ as we have assumed φ to be a state.

Theorem (GNS)

The assignment $\varphi \mapsto\left(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi}\right)$ is a 1-1 correspondence between states on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi}\right)$ is cyclic. Indeed, $\pi_{\varphi}(A) \xi_{\varphi}=\pi_{\varphi}(A)([\mathbf{1}])=[A]=H_{\varphi} \subseteq \mathcal{H}_{\varphi}$, which is dense by definition.

Theorem (GNS)

The assignment $\varphi \mapsto\left(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi}\right)$ is a 1-1 correspondence between states on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi}\right)$ is cyclic. Indeed, $\pi_{\varphi}(A) \xi_{\varphi}=\pi_{\varphi}(A)([\mathbf{1}])=[A]=H_{\varphi} \subseteq \mathcal{H}_{\varphi}$, which is dense by definition.

Theorem (Gelfand-Naimark)

Every abstract C^{*}-algebra A is a concrete C^{*}-algebra. In particular, there exists a faithful representation $\pi: A \rightarrow \mathcal{H}$ on some Hilbert space. ${ }^{5}$

Proof: For $x \in A$, find φ_{x} with $\left\|\varphi_{x}\left(x^{*} x\right)\right\|=\|x\|^{2}$. Then form the cyclic representation $\left(\pi_{\varphi_{x}}, \mathcal{H}_{\varphi_{x}}, \xi_{\varphi_{x}}\right)$.
${ }^{5}$ If A is separable, we may choose \mathcal{H} to be separable!

Theorem (GNS)

The assignment $\varphi \mapsto\left(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi}\right)$ is a 1-1 correspondence between states on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi}\right)$ is cyclic. Indeed, $\pi_{\varphi}(A) \xi_{\varphi}=\pi_{\varphi}(A)([\mathbf{1}])=[A]=H_{\varphi} \subseteq \mathcal{H}_{\varphi}$, which is dense by definition.

Theorem (Gelfand-Naimark)

Every abstract C^{*}-algebra A is a concrete C^{*}-algebra. In particular, there exists a faithful representation $\pi: A \rightarrow \mathcal{H}$ on some Hilbert space. ${ }^{5}$

Proof: For $x \in A$, find φ_{x} with $\left\|\varphi_{x}\left(x^{*} x\right)\right\|=\|x\|^{2}$. Then form the cyclic representation $\left(\pi_{\varphi_{x}}, \mathcal{H}_{\varphi_{x}}, \xi_{\varphi_{x}}\right)$. We claim that the direct sum

$$
\pi:=\bigoplus_{x \in A} \pi_{\varphi_{x}}: A \rightarrow \mathcal{B}\left(\bigoplus_{x \in A} \mathcal{H}_{\varphi_{x}}\right)
$$

does it. Indeed, given any $x \neq 0$ we have

$$
\|\pi(x)\|^{2} \geq\left\|\pi(x) \xi_{\varphi_{x}}\right\|^{2}=\langle[x] \mid[x]\rangle_{\varphi_{x}}=\varphi_{x}\left(x^{*} x\right)=\|x\|^{2}
$$

${ }^{5}$ If A is separable, we may choose \mathcal{H} to be separable!

Let us now discuss noncommutative examples of C^{*}-algebras:

Example

The set of \mathbb{C}-valued $n \times n$ matrices, denoted M_{n}, becomes a C^{*}-algebra. By linear algebra, $M_{n} \cong \mathcal{B}\left(\mathbb{C}^{n}\right)$.

Let us now discuss noncommutative examples of C^{*}-algebras:

Example

The set of \mathbb{C}-valued $n \times n$ matrices, denoted M_{n}, becomes a C^{*}-algebra. By linear algebra, $M_{n} \cong \mathcal{B}\left(\mathbb{C}^{n}\right)$.

Example

For numbers $n_{1}, \ldots, n_{k} \geq 1$, the C^{*}-algebra

$$
A=M_{n_{1}} \oplus M_{n_{2}} \oplus \cdots \oplus M_{n_{k}}
$$

has finite (\mathbb{C}-linear) dimension.

Let us now discuss noncommutative examples of C^{*}-algebras:

Example

The set of \mathbb{C}-valued $n \times n$ matrices, denoted M_{n}, becomes a C^{*}-algebra. By linear algebra, $M_{n} \cong \mathcal{B}\left(\mathbb{C}^{n}\right)$.

Example

For numbers $n_{1}, \ldots, n_{k} \geq 1$, the C^{*}-algebra

$$
A=M_{n_{1}} \oplus M_{n_{2}} \oplus \cdots \oplus M_{n_{k}}
$$

has finite (\mathbb{C}-linear) dimension.

Theorem

Every finite-dimensional C*-algebras has this form.

Recall

A linear map between Banach spaces $T: A \rightarrow B$ is called compact, if $\overline{T \cdot A_{\|\cdot\| \leq 1}} \subseteq B$ is compact.

Recall

A linear map between Banach spaces $T: A \rightarrow B$ is called compact, if

Observation

Compact operators are bounded. The composition of a compact operator with a bounded operator is compact.

Recall

A linear map between Banach spaces $T: A \rightarrow B$ is called compact, if $\overline{T \cdot A_{\|\cdot\| \leq 1}} \subseteq B$ is compact.

Observation

Compact operators are bounded. The composition of a compact operator with a bounded operator is compact.

Example

For a Hilbert space \mathcal{H}, the set of compact operators $\mathcal{K}(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H})$ forms a norm-closed, $*$-closed, two-sided ideal. If $\operatorname{dim}(\mathcal{H})=\infty$, then it is a proper ideal and a non-unital C^{*}-algebra.

Notation (ad-hoc!)

Let \mathcal{G} be a countable set, and let \mathcal{P} be a family of (noncommutative) *-polynomials in finitely many variables in \mathcal{G} and coefficients in \mathbb{C}. We shall understand a relation \mathcal{R} as a collection of formulas of the form

$$
\|p(\mathcal{G})\| \leq \lambda_{p}, \quad p \in \mathcal{P}, \quad \lambda_{p} \geq 0
$$

A representation of $(\mathcal{G} \mid \mathcal{R})$ is a map $\pi: \mathcal{G} \rightarrow A$ into a C^{*}-algebra under which the relation becomes true.

Notation (ad-hoc!)

Let \mathcal{G} be a countable set, and let \mathcal{P} be a family of (noncommutative) *-polynomials in finitely many variables in \mathcal{G} and coefficients in \mathbb{C}. We shall understand a relation \mathcal{R} as a collection of formulas of the form

$$
\|p(\mathcal{G})\| \leq \lambda_{p}, \quad p \in \mathcal{P}, \quad \lambda_{p} \geq 0
$$

A representation of $(\mathcal{G} \mid \mathcal{R})$ is a map $\pi: \mathcal{G} \rightarrow A$ into a C^{*}-algebra under which the relation becomes true.

Example

The expression $x y x^{*}-z^{2}$ for $x, y, z \in \mathcal{G}$ is a noncommutative *-polynomial. The relation could mean

$$
\left\|x y x^{*}-z^{2}\right\| \leq 1
$$

Definition

A representation π_{u} of $(\mathcal{G} \mid \mathcal{R})$ into a C^{*}-algebra B is called universal, if (1) $B=\mathrm{C}^{*}\left(\pi_{u}(\mathcal{G})\right)$.

Definition

A representation π_{u} of $(\mathcal{G} \mid \mathcal{R})$ into a C^{*}-algebra B is called universal, if
(1) $B=\mathrm{C}^{*}\left(\pi_{u}(\mathcal{G})\right)$.
(2) whenever $\pi: \mathcal{G} \rightarrow A$ is a representation of $(\mathcal{G} \mid \mathcal{R})$ into another C^{*}-algebra, there exists a $*$-homomorphism $\varphi: B \rightarrow A$ such that $\varphi \circ \pi_{u}=\pi$.

Definition

A representation π_{u} of $(\mathcal{G} \mid \mathcal{R})$ into a C^{*}-algebra B is called universal, if
(1) $B=\mathrm{C}^{*}\left(\pi_{u}(\mathcal{G})\right)$.
(2) whenever $\pi: \mathcal{G} \rightarrow A$ is a representation of $(\mathcal{G} \mid \mathcal{R})$ into another C^{*}-algebra, there exists a $*$-homomorphism $\varphi: B \rightarrow A$ such that $\varphi \circ \pi_{u}=\pi$.

Observation

Up to isomorphism, a C^{*}-algebra B as above is unique. One writes $B=\mathrm{C}^{*}(\mathcal{G} \mid \mathcal{R})$ and calls it the universal C^{*}-algebra for $(\mathcal{G} \mid \mathcal{R})$.

Example

Given $n \geq 1$, one can express M_{n} as the universal C^{*}-algebra generated by $\left\{e_{i, j}\right\}_{i, j=1}^{n}$ subject to the relations

$$
e_{i j} e_{k l}=\delta_{j k} e_{i l}, \quad e_{i j}^{*}=e_{j i}
$$

Example

Given $n \geq 1$, one can express M_{n} as the universal C^{*}-algebra generated by $\left\{e_{i, j}\right\}_{i, j=1}^{n}$ subject to the relations

$$
e_{i j} e_{k l}=\delta_{j k} e_{i l}, \quad e_{i j}^{*}=e_{j i}
$$

Example

Let \mathcal{H} be a separable, infinite-dimensional Hilbert space. Then one can express $\mathcal{K}(\mathcal{H})$ as the universal C^{*}-algebra generated by $\left\{e_{i, j}\right\}_{i, j \in \mathbb{N}}$ subject to the relations

$$
e_{i j} e_{k l}=\delta_{j k} e_{i l}, \quad e_{i j}^{*}=e_{j i}
$$

Example

Given $n \geq 1$, one can express M_{n} as the universal C^{*}-algebra generated by $\left\{e_{i, j}\right\}_{i, j=1}^{n}$ subject to the relations

$$
e_{i j} e_{k l}=\delta_{j k} e_{i l}, \quad e_{i j}^{*}=e_{j i}
$$

Example

Let \mathcal{H} be a separable, infinite-dimensional Hilbert space. Then one can express $\mathcal{K}(\mathcal{H})$ as the universal C^{*}-algebra generated by $\left\{e_{i, j}\right\}_{i, j \in \mathbb{N}}$ subject to the relations

$$
e_{i j} e_{k l}=\delta_{j k} e_{i l}, \quad e_{i j}^{*}=e_{j i}
$$

(Here $e_{i j}$ represents a rank-one operator sending the i-th vector in an ONB to the j-th vector.)

Definition

A relation \mathcal{R} on a set \mathcal{G} is compact if for every $x \in \mathcal{G}$

$$
\sup \{\|\pi(x)\| \mid \pi: \mathcal{G} \rightarrow A \text { representation of }(\mathcal{G} \mid \mathcal{R})\}<\infty
$$

Definition

A relation \mathcal{R} on a set \mathcal{G} is compact if for every $x \in \mathcal{G}$

$$
\sup \{\|\pi(x)\| \mid \pi: \mathcal{G} \rightarrow A \text { representation of }(\mathcal{G} \mid \mathcal{R})\}<\infty
$$

Theorem

For a pair $(\mathcal{G} \mid \mathcal{R})$, the universal C^{*}-algebra $\mathrm{C}^{*}(\mathcal{G} \mid \mathcal{R})$ exists if and only if \mathcal{R} is compact.

Proof: The "only if" part follows from the fact that *-homomorphisms are contractive.

Definition

A relation \mathcal{R} on a set \mathcal{G} is compact if for every $x \in \mathcal{G}$

$$
\sup \{\|\pi(x)\| \mid \pi: \mathcal{G} \rightarrow A \text { representation of }(\mathcal{G} \mid \mathcal{R})\}<\infty
$$

Theorem

For a pair $(\mathcal{G} \mid \mathcal{R})$, the universal C^{*}-algebra $\mathrm{C}^{*}(\mathcal{G} \mid \mathcal{R})$ exists if and only if \mathcal{R} is compact.

Proof: The "only if" part follows from the fact that $*$-homomorphisms are contractive.
"if" part: The isomorphism classes of separable C*-algebras form a set. There exist set-many representations $\pi: \mathcal{G} \rightarrow A_{\pi}$ of $(\mathcal{G} \mid \mathcal{R})$ on separable C^{*}-algebras up to conjugacy. Denote this set by I, and consider

$$
\mathfrak{A}=\prod_{\pi \in I} A_{\pi} \quad \text { and } \quad \pi_{u}: \mathcal{G} \rightarrow \mathfrak{A}, \pi_{u}(x)=(\pi(x))_{\pi \in I^{\prime}}
$$

By compactness, π_{u} is a well-defined representation of $(\mathcal{G} \mid \mathcal{R})$. Then check that $B=\mathrm{C}^{*}\left(\pi_{u}(\mathcal{G})\right) \subseteq \mathfrak{A}$ is universal.

Example

The universal C^{*}-algebra for the relation $\left\|x y x^{*}-z^{2}\right\| \leq 1$ does not exist.
Proof: Suppose we have such $x, y, z \neq 0$ in a C^{*}-algebra, e.g., all equal to the unit. For $\lambda>0$, replace $y \rightarrow \lambda y$ and $x \rightarrow \lambda^{-1 / 2} x$, and let $\lambda \rightarrow \infty$.

Example

The universal C^{*}-algebra for the relation $\left\|x y x^{*}-z^{2}\right\| \leq 1$ does not exist.
Proof: Suppose we have such $x, y, z \neq 0$ in a C^{*}-algebra, e.g., all equal to the unit. For $\lambda>0$, replace $y \rightarrow \lambda y$ and $x \rightarrow \lambda^{-1 / 2} x$, and let $\lambda \rightarrow \infty$.

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C^{*}-algebra is zero! E.g., $\mathrm{C}^{*}\left(x \mid x^{*} x=-x x^{*}\right)=0$.

Example

The universal C^{*}-algebra for the relation $\left\|x y x^{*}-z^{2}\right\| \leq 1$ does not exist.
Proof: Suppose we have such $x, y, z \neq 0$ in a C^{*}-algebra, e.g., all equal to the unit. For $\lambda>0$, replace $y \rightarrow \lambda y$ and $x \rightarrow \lambda^{-1 / 2} x$, and let $\lambda \rightarrow \infty$.

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C^{*}-algebra is zero! E.g., $\mathrm{C}^{*}\left(x \mid x^{*} x=-x x^{*}\right)=0$.

Example

$$
\mathrm{C}^{*}\left(u \mid u^{*} u=u u^{*}=\mathbf{1}\right) \cong \mathcal{C}(\mathbb{T}) \quad \text { with } u \mapsto \mathrm{id}_{\mathbb{T}}
$$

Proof: Functional calculus.

Example

The universal C*-algebra for the relation $\left\|x y x^{*}-z^{2}\right\| \leq 1$ does not exist.
Proof: Suppose we have such $x, y, z \neq 0$ in a C^{*}-algebra, e.g., all equal to the unit. For $\lambda>0$, replace $y \rightarrow \lambda y$ and $x \rightarrow \lambda^{-1 / 2} x$, and let $\lambda \rightarrow \infty$.

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C^{*}-algebra is zero! E.g., $\mathrm{C}^{*}\left(x \mid x^{*} x=-x x^{*}\right)=0$.

Example

$$
\mathrm{C}^{*}\left(u \mid u^{*} u=u u^{*}=\mathbf{1}\right) \cong \mathcal{C}(\mathbb{T}) \quad \text { with } u \mapsto \mathrm{id}_{\mathbb{T}}
$$

Proof: Functional calculus.

Remark

All of this generalizes to more general relations (including functional calculus etc.) and a more flexible notion of generating sets.

Proposition

Every separable C^{*}-algebra A is the universal C^{*}-algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proposition

Every separable C^{*}-algebra A is the universal C^{*}-algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proof: Start with some countable dense $\mathbb{Q}[i]$-*-subalgebra $C \subset A$. By inductively enlarging C, we may enlarge it to another countable dense $\mathbb{Q}[i]$-*-subalgebra $D \subset A$ with the additional property that if $x \in D$ is a contraction, then $y=1-\sqrt{1-x^{*} x} \in D$.

Proposition

Every separable C^{*}-algebra A is the universal C^{*}-algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proof: Start with some countable dense $\mathbb{Q}[i]$-*-subalgebra $C \subset A$. By inductively enlarging C, we may enlarge it to another countable dense $\mathbb{Q}[i]$-*-subalgebra $D \subset A$ with the additional property that if $x \in D$ is a contraction, then $y=\mathbf{1}-\sqrt{\mathbf{1 - x ^ { * } x}} \in D$.
Now let \mathcal{P} be the family of $*$-polynomials that encode all the $*$-algebra relations in D, so

$$
X_{a} X_{b}-X_{a b}, \lambda X_{a}+X_{b}-X_{\lambda a+b}, X_{a}^{*}-X_{a^{*}}
$$

for $\lambda \in \mathbb{Q}[i]$ and $a, b \in D$. Set $\mathcal{G}=D$, and let \mathcal{R} be the relation where these polynomials evaluate to zero. By construction, representations $(\mathcal{G} \mid \mathcal{R}) \rightarrow B$ are the same as $*$-homomorphisms $D \rightarrow B$.

Proposition

Every separable C*-algebra A is the universal C^{*}-algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proof: (continued) By construction, representations $(\mathcal{G} \mid \mathcal{R}) \rightarrow B$ are the same as $*$-homomorphisms $D \rightarrow B$.
We claim that the inclusion $D \subset A$ turns A into the universal C^{*}-algebra for these relations. This means that every $*$-homomorphism from D extends to a $*$-homomorphism on A. This is certainly the case if every *-homomorphism $\varphi: D \rightarrow B$ is contractive.

Proposition

Every separable C*-algebra A is the universal C*-algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proof: (continued) By construction, representations $(\mathcal{G} \mid \mathcal{R}) \rightarrow B$ are the same as $*$-homomorphisms $D \rightarrow B$.
We claim that the inclusion $D \subset A$ turns A into the universal C^{*}-algebra for these relations. This means that every $*$-homomorphism from D extends to a $*$-homomorphism on A. This is certainly the case if every *-homomorphism $\varphi: D \rightarrow B$ is contractive.
Indeed, if $x \in D$ is a contraction, then $y=\mathbf{1}-\sqrt{\mathbf{1}-x^{*} x} \in D_{s a}$ satisfies

$$
x^{*} x+y^{2}-2 y=0
$$

Thus also $\varphi(x)^{*} \varphi(x)+\varphi(y)^{2}-2 \varphi(y)=0$ in B, which is equivalent to

$$
\varphi(x)^{*} \varphi(x)+(\mathbf{1}-\varphi(y))^{2}=\mathbf{1}
$$

Hence $\|\varphi(x)\| \leq 1$ for every contraction $x \in D$, which finishes the proof.

Definition

Let Γ be a countable discrete group. The universal group C^{*}-algebra is defined as

$$
\mathrm{C}^{*}(\Gamma)=\mathrm{C}^{*}\left(\left\{u_{g}\right\}_{g \in \Gamma} \mid u_{1}=\mathbf{1}, u_{g h}=u_{g} u_{h}, u_{g}^{*}=u_{g^{-1}}\right)
$$

Definition

Let Γ be a countable discrete group. The universal group C^{*}-algebra is defined as

$$
\mathrm{C}^{*}(\Gamma)=\mathrm{C}^{*}\left(\left\{u_{g}\right\}_{g \in \Gamma} \mid u_{1}=\mathbf{1}, u_{g h}=u_{g} u_{h}, u_{g}^{*}=u_{g^{-1}}\right)
$$

(There is a similar but less obvious construction for non-discrete groups.)

Definition

Let Γ be a countable discrete group. The universal group C^{*}-algebra is defined as

$$
\mathrm{C}^{*}(\Gamma)=\mathrm{C}^{*}\left(\left\{u_{g}\right\}_{g \in \Gamma} \mid u_{1}=\mathbf{1}, u_{g h}=u_{g} u_{h}, u_{g}^{*}=u_{g^{-1}}\right)
$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

$\mathrm{C}^{*}(\mathbb{Z}) \cong \mathcal{C}(\mathbb{T})$.

Definition

Let Γ be a countable discrete group. The universal group C^{*}-algebra is defined as

$$
\mathrm{C}^{*}(\Gamma)=\mathrm{C}^{*}\left(\left\{u_{g}\right\}_{g \in \Gamma} \mid u_{1}=\mathbf{1}, u_{g h}=u_{g} u_{h}, u_{g}^{*}=u_{g^{-1}}\right)
$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

$\mathrm{C}^{*}(\mathbb{Z}) \cong \mathcal{C}(\mathbb{T})$.

Example

The Toeplitz algebra is $\mathcal{T}=\mathrm{C}^{*}\left(s \mid s^{*} s=\mathbf{1}\right)$.

Definition

Let Γ be a countable discrete group. The universal group C^{*}-algebra is defined as

$$
\mathrm{C}^{*}(\Gamma)=\mathrm{C}^{*}\left(\left\{u_{g}\right\}_{g \in \Gamma} \mid u_{1}=\mathbf{1}, u_{g h}=u_{g} u_{h}, u_{g}^{*}=u_{g^{-1}}\right)
$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

$\mathrm{C}^{*}(\mathbb{Z}) \cong \mathcal{C}(\mathbb{T})$.

Example

The Toeplitz algebra is $\mathcal{T}=\mathrm{C}^{*}\left(s \mid s^{*} s=\mathbf{1}\right)$.

Fact

If $v \in B$ is any non-unitary isometry in a C^{*}-algebra, then $\mathrm{C}^{*}(v) \cong \mathcal{T}$ in the obvious way. In other words, every proper isometry is universal.

Example

For $n \in \mathbb{N}$, one defines the Cuntz algebra in n generators as

$$
\mathcal{O}_{n}=\mathrm{C}^{*}\left(s_{1}, \ldots, s_{n} \mid s_{j}^{*} s_{j}=\mathbf{1}, \sum_{j=1}^{n} s_{j} s_{j}^{*}=\mathbf{1}\right)
$$

Example

For $n \in \mathbb{N}$, one defines the Cuntz algebra in n generators as

$$
\mathcal{O}_{n}=\mathrm{C}^{*}\left(s_{1}, \ldots, s_{n} \mid s_{j}^{*} s_{j}=\mathbf{1}, \sum_{j=1}^{n} s_{j} s_{j}^{*}=\mathbf{1}\right)
$$

$$
\mathcal{O}_{3}=\mathrm{C}^{*}\left(s_{1}, s_{2}, s_{3}\right)
$$

$$
\mathcal{H}_{j}=s_{j} \mathcal{H} \subseteq \mathcal{H}
$$

Example

For $n \in \mathbb{N}$, one defines the Cuntz algebra in n generators as

$$
\mathcal{O}_{n}=\mathrm{C}^{*}\left(s_{1}, \ldots, s_{n} \mid s_{j}^{*} s_{j}=\mathbf{1}, \sum_{j=1}^{n} s_{j} s_{j}^{*}=\mathbf{1}\right)
$$

$$
\mathcal{O}_{3}=\mathrm{C}^{*}\left(s_{1}, s_{2}, s_{3}\right)
$$

$$
\mathcal{H}_{j}=s_{j} \mathcal{H} \subseteq \mathcal{H}
$$

Theorem (Cuntz)

\mathcal{O}_{n} is simple! That is, every collection of isometries s_{1}, \ldots, s_{n} in any C^{*}-algebra as above is universal with this property.

Fact (Inductive limits)

If

$$
A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \cdots
$$

is a sequence of C^{*}-algebra inclusions, then

$$
A=\overline{\bigcup_{n \in \mathbb{N}} A_{n}}\|\cdot\|
$$

exists and is a C^{*}-algebra.

Definition

In the above situation, if every A_{n} is finite-dimensional, we call A an AF algebra. (AF = approximately finite-dimensional)

Example

Consider
$A_{1}=\mathbb{C}, \quad A_{2}=M_{2}, \quad A_{3}=M_{4} \cong M_{2} \otimes M_{2}, \quad A_{4}=M_{8} \cong M_{2}^{\otimes 3}, \quad \ldots$,
with inclusions of the form $x \mapsto x \otimes \mathbf{1}_{2}=\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right)$.

Example

Consider
$A_{1}=\mathbb{C}, \quad A_{2}=M_{2}, \quad A_{3}=M_{4} \cong M_{2} \otimes M_{2}, \quad A_{4}=M_{8} \cong M_{2}^{\otimes 3}, \quad \ldots$,
with inclusions of the form $x \mapsto x \otimes \mathbf{1}_{2}=\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right)$.
The CAR algebra is the limit

$$
M_{2^{\infty}}=M_{2}^{\otimes \infty}=\overline{\bigcup A_{n}}
$$

Example

Consider
$A_{1}=\mathbb{C}, \quad A_{2}=M_{2}, \quad A_{3}=M_{4} \cong M_{2} \otimes M_{2}, \quad A_{4}=M_{8} \cong M_{2}^{\otimes 3}, \quad \ldots$,
with inclusions of the form $x \mapsto x \otimes \mathbf{1}_{2}=\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right)$.
The CAR algebra is the limit

$$
M_{2} \infty=M_{2}^{\otimes \infty}=\overline{\bigcup A_{n}}
$$

This construction can of course be repeated with powers of any other number p instead of $2 . \rightsquigarrow M_{p \infty}$

Let A be a (unital) C^{*}-algebra and Γ a discrete group.

Definition

Given an action $\alpha: \Gamma \curvearrowright A$, define the crossed product $A \rtimes_{\alpha} \Gamma$ as the universal C^{*}-algebra containing a unital copy of A, and the image of a unitary representation $\left[g \mapsto u_{g}\right]$ of Γ, subject to the relation

$$
u_{g} a u_{g}^{*}=\alpha_{g}(a), \quad a \in A, g \in \Gamma
$$

Let A be a (unital) C^{*}-algebra and Γ a discrete group.

Definition

Given an action $\alpha: \Gamma \curvearrowright A$, define the crossed product $A \rtimes_{\alpha} \Gamma$ as the universal C^{*}-algebra containing a unital copy of A, and the image of a unitary representation $\left[g \mapsto u_{g}\right]$ of Γ, subject to the relation

$$
u_{g} a u_{g}^{*}=\alpha_{g}(a), \quad a \in A, g \in \Gamma
$$

Example

Start from a homeomorphic action $\Gamma \curvearrowright X$ on a compact Hausdorff space. $\rightsquigarrow \mathcal{C}(X) \rtimes \Gamma$.

Observation

For two C^{*}-algebras A, B, the algebraic tensor product $A \odot B$ becomes a *-algebra in the obvious way.

Question

Can this be turned into a C^{*}-algebra?

Observation

For two C^{*}-algebras A, B, the algebraic tensor product $A \odot B$ becomes a *-algebra in the obvious way.

Question

Can this be turned into a C^{*}-algebra?
Yes! However, not uniquely in general.

Observation

For two C*-algebras A, B, the algebraic tensor product $A \odot B$ becomes a *-algebra in the obvious way.

Question

Can this be turned into a C^{*}-algebra?
Yes! However, not uniquely in general.

Definition

We say that a C^{*}-algebra A is nuclear if the tensor product $A \odot B$ carries a unique C^{*}-norm for every C^{*}-algebra B. In this case we denote by $A \otimes B$ the C^{*}-algebra arising as the completion.

Example

Finite-dimensional or commutative C^{*}-algebras are nuclear. One has $M_{n} \otimes A \cong M_{n}(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Example

Finite-dimensional or commutative C^{*}-algebras are nuclear. One has $M_{n} \otimes A \cong M_{n}(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Theorem

A discrete group Γ is amenable if and only if $\mathrm{C}^{*}(\Gamma)$ is nuclear.

Example

Finite-dimensional or commutative C^{*}-algebras are nuclear. One has $M_{n} \otimes A \cong M_{n}(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Theorem

A discrete group Γ is amenable if and only if $\mathrm{C}^{*}(\Gamma)$ is nuclear.

Example (free groups)

$\mathrm{C}^{*}\left(\mathbb{F}_{n}\right)$ is not nuclear for $n \geq 2$.

Example

Finite-dimensional or commutative C^{*}-algebras are nuclear. One has $M_{n} \otimes A \cong M_{n}(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Theorem

A discrete group Γ is amenable if and only if $\mathrm{C}^{*}(\Gamma)$ is nuclear.

Example (free groups)

$\mathrm{C}^{*}\left(\mathbb{F}_{n}\right)$ is not nuclear for $n \geq 2$.

Theorem

If Γ is amenable and A is nuclear, then $A \rtimes \Gamma$ is nuclear for every possible action $\Gamma \curvearrowright A$. So in particular for $A=\mathcal{C}(X)$.

Fact (K-theory)

There is a functor
$\left\{\mathrm{C}^{*}\right.$-algebras $\} \longrightarrow\{$ abelian groups $\}, \quad A \mapsto K_{*}(A)=K_{0}(A) \oplus K_{1}(A)$, which extends the topological K-theory functor $X \mapsto K^{*}(X)$ for (locally) compact Hausdorff spaces.

Fact (K-theory)

There is a functor
$\left\{\mathrm{C}^{*}\right.$-algebras $\} \longrightarrow\{$ abelian groups $\}, \quad A \mapsto K_{*}(A)=K_{0}(A) \oplus K_{1}(A)$,
which extends the topological K-theory functor $X \mapsto K^{*}(X)$ for (locally) compact Hausdorff spaces. It is homotopy invariant and stable, and has many other good properties for doing computations.

Fact (K-theory)

There is a functor
$\left\{\mathrm{C}^{*}\right.$-algebras $\} \longrightarrow\{$ abelian groups $\}, \quad A \mapsto K_{*}(A)=K_{0}(A) \oplus K_{1}(A)$,
which extends the topological K-theory functor $X \mapsto K^{*}(X)$ for (locally) compact Hausdorff spaces. It is homotopy invariant and stable, and has many other good properties for doing computations.

Fact

$K_{0}(A)$ has a natural positive part $K_{0}(A)_{+}$, which induces an order relation on $K_{0}(A)$.

Fact (K-theory)

There is a functor
$\left\{\mathrm{C}^{*}\right.$-algebras $\} \longrightarrow\{$ abelian groups $\}, \quad A \mapsto K_{*}(A)=K_{0}(A) \oplus K_{1}(A)$, which extends the topological K-theory functor $X \mapsto K^{*}(X)$ for (locally) compact Hausdorff spaces. It is homotopy invariant and stable, and has many other good properties for doing computations.

Fact

$K_{0}(A)$ has a natural positive part $K_{0}(A)_{+}$, which induces an order relation on $K_{0}(A)$.

Theorem (Glimm, Bratteli, Elliott)

Let A and B be two (unital) AF algebras. Then

$$
A \cong B \quad \Longleftrightarrow \quad\left(K_{0}(A), K_{0}(A)_{+},\left[\mathbf{1}_{A}\right]\right) \cong\left(K_{0}(B), K_{0}(B)_{+},\left[\mathbf{1}_{B}\right]\right)
$$

Definition (Elliott invariant)

For a (unital) simple C^{*}-algebra A, one considers

- its K-groups $K_{0}(A)$ and $K_{1}(A)$;

Definition (Elliott invariant)

For a (unital) simple C^{*}-algebra A, one considers

- its K-groups $K_{0}(A)$ and $K_{1}(A)$;
- the positive part $K_{0}(A)_{+}$in $K_{0}(A)$;

Definition (Elliott invariant)

For a (unital) simple C^{*}-algebra A, one considers

- its K-groups $K_{0}(A)$ and $K_{1}(A)$;
- the positive part $K_{0}(A)_{+}$in $K_{0}(A)$;
- the distinguished element $\left[\mathbf{1}_{A}\right] \in K_{0}(A)_{+}$;

Definition (Elliott invariant)

For a (unital) simple C^{*}-algebra A, one considers

- its K-groups $K_{0}(A)$ and $K_{1}(A)$;
- the positive part $K_{0}(A)_{+}$in $K_{0}(A)$;
- the distinguished element $\left[\mathbf{1}_{A}\right] \in K_{0}(A)_{+}$;
- the Choquet simplex $T(A)$ of tracial states, i.e., τ is tracial if $\tau\left(x x^{*}\right)=\tau\left(x^{*} x\right)$ for all $x \in A$;

Definition (Elliott invariant)

For a (unital) simple C^{*}-algebra A, one considers

- its K-groups $K_{0}(A)$ and $K_{1}(A)$;
- the positive part $K_{0}(A)_{+}$in $K_{0}(A)$;
- the distinguished element $\left[\mathbf{1}_{A}\right] \in K_{0}(A)_{+}$;
- the Choquet simplex $T(A)$ of tracial states, i.e., τ is tracial if $\tau\left(x x^{*}\right)=\tau\left(x^{*} x\right)$ for all $x \in A$;
- a natural pairing map $\rho_{A}: T(A) \times K_{0}(A) \rightarrow \mathbb{R}$ which is an order homomorphism in the second variable.

Definition (Elliott invariant)

For a (unital) simple C^{*}-algebra A, one considers

- its K-groups $K_{0}(A)$ and $K_{1}(A)$;
- the positive part $K_{0}(A)_{+}$in $K_{0}(A)$;
- the distinguished element $\left[\mathbf{1}_{A}\right] \in K_{0}(A)_{+}$;
- the Choquet simplex $T(A)$ of tracial states, i.e., τ is tracial if $\tau\left(x x^{*}\right)=\tau\left(x^{*} x\right)$ for all $x \in A$;
- a natural pairing map $\rho_{A}: T(A) \times K_{0}(A) \rightarrow \mathbb{R}$ which is an order homomorphism in the second variable.
The sextuple

$$
\operatorname{Ell}(A)=\left(K_{0}(A), K_{0}(A)_{+},\left[\mathbf{1}_{A}\right], K_{1}(A), T(A), \rho_{A}\right)
$$

is called the Elliott invariant and becomes functorial with respect to a suitable target category.

Fact

There is a separable unital simple nuclear infinite-dimensional C^{*}-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang-Su algebra, with $\operatorname{Ell}(\mathcal{Z}) \cong \operatorname{Ell}(\mathbb{C})$.

Fact

There is a separable unital simple nuclear infinite-dimensional C^{*}-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang-Su algebra, with $\operatorname{Ell}(\mathcal{Z}) \cong \operatorname{Ell}(\mathbb{C})$.

Rough idea: One considers the C^{*}-algebra
$\mathcal{Z}_{2^{\infty}, 3^{\infty}}=\left\{f \in \mathcal{C}\left([0,1], M_{2^{\infty}} \otimes M_{3^{\infty}}\right) \mid f(0) \in M_{2^{\infty}} \otimes \mathbf{1}, f(1) \in \mathbf{1} \otimes M_{3^{\infty}}\right\}$ which has the right K-theory but far too many ideals and traces.

Fact

There is a separable unital simple nuclear infinite-dimensional C^{*}-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang-Su algebra, with $\operatorname{Ell}(\mathcal{Z}) \cong \operatorname{Ell}(\mathbb{C})$.

Rough idea: One considers the C^{*}-algebra
$\mathcal{Z}_{2}{ }^{\infty}, 3^{\infty}=\left\{f \in \mathcal{C}\left([0,1], M_{2^{\infty}} \otimes M_{3^{\infty}}\right) \mid f(0) \in M_{2^{\infty}} \otimes \mathbf{1}, f(1) \in \mathbf{1} \otimes M_{3^{\infty}}\right\}$ which has the right K-theory but far too many ideals and traces.

One constructs a trace-collapsing endomorphism on $\mathcal{Z}_{2} \infty, 3^{\infty}$ and can define \mathcal{Z} as the stationary inductive limit.
(Graphic created by Aaron Tikuisis.)

Definition

We say that a C^{*}-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Definition

We say that a C^{*}-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Fact

If A is simple and the order on $K_{0}(A)$ satisfies a mild condition, then $\operatorname{Ell}(A) \cong \operatorname{Ell}(A \otimes \mathcal{Z})$.

Definition

We say that a C^{*}-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Fact

If A is simple and the order on $K_{0}(A)$ satisfies a mild condition, then $\operatorname{Ell}(A) \cong \operatorname{Ell}(A \otimes \mathcal{Z})$.

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear \mathcal{Z}-stable C^{*}-algebras. Then

$$
A \cong B \quad \Longleftrightarrow \quad \operatorname{Ell}(A) \cong \operatorname{Ell}(B) .^{6}
$$

${ }^{6}$ To the experts in the audience: No UCT discussion now!

Definition

We say that a C^{*}-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Fact

If A is simple and the order on $K_{0}(A)$ satisfies a mild condition, then $\operatorname{Ell}(A) \cong \operatorname{Ell}(A \otimes \mathcal{Z})$.

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear \mathcal{Z}-stable C^{*}-algebras. Then

$$
A \cong B \quad \Longleftrightarrow \quad \operatorname{Ell}(A) \cong \operatorname{Ell}(B) \cdot{ }^{6}
$$

(There is a more general version not assuming unitality.)
${ }^{6}$ To the experts in the audience: No UCT discussion now!

Definition

We say that a C^{*}-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Fact

If A is simple and the order on $K_{0}(A)$ satisfies a mild condition, then $\operatorname{Ell}(A) \cong \operatorname{Ell}(A \otimes \mathcal{Z})$.

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear \mathcal{Z}-stable C^{*}-algebras. Then

$$
A \cong B \quad \Longleftrightarrow \quad \operatorname{Ell}(A) \cong \operatorname{Ell}(B) .^{6}
$$

(There is a more general version not assuming unitality.)

Problem (difficult!)

Determine when $\Gamma \curvearrowright X$ gives rise to a \mathcal{Z}-stable crossed product.

[^2]
Thank you for your attention!

[^0]: ${ }^{1}$ This holds in any Banach algebra.
 ${ }^{2}$ Notice: this works for any $\varphi \in A^{*}$ with $\|\varphi\|=\|\varphi(\mathbf{1})\|=1$!

[^1]: ${ }^{3}$ This often fails for inclusions of Banach algebras!

[^2]: ${ }^{6}$ To the experts in the audience: No UCT discussion now!

