

An introduction to C*-algebras

Workshop Model Theory and Operator Algebras BIRS, Banff

Gábor Szabó KU Leuven November 2018 We will denote by \mathcal{H} a complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$, and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators $\mathcal{H} \to \mathcal{H}$. It becomes a Banach algebra with the operator norm.

We will denote by \mathcal{H} a complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$, and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators $\mathcal{H} \to \mathcal{H}$. It becomes a Banach algebra with the operator norm.

Recall

For $a \in \mathcal{B}(\mathcal{H})$, the adjoint operator $a^* \in \mathcal{B}(\mathcal{H})$ is the unique operator satisfying the formula

 $\langle a\xi_1 \mid \xi_2 \rangle = \langle \xi_1 \mid a^*\xi_2 \rangle, \quad \xi_1, \xi_2 \in \mathcal{H}.$

Then the adjoint operation $a \mapsto a^*$ is an involution, i.e., it is anti-linear and satisfies $(ab)^* = b^*a^*$.

We will denote by \mathcal{H} a complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$, and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators $\mathcal{H} \to \mathcal{H}$. It becomes a Banach algebra with the operator norm.

Recall

For $a \in \mathcal{B}(\mathcal{H})$, the adjoint operator $a^* \in \mathcal{B}(\mathcal{H})$ is the unique operator satisfying the formula

 $\langle a\xi_1 \mid \xi_2 \rangle = \langle \xi_1 \mid a^*\xi_2 \rangle, \quad \xi_1, \xi_2 \in \mathcal{H}.$

Then the adjoint operation $a \mapsto a^*$ is an involution, i.e., it is anti-linear and satisfies $(ab)^* = b^*a^*$.

Observation

One always has $||a^*a|| = ||a||^2$.

Proof: Since $||a^*|| = ||a||$ is rather immediate from the definition, " \leq " is clear. For " \geq ", observe

$$||a\xi||^2 = \langle a\xi | a\xi \rangle = \langle \xi | a^*a\xi \rangle \le ||a^*a\xi||, \quad ||\xi|| = 1.$$

An (abstract) C^{*}-algebra is a complex Banach algebra A with an involution $a \mapsto a^*$ satisfying the C^{*}-identity

$$||a^*a|| = ||a||^2, \quad a \in A.$$

We say A is unital, if there exists a unit element $1 \in A$.

An (abstract) C^{*}-algebra is a complex Banach algebra A with an involution $a \mapsto a^*$ satisfying the C^{*}-identity

$$||a^*a|| = ||a||^2, \quad a \in A.$$

We say A is unital, if there exists a unit element $1 \in A$.

Definition

A concrete C*-algebra is a self-adjoint subalgebra $A \subseteq \mathcal{B}(\mathcal{H})$, for some Hilbert space \mathcal{H} , which is closed in the operator norm.

An (abstract) C^{*}-algebra is a complex Banach algebra A with an involution $a \mapsto a^*$ satisfying the C^{*}-identity

$$||a^*a|| = ||a||^2, \quad a \in A.$$

We say A is unital, if there exists a unit element $1 \in A$.

Definition

A concrete C*-algebra is a self-adjoint subalgebra $A \subseteq \mathcal{B}(\mathcal{H})$, for some Hilbert space \mathcal{H} , which is closed in the operator norm.

As the operator norm satisfies the $\mathrm{C}^*\mbox{-}\mathrm{identity},$ every concrete $\mathrm{C}^*\mbox{-}\mathrm{algebra}$ is an abstract $\mathrm{C}^*\mbox{-}\mathrm{algebra}.$

Example

For some compact Hausdorff space X, we may consider

$$\mathcal{C}(X) = \{ \text{continuous functions } X \to \mathbb{C} \}.$$

With pointwise addition and multiplication, C(X) becomes a **commutative** abstract C^{*}-algebra if we equip it with the adjoint operation

$$f^*(x) = \overline{f(x)}$$

and the norm

$$||f||_{\infty} = \sup_{x \in X} |f(x)|.$$

Example

For some compact Hausdorff space X, we may consider

$$\mathcal{C}(X) = \{ \text{continuous functions } X \to \mathbb{C} \}.$$

With pointwise addition and multiplication, C(X) becomes a **commutative** abstract C^{*}-algebra if we equip it with the adjoint operation

$$f^*(x) = \overline{f(x)}$$

and the norm

$$||f||_{\infty} = \sup_{x \in X} |f(x)|.$$

Fact (Spectral theory)

As an abstract C^* -algebra, $\mathcal{C}(X)$ remembers X.

The **goal for this lecture** is to go over the spectral theory of Banach algebras and C^* -algebras, culminating in:

Theorem (Gelfand–Naimark)

Every (unital) commutative C^* -algebra is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X.

The **goal for this lecture** is to go over the spectral theory of Banach algebras and C^* -algebras, culminating in:

Theorem (Gelfand–Naimark)

Every (unital) commutative C^* -algebra is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X.

The **goal for the next lecture** is to showcase some applications, and discuss the GNS construction, in particular:

Theorem (Gelfand–Naimark–Segal)

Every abstract C^* -algebra can be expressed as a concrete C^* -algebra.

The **goal for this lecture** is to go over the spectral theory of Banach algebras and $\mathrm{C}^*\mbox{-algebras}$, culminating in:

Theorem (Gelfand–Naimark)

Every (unital) commutative C^* -algebra is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X.

The **goal for the next lecture** is to showcase some applications, and discuss the GNS construction, in particular:

Theorem (Gelfand–Naimark–Segal)

Every abstract C^* -algebra can be expressed as a concrete C^* -algebra.

The goal for tomorrow is to cover examples and advanced topics.

From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot \mathbf{1}$.

Observation (Neumann series)

If $x \in A$ with $||\mathbf{1} - x|| < 1$, then x is invertible. In fact

$$x^{-1} = \sum_{n=0}^{\infty} (1-x)^n.$$

From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot \mathbf{1}$.

Observation (Neumann series)

If $x \in A$ with $||\mathbf{1} - x|| < 1$, then x is invertible. In fact

$$x^{-1} = \sum_{n=0}^{\infty} (1-x)^n.$$

Proof:
$$x \sum_{n=0}^{\infty} (1-x)^n = \sum_{n=0}^{\infty} ((1-x)^n - (1-x)^{n+1})) = 1.$$

From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot \mathbf{1}$.

Observation (Neumann series)

If $x \in A$ with $||\mathbf{1} - x|| < 1$, then x is invertible. In fact

$$x^{-1} = \sum_{n=0}^{\infty} (1-x)^n.$$

Proof:
$$x \sum_{n=0}^{\infty} (1-x)^n = \sum_{n=0}^{\infty} ((1-x)^n - (1-x)^{n+1})) = 1.$$

Observation

The set of invertibles in A is open.

Proof: If z is invertible and x is any element with $||z - x|| < ||z^{-1}||^{-1}$, then $||\mathbf{1} - z^{-1}x|| < 1$. By the above $z^{-1}x$ is invertible, but then x is also invertible.

For an element $x \in A$, its spectrum is defined as

$$\sigma(x) = \{\lambda \in \mathbb{C} \mid \lambda - x \text{ is not invertible in } A\} \subseteq \mathbb{C}.$$

For an element $x \in A$, its spectrum is defined as

$$\sigma(x) = \{\lambda \in \mathbb{C} \mid \lambda - x \text{ is not invertible in } A\} \subseteq \mathbb{C}$$

Elements in the spectrum may be seen as generalized eigenvalues of an operator.

For an element $x \in A$, its spectrum is defined as

```
\sigma(x) = \{\lambda \in \mathbb{C} \mid \lambda - x \text{ is not invertible in } A\} \subseteq \mathbb{C}.
```

Elements in the spectrum may be seen as generalized eigenvalues of an operator.

Observation

The spectrum $\sigma(x)$ is a compact subset of $\{\lambda \mid |\lambda| \leq ||x||\}$. One defines the spectral radius of x as $r(x) = \max_{\lambda \in \sigma(x)} |\lambda| \leq ||x||$.

For an element $x \in A$, its spectrum is defined as

```
\sigma(x) = \{\lambda \in \mathbb{C} \mid \lambda - x \text{ is not invertible in } A\} \subseteq \mathbb{C}.
```

Elements in the spectrum may be seen as generalized eigenvalues of an operator.

Observation

The spectrum $\sigma(x)$ is a compact subset of $\{\lambda \mid |\lambda| \leq ||x||\}$. One defines the spectral radius of x as $r(x) = \max_{\lambda \in \sigma(x)} |\lambda| \leq ||x||$.

Theorem

The spectrum $\sigma(x)$ of every element $x \in A$ is non-empty.

(The proof involves a non-trivial application of complex analysis.)

A character on A is a non-zero multiplicative linear functional $A \to \mathbb{C}$.

A character on A is a non-zero multiplicative linear functional $A \to \mathbb{C}$.

Observation

A character $\varphi: A \to \mathbb{C}$ is automatically continuous, in fact $\|\varphi\| = 1$.

Proof: As φ is non-zero, we have $0 \neq \varphi(\mathbf{1}) = \varphi(\mathbf{1})^2$, hence $\varphi(\mathbf{1}) = 1$. If x were to satisfy $|\varphi(x)| > ||x||$, then $\varphi(x) - x$ is invertible by the Neumann series trick. However, it lies in the kernel of φ , which yields a contradiction.

A character on A is a non-zero multiplicative linear functional $A \to \mathbb{C}$.

Observation

A character $\varphi: A \to \mathbb{C}$ is automatically continuous, in fact $\|\varphi\| = 1$.

Proof: As φ is non-zero, we have $0 \neq \varphi(1) = \varphi(1)^2$, hence $\varphi(1) = 1$. If x were to satisfy $|\varphi(x)| > ||x||$, then $\varphi(x) - x$ is invertible by the Neumann series trick. However, it lies in the kernel of φ , which yields a contradiction.

Definition

For commutative A, we define its spectrum (aka character space) as

 $\hat{A} = \{ \text{characters } \varphi : A \to \mathbb{C} \} \,.$

Due to the Banach-Alaoglu theorem, we see that the topology of pointwise convergence turns \hat{A} into a compact Hausdorff space.

Observation

If $J \subset A$ is a maximal ideal in a (unital) Banach algebra, then J is closed. If A is commutative, then $A/J \cong \mathbb{C}$ as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in A. So \overline{J} is a proper ideal, hence $J = \overline{J}$ by maximality.

Observation

If $J \subset A$ is a maximal ideal in a (unital) Banach algebra, then J is closed. If A is commutative, then $A/J \cong \mathbb{C}$ as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in A. So \overline{J} is a proper ideal, hence $J = \overline{J}$ by maximality. Part 2: The quotient is a Banach algebra in which every non-zero element is invertible. If it has a non-scalar element $x \in A/J$, then $\lambda - x \neq 0$ is invertible for all $\lambda \in \mathbb{C}$, which is a contradiction to $\sigma(x) \neq \emptyset$.

Observation

If $J \subset A$ is a maximal ideal in a (unital) Banach algebra, then J is closed. If A is commutative, then $A/J \cong \mathbb{C}$ as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in A. So \overline{J} is a proper ideal, hence $J = \overline{J}$ by maximality.

Part 2: The quotient is a Banach algebra in which every non-zero element is invertible. If it has a non-scalar element $x \in A/J$, then $\lambda - x \neq 0$ is invertible for all $\lambda \in \mathbb{C}$, which is a contradiction to $\sigma(x) \neq \emptyset$.

Observation

For commutative A, the assignment $\varphi \mapsto \ker \varphi$ is a 1-1 correspondence between \hat{A} and maximal ideals in A.

Proof: Clearly the kernel of a character is a maximal ideal as it has codimension 1 in A. Since we have $\varphi(\mathbf{1}) = 1$ for every $\varphi \in \hat{A}$ and $A = \mathbb{C}\mathbf{1} + \ker \varphi$, every character is uniquely determined by its kernel. Conversely, if $J \subset A$ is a maximal ideal, then $A/J \cong \mathbb{C}$, so the quotient map gives us a character.

Gábor Szabó (KU Leuven)

A is still commutative.

Theorem

Let $x \in A$. Then

$$\sigma(x) = \left\{ \varphi(x) \mid \varphi \in \hat{A} \right\}.$$

Proof: Let $\lambda \in \mathbb{C}$. If $\lambda = \varphi(x)$, then $\lambda - x \in \ker(\varphi)$, so $\lambda - x$ is not invertible. Conversely, if $\lambda - x$ is not invertible, then it is inside a (proper) maximal ideal. By the previous observation, this means $(\lambda - x) \in \ker \varphi$ for some $\varphi \in \hat{A}$, or $\lambda = \varphi(x)$.

A is still commutative.

Theorem

Let $x \in A$. Then

$$\sigma(x) = \left\{ \varphi(x) \mid \varphi \in \hat{A} \right\}.$$

Proof: Let $\lambda \in \mathbb{C}$. If $\lambda = \varphi(x)$, then $\lambda - x \in \ker(\varphi)$, so $\lambda - x$ is not invertible. Conversely, if $\lambda - x$ is not invertible, then it is inside a (proper) maximal ideal. By the previous observation, this means $(\lambda - x) \in \ker \varphi$ for some $\varphi \in \hat{A}$, or $\lambda = \varphi(x)$.

Theorem (Spectral radius formula)

For any Banach algebra A and $x \in A$, one has

$$r(x) = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}.$$

Proof: The " \leq " part follows easily from the above (for A commutative). The " \geq " part is another clever application of complex analysis.

For commutative A, consider the usual embedding

$$\iota: A \hookrightarrow A^{**}, \quad \iota(x)(f) = f(x).$$

Since every element of A^{**} is a continuous function on $\hat{A} \subset A^*$ in a natural way, we have a restriction mapping $A^{**} \to C(\hat{A})$. The composition of these two maps yields:

For commutative A, consider the usual embedding

$$\iota: A \hookrightarrow A^{**}, \quad \iota(x)(f) = f(x).$$

Since every element of A^{**} is a continuous function on $\hat{A} \subset A^*$ in a natural way, we have a restriction mapping $A^{**} \to C(\hat{A})$. The composition of these two maps yields:

Definition (Gelfand transform)

The Gelfand transform is the unital homomorphism $A \to C(\hat{A}), x \mapsto \hat{x}$ given by $\hat{x}(\varphi) = \varphi(x)$.

For commutative A, consider the usual embedding

$$\iota: A \hookrightarrow A^{**}, \quad \iota(x)(f) = f(x).$$

Since every element of A^{**} is a continuous function on $\hat{A} \subset A^*$ in a natural way, we have a restriction mapping $A^{**} \to C(\hat{A})$. The composition of these two maps yields:

Definition (Gelfand transform)

The Gelfand transform is the unital homomorphism $A \to C(\hat{A}), x \mapsto \hat{x}$ given by $\hat{x}(\varphi) = \varphi(x)$.

Observation

The Gelfand transform is norm-contractive. In fact, for $x \in A$ we have $\hat{x}(\hat{A}) = \sigma(x)$ and hence $\|\hat{x}\| = r(x) \le \|x\|$ for all $x \in A$.

C^* -algebras

Definition

- Let A be a unital $\mathrm{C}^*\text{-}\mathsf{algebra}.$ An element $x\in A$ is
- 2 self-adjoint, if $x = x^*$.
- Solution if $x = y^*y$ for some y ∈ A. Write x ≥ 0.
- a unitary, if $x^*x = xx^* = 1$.

Spectral theory C

 C^* -algebras

Definition

Let A be a unital $\mathrm{C}^*\text{-}\mathsf{algebra}.$ An element $x\in A$ is

• normal, if
$$x^*x = xx^*$$
.

2) self-adjoint, if
$$x=x^*$$
.

③ positive, if
$$x = y^*y$$
 for some $y \in A$.
Write $x \ge 0$.

• a unitary, if
$$x^*x = xx^* = 1$$
.

Any element $x \in A$ can be written as $x = x_1 + ix_2$ for the self-adjoint elements $x_1 = \frac{x + x^*}{2}$, $x_2 = \frac{x - x^*}{2i}$.

Spectral theory C

 C^* -algebras

Definition

Let A be a unital $\mathrm{C}^*\text{-}\mathsf{algebra}.$ An element $x\in A$ is

• normal, if
$$x^*x = xx^*$$
.

2) self-adjoint, if
$$x=x^*$$
.

(a) positive, if
$$x = y^*y$$
 for some $y \in A$.
Write $x \ge 0$.

• a unitary, if
$$x^*x = xx^* = 1$$
.

Observation

Any element $x \in A$ can be written as $x = x_1 + ix_2$ for the self-adjoint elements $x_1 = \frac{x + x^*}{2}$, $x_2 = \frac{x - x^*}{2i}$.

Observation

If $x \in A$ is self-adjoint, then it follows for all $t \in \mathbb{R}$ that

$$||x+it||^2 = ||(x-it)(x+it)|| = ||x^2+t^2|| \le ||x||^2 + t^2.$$

Proposition

If $x \in A$ is self-adjoint, then $\sigma(x) \subset \mathbb{R}$.

Proof: Step 1: The spectrum of x inside A is the same as the spectrum of x inside its bicommutant $A \cap \{x\}^{".1}$ As x is self-adjoint, this is a commutative C*-algebra. So assume A is commutative.

¹This holds in any Banach algebra.

Proposition

If $x \in A$ is self-adjoint, then $\sigma(x) \subset \mathbb{R}$.

Proof: Step 1: The spectrum of x inside A is the same as the spectrum of x inside its bicommutant $A \cap \{x\}^{".1}$ As x is self-adjoint, this is a commutative C*-algebra. So assume A is commutative. Step 2: For $\varphi \in \hat{A}$, we get

$$|\varphi(x) + it|^2 = |\varphi(x + it)^2| \le ||x||^2 + t^2, \quad t \in \mathbb{R}.$$

But this is only possible for $\varphi(x) \in \mathbb{R}$, as the left-hand expression will otherwise outgrow the right one as $t \to (\pm)\infty$.²

²Notice: this works for any $\varphi \in A^*$ with $\|\varphi\| = \|\varphi(\mathbf{1})\| = 1!$

¹This holds in any Banach algebra.

Proposition

Let A be a commutative C^{*}-algebra. Then every character $\varphi \in \hat{A}$ is *-preserving, i.e., it satisfies $\varphi(x^*) = \overline{\varphi(x)}$ for all $x \in A$.

Proof: Write $x = x_1 + ix_2$ as before and use the above for

$$\varphi(x^*) = \varphi(x_1 - ix_2) = \varphi(x_1) - i\varphi(x_2) = \overline{\varphi(x_1) + i\varphi(x_2)} = \overline{\varphi(x)}.$$

Proposition

Let A be a commutative C^{*}-algebra. Then every character $\varphi \in \hat{A}$ is *-preserving, i.e., it satisfies $\varphi(x^*) = \overline{\varphi(x)}$ for all $x \in A$.

Proof: Write $x = x_1 + ix_2$ as before and use the above for

$$\varphi(x^*) = \varphi(x_1 - ix_2) = \varphi(x_1) - i\varphi(x_2) = \overline{\varphi(x_1) + i\varphi(x_2)} = \overline{\varphi(x)}.$$

Corollary

For a commutative C^* -algebra A, the Gelfand transform

$$A \to \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi) = \varphi(x)$$

is a *-homomorphism.

 C^* -algebras

Let A be a C*-algebra and $B \subseteq A$ a C*-subalgebra.

Observation

An element $x \in A$ is invertible if and only if x^*x and xx^* are invertible.

Let A be a C*-algebra and $B \subseteq A$ a C*-subalgebra.

Observation

An element $x \in A$ is invertible if and only if x^*x and xx^* are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume $x = x^*$. We know $\sigma_B(x) \subset \mathbb{R}$, so $x_n = x + \frac{i}{n} \xrightarrow{n \to \infty} x$ is a sequence of invertibles in B. We know $||x_n - x|| < ||x_n^{-1}||^{-1}$ implies that x is invertible in B.

Let A be a C^{*}-algebra and $B \subseteq A$ a C^{*}-subalgebra.

Observation

An element $x \in A$ is invertible if and only if x^*x and xx^* are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume $x = x^*$. We know $\sigma_B(x) \subset \mathbb{R}$, so $x_n = x + \frac{i}{2} \xrightarrow{n \to \infty} x$ is a sequence of invertibles in B. We know $||x_n - x|| < ||x_n^{-1}||^{-1}$ implies that x is invertible in B. So if x is not invertible in B, then $||x_n^{-1}|| \to \infty$. Since inversion is norm-continuous on the invertibles in any Banach algebra, it follows that x cannot be invertible in A.

 C^* -algebras

Let A be a C^{*}-algebra and $B \subseteq A$ a C^{*}-subalgebra.

Observation

An element $x \in A$ is invertible if and only if x^*x and xx^* are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume $x = x^*$. We know $\sigma_B(x) \subset \mathbb{R}$, so $x_n = x + \frac{i}{n} \stackrel{n \to \infty}{\longrightarrow} x$ is a sequence of invertibles in B. We know $||x_n - x|| < ||x_n^{-1}||^{-1}$ implies that x is invertible in B. So if x is not invertible in B, then $||x_n^{-1}|| \to \infty$. Since inversion is norm-continuous on the invertibles in any Banach algebra, it follows that x cannot be invertible in A.

Corollary

We have
$$\sigma_B(x) = \sigma_A(x)$$
 for all $x \in B^3$.

³This often fails for inclusions of Banach algebras!

Let A be a C^{*}-algebra.

Observation

 $x \in A$ is normal if and only if $C^*(x, 1) \subseteq A$ is commutative. In this case the spectrum of $C^*(x, 1)$ is homeomorphic to $\sigma(x)$.

Let A be a C^* -algebra.

Observation

 $x \in A$ is normal if and only if $C^*(x, 1) \subseteq A$ is commutative. In this case the spectrum of $C^*(x, 1)$ is homeomorphic to $\sigma(x)$.

Proposition

For a normal element $x \in A$, we have r(x) = ||x||.

Proof: Observe from the $\mathrm{C}^*\text{-}\mathrm{identity}$ that

$$||x||^4 = ||x^*x||^2 = ||x^*xx^*x|| = ||(x^2)^*x^2|| = ||x^2||^2.$$

By induction, we get $||x^{2^n}|| = ||x||^{2^n}$. By the spectral radius formula, we have

$$r(x) = \lim_{n \to \infty} \sqrt[2^n]{\|x^{2^n}\|} = \|x\|.$$

Let A be a C^* -algebra.

Observation

 $x \in A$ is normal if and only if $C^*(x, 1) \subseteq A$ is commutative. In this case the spectrum of $C^*(x, 1)$ is homeomorphic to $\sigma(x)$.

Proposition

For a normal element $x \in A$, we have r(x) = ||x||.

Proof: Observe from the C^* -identity that

$$||x||^4 = ||x^*x||^2 = ||x^*xx^*x|| = ||(x^2)^*x^2|| = ||x^2||^2.$$

By induction, we get $||x^{2^n}|| = ||x||^{2^n}$. By the spectral radius formula, we have

$$r(x) = \lim_{n \to \infty} \sqrt[2^n]{\|x^{2^n}\|} = \|x\|.$$

Corollary

For all
$$x \in A$$
, we have $\|x\| = \sqrt{\|x^*x\|} = \sqrt{r(x^*x)}$.

Theorem (Gelfand–Naimark)

For a commutative C^* -algebra A, the Gelfand transform

$$A \to \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi) = \varphi(x)$$

is an isometric *-isomorphism.

Proof: We have already seen that it is a *-homomorphism.

Theorem (Gelfand–Naimark)

For a commutative C^* -algebra A, the Gelfand transform

$$A \to \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi) = \varphi(x)$$

is an isometric *-isomorphism.

Proof: We have already seen that it is a *-homomorphism.

As every element $x \in A$ is normal, we have $||x|| = r(x) = ||\hat{x}||$, hence the Gelfand transform is isometric.

Theorem (Gelfand–Naimark)

For a commutative C^* -algebra A, the Gelfand transform

$$A \to \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi) = \varphi(x)$$

is an isometric *-isomorphism.

Proof: We have already seen that it is a *-homomorphism.

As every element $x \in A$ is normal, we have $||x|| = r(x) = ||\hat{x}||$, hence the Gelfand transform is isometric.

For surjectivity, observe that the image of A in $C(\hat{A})$ is a closed unital self-adjoint subalgebra, and which separates points. By the **Stone–Weierstrass theorem**, it follows that it is all of $C(\hat{A})$.

Observation

Let $x \in A$ be a normal element in a C*-algebra. Let $A_x = C^*(x, 1)$ be the commutative C*-subalgebra generated by x. Then $\hat{A}_x \cong \sigma(x)$ by observing that for every $\lambda \in \sigma(x)$ there is a unique $\varphi \in \hat{A}_x$ with $\varphi(x) = \lambda$. Under this identification $\hat{x} \in C(\hat{A}_x)$ becomes the identity map on $\sigma(x)$.

Observation

Let $x \in A$ be a normal element in a C*-algebra. Let $A_x = C^*(x, 1)$ be the commutative C*-subalgebra generated by x. Then $\hat{A}_x \cong \sigma(x)$ by observing that for every $\lambda \in \sigma(x)$ there is a unique $\varphi \in \hat{A}_x$ with $\varphi(x) = \lambda$. Under this identification $\hat{x} \in C(\hat{A}_x)$ becomes the identity map on $\sigma(x)$.

Theorem (functional calculus)

Let $x \in A$ be a normal element in a (unital) C^{*}-algebra. There exists a unique (isometric) *-homomorphism

$$\mathcal{C}(\sigma(x)) \to A, \quad f \mapsto f(x)$$

that sends $id_{\sigma(x)}$ to x.

Proof: Take the inverse of the Gelfand transform

$$A_x \to \mathcal{C}(\hat{A}_x) \cong \mathcal{C}(\sigma(x)).$$

An element $x \in A$ is positive if and only if x is normal and $\sigma(x) \subseteq \mathbb{R}^{\geq 0}$.

Proof: If the latter is true, then $y = \sqrt{x}$ satisfies $y^*y = y^2 = x$. So x is positive. The "only if" part is much trickier.

An element $x \in A$ is positive if and only if x is normal and $\sigma(x) \subseteq \mathbb{R}^{\geq 0}$.

Proof: If the latter is true, then $y = \sqrt{x}$ satisfies $y^*y = y^2 = x$. So x is positive. The "only if" part is much trickier.

Observation

 $x = x^* \in A$ is positive if and only if $||r - x|| \le r$ for some (or all) $r \ge ||x||$.

An element $x \in A$ is positive if and only if x is normal and $\sigma(x) \subseteq \mathbb{R}^{\geq 0}$.

Proof: If the latter is true, then $y = \sqrt{x}$ satisfies $y^*y = y^2 = x$. So x is positive. The "only if" part is much trickier.

Observation

 $x = x^* \in A$ is positive if and only if $||r - x|| \le r$ for some (or all) $r \ge ||x||$.

Corollary

For $a, b \in A$ positive, the sum a + b is positive.

Proof: Apply the triangle inequality: We have $||a + b|| \le ||a|| + ||b||$ and

 $\left\| (\|a\| + \|b\|) - (a+b) \right\| \le \left\| \|a\| - a \right\| + \left\| \|b\| - b \right\| \le \|a\| + \|b\|.$

Every algebraic (unital) *-homomorphism $\psi : A \to B$ between (unital) C^* -algebras is contractive, and hence continuous.⁴

Proof: It is clear that $\sigma(\psi(x)) \subseteq \sigma(x)$ for all $x \in A$. By the spectral characterization of the norm, it follows that

$$\|\psi(x)\|^2 = r(\psi(x^*x)) \le r(x^*x) = \|x\|^2.$$

⁴This generalizes to the non-unital case as well!

Every algebraic (unital) *-homomorphism $\psi : A \to B$ between (unital) C^* -algebras is contractive, and hence continuous.⁴

Proof: It is clear that $\sigma(\psi(x)) \subseteq \sigma(x)$ for all $x \in A$. By the spectral characterization of the norm, it follows that

$$\|\psi(x)\|^2 = r(\psi(x^*x)) \le r(x^*x) = \|x\|^2.$$

Observation

For $x \in A$ normal and $f \in \mathcal{C}(\sigma(x))$, we have $\psi(f(x)) = f(\psi(x))$.

Proof: Clear for $f \in \{\text{*-polynomials}\}$. The general case follows by continuity of the assignments $[f \mapsto f(x)]$ and $[f \mapsto f(\psi(x))]$ and the Weierstrass approximation theorem.

⁴This generalizes to the non-unital case as well!

Every injective *-homomorphism $\psi: A \to B$ is isometric.

Proof: By the C*-identity, it suffices to show $\|\psi(x)\| = \|x\|$ for positive $x \in A$. Suppose we have $\|\psi(x)\| < \|x\|$. Choose a non-zero continuous function $f : \sigma(x) \to \mathbb{R}^{\geq 0}$ with $f(\lambda) = 0$ for $\lambda \leq \|\psi(x)\|$.

Every injective *-homomorphism $\psi: A \to B$ is isometric.

Proof: By the C*-identity, it suffices to show $\|\psi(x)\| = \|x\|$ for positive $x \in A$. Suppose we have $\|\psi(x)\| < \|x\|$. Choose a non-zero continuous function $f : \sigma(x) \to \mathbb{R}^{\geq 0}$ with $f(\lambda) = 0$ for $\lambda \leq \|\psi(x)\|$.

Every injective *-homomorphism $\psi : A \rightarrow B$ is isometric.

Proof: By the C*-identity, it suffices to show $\|\psi(x)\| = \|x\|$ for positive $x \in A$. Suppose we have $\|\psi(x)\| < \|x\|$. Choose a non-zero continuous function $f : \sigma(x) \to \mathbb{R}^{\geq 0}$ with $f(\lambda) = 0$ for $\lambda \leq \|\psi(x)\|$.

Then
$$f(x) \neq 0$$
, but

$$\psi(f(x)) = f(\psi(x)) = 0,$$

which means ψ is not injective.

Let A be a C*-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi : A \to \mathcal{B}(\mathcal{H})$.

Let A be a C*-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi : A \to \mathcal{B}(\mathcal{H})$. It is said to be

faithful, if it is injective.

Let A be a C*-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi : A \to \mathcal{B}(\mathcal{H})$. It is said to be

- faithful, if it is injective.
- **2** non-degenerate if $\overline{\operatorname{span}}\pi(A)\mathcal{H} = \mathcal{H}$.

Let A be a C^{*}-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi : A \to \mathcal{B}(\mathcal{H})$. It is said to be

- faithful, if it is injective.
- **2** non-degenerate if $\overline{\operatorname{span}}\pi(A)\mathcal{H} = \mathcal{H}$.
- So cyclic, if there exists a vector $\xi \in \mathcal{H}$ with $\overline{\pi(A)}\xi = \mathcal{H}$. For $\|\xi\| = 1$, we say that (π, \mathcal{H}, ξ) is a cyclic representation.

Let A be a C^{*}-algebra. A representation (on a Hilbert space \mathcal{H}) is a *-homomorphism $\pi : A \to \mathcal{B}(\mathcal{H})$. It is said to be

- faithful, if it is injective.
- **2** non-degenerate if $\overline{\operatorname{span}}\pi(A)\mathcal{H} = \mathcal{H}$.
- So cyclic, if there exists a vector $\xi \in \mathcal{H}$ with $\overline{\pi(A)\xi} = \mathcal{H}$. For $\|\xi\| = 1$, we say that (π, \mathcal{H}, ξ) is a cyclic representation.
- irreducible, if $\overline{\pi(A)\xi} = \mathcal{H}$ for all $0 \neq \xi \in \mathcal{H}$.

Let A be a C^{*}-algebra.

Definition

A functional $\varphi: A \to \mathbb{C}$ is called positive, if $\varphi(a) \ge 0$ whenever $a \ge 0$.

Let A be a C^* -algebra.

Definition

A functional $\varphi: A \to \mathbb{C}$ is called positive, if $\varphi(a) \ge 0$ whenever $a \ge 0$.

Observation

Every positive functional $\varphi:A\to \mathbb{C}$ is continuous.

Proof: Suppose not. By functional calculus, every element $x \in A$ can be written as a linear combination of at most four positive elements

$$x = (x_1^+ - x_1^-) + i(x_2^+ - x_2^-)$$

with norms $\|x_1^+\|, \|x_1^-\|, \|x_2^+\|, \|x_2^-\| \le \|x\|.$ So φ is unbounded on the positive elements.

Let A be a C^* -algebra.

Definition

A functional $\varphi: A \to \mathbb{C}$ is called positive, if $\varphi(a) \ge 0$ whenever $a \ge 0$.

Observation

Every positive functional $\varphi:A\to \mathbb{C}$ is continuous.

Proof: Suppose not. By functional calculus, every element $x \in A$ can be written as a linear combination of at most four positive elements

$$x = (x_1^+ - x_1^-) + i(x_2^+ - x_2^-)$$

with norms $\|x_1^+\|, \|x_1^-\|, \|x_2^+\|, \|x_2^-\| \le \|x\|$. So φ is unbounded on the positive elements.

Given $n \ge 1$, one may choose $a_n \ge 0$ with $||a_n|| = 1$ and $\varphi(a_n) \ge n2^n$. Then $a = \sum_{n=1}^{\infty} 2^{-n} a_n$ is a positive element in A. By positivity of φ , we have $\varphi(a) \ge \varphi(2^{-n}a_n) \ge n$ for all n, a contradiction.

Observation

For a positive functional $\varphi: A \to \mathbb{C}$, we have $\varphi(x^*) = \overline{\varphi(x)}$.

Observation

For a positive functional $\varphi: A \to \mathbb{C}$, we have $\varphi(x^*) = \overline{\varphi(x)}$.

Corollary

For a positive functional φ , the assignment $(x, y) \mapsto \varphi(y^*x)$ defines a positive semi-definite, anti-symmetric, sesqui-linear form. In particular, it is subject to the **Cauchy–Schwarz** inequality

 $|\varphi(y^*x)|^2 \le \varphi(x^*x)\varphi(y^*y).$

Let A be a unital C^{*}-algebra. A linear functional $\varphi : A \to \mathbb{C}$ is positive if and only if $\|\varphi\| = \varphi(\mathbf{1})$.

Proof: For the "only if" part, observe for $||y|| \le 1$ that

$$|\varphi(y)|^2 = |\varphi(\mathbf{1}y)|^2 \le \varphi(\mathbf{1})\varphi(y^*y) \le \varphi(\mathbf{1})\|\varphi\|.$$

Taking the supremum over all such y yields $\|\varphi\|=\varphi(\mathbf{1}).$

Let A be a unital C^{*}-algebra. A linear functional $\varphi : A \to \mathbb{C}$ is positive if and only if $\|\varphi\| = \varphi(\mathbf{1})$.

Proof: For the "only if" part, observe for $||y|| \le 1$ that

$$|\varphi(y)|^2 = |\varphi(\mathbf{1}y)|^2 \le \varphi(\mathbf{1})\varphi(y^*y) \le \varphi(\mathbf{1})\|\varphi\|.$$

Taking the supremum over all such y yields $\|\varphi\| = \varphi(\mathbf{1})$.

For the "if" part, suppose $\varphi(\mathbf{1}) = 1 = \|\varphi\|$. Let $a \ge 0$. Repeating an argument we have used for characters, we know $\varphi(a) \in \mathbb{R}$.

Let A be a unital C^{*}-algebra. A linear functional $\varphi : A \to \mathbb{C}$ is positive if and only if $\|\varphi\| = \varphi(\mathbf{1})$.

Proof: For the "only if" part, observe for $||y|| \leq 1$ that

$$|\varphi(y)|^2 = |\varphi(\mathbf{1}y)|^2 \le \varphi(\mathbf{1})\varphi(y^*y) \le \varphi(\mathbf{1})\|\varphi\|.$$

Taking the supremum over all such y yields $\|\varphi\|=\varphi(\mathbf{1}).$

For the "if" part, suppose $\varphi(\mathbf{1}) = 1 = \|\varphi\|$. Let $a \ge 0$. Repeating an argument we have used for characters, we know $\varphi(a) \in \mathbb{R}$. Suppose $\varphi(a) < 0$. As $\sigma(x) \subseteq \mathbb{R}^{\ge 0}$, we observe

$$\begin{split} \varphi(a) \notin \{\lambda \in \mathbb{C} \mid |\lambda_0 - \lambda| \leq \rho\} \supseteq \sigma(a), \\ \text{where } \lambda_0 = \frac{1}{2}(\max \sigma(a) + \min \sigma(a)) \text{ and } \rho = \frac{1}{2}(\max \sigma(a) - \min \sigma(a)). \end{split}$$

Let A be a unital C^{*}-algebra. A linear functional $\varphi : A \to \mathbb{C}$ is positive if and only if $\|\varphi\| = \varphi(\mathbf{1})$.

Proof: For the "only if" part, observe for $||y|| \leq 1$ that

$$|\varphi(y)|^2 = |\varphi(\mathbf{1}y)|^2 \le \varphi(\mathbf{1})\varphi(y^*y) \le \varphi(\mathbf{1})\|\varphi\|.$$

Taking the supremum over all such y yields $\|\varphi\|=\varphi(\mathbf{1}).$

For the "if" part, suppose $\varphi(\mathbf{1}) = 1 = \|\varphi\|$. Let $a \ge 0$. Repeating an argument we have used for characters, we know $\varphi(a) \in \mathbb{R}$. Suppose $\varphi(a) < 0$. As $\sigma(x) \subseteq \mathbb{R}^{\ge 0}$, we observe

$$\varphi(a) \notin \{\lambda \in \mathbb{C} \mid |\lambda_0 - \lambda| \le \rho\} \supseteq \sigma(a),$$

where $\lambda_0 = \frac{1}{2}(\max \sigma(a) + \min \sigma(a))$ and $\rho = \frac{1}{2}(\max \sigma(a) - \min \sigma(a))$. Then $y = \lambda_0 - a$ is self-adjoint, hence $||y|| = r(y) = \rho$, but $\varphi(y) = \lambda_0 - \varphi(a) > \rho$, a contradiction to $||\varphi|| = 1$.

Corollary

For an inclusion of (unital) C^* -algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn–Banach and the previous slide.

Corollary

For an inclusion of (unital) C^* -algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn–Banach and the previous slide.

Definition

A state on a C^* -algebra is a positive functional with norm one.

Corollary

For an inclusion of (unital) C^* -algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn–Banach and the previous slide.

Definition

A state on a C^* -algebra is a positive functional with norm one.

Observation

For $x \in A$ normal, there is a state φ with $||x|| = |\varphi(x)|$.

Proof: Pick $\lambda_0 \in \sigma(x)$ with $|\lambda_0| = ||x||$. We know

$$A_x = \mathcal{C}^*(x, \mathbf{1}) \cong \mathcal{C}(\sigma(x))$$

so that $x \mapsto \mathrm{id}$. The evaluation map $f \mapsto f(\lambda_0)$ corresponds to a state on A_x with the desired property. Extend it to a state φ on A.

Let A be a $\mathrm{C}^*\mbox{-algebra}.$

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if b - a is positive.

Let A be a C^* -algebra.

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if b - a is positive.

Observation

- The order " \leq " is compatible with sums.
- For all self-adjoint $a \in A$, we have $a \leq ||a||$.
- If $a \leq b$ and $x \in A$ is any element, then $x^*ax \leq x^*bx$.

Let A be a C^* -algebra.

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if b - a is positive.

Observation

- The order "≤" is compatible with sums.
- For all self-adjoint $a \in A$, we have $a \le ||a||$.
- If $a \leq b$ and $x \in A$ is any element, then $x^*ax \leq x^*bx$.

For proving the last part, write $b - a = c^*c$. Then

$$x^*bx - x^*ax = x^*(b-a)x = x^*c^*cx = (cx)^*cx \ge 0.$$

Given a state φ on A, we have observed that $(x, y) \mapsto \varphi(y^*x)$ forms a positive semi-definite, anti-symmetric, sesqui-linear form.

Observation

For all $a, x \in A$, we have $\varphi(x^*a^*ax) \leq ||a||^2 \varphi(x^*x)$. The null space $N_{\varphi} = \{x \in A \mid \varphi(x^*x) = 0\}$ is a closed left ideal in A.

Given a state φ on A, we have observed that $(x, y) \mapsto \varphi(y^*x)$ forms a positive semi-definite, anti-symmetric, sesqui-linear form.

Observation

For all $a, x \in A$, we have $\varphi(x^*a^*ax) \leq ||a||^2 \varphi(x^*x)$. The null space $N_{\varphi} = \{x \in A \mid \varphi(x^*x) = 0\}$ is a closed left ideal in A.

Observation

The quotient $H_{\varphi} = A/N_{\varphi}$ carries the inner product

$$\langle [x] \mid [y] \rangle_{\varphi} = \varphi(y^*x),$$

and the left A-module structure satisfies $\|[ax]\|_{\varphi} \leq \|a\| \cdot \|[x]\|_{\varphi}$ for all $a, x \in A$.

Definition (Gelfand–Naimark–Segal construction)

For a state φ on a C*-algebra A, let \mathcal{H}_{φ} be the Hilbert space completion $\mathcal{H}_{\varphi} = \overline{H_{\varphi}}^{\|\cdot\|_{\varphi}}$. Then \mathcal{H}_{φ} carries a unique left A-module structure which extends the one on H_{φ} and is continuous in \mathcal{H}_{φ} . This gives us a representation

$$\pi_{\varphi}: A \to \mathcal{B}(\mathcal{H}_{\varphi}) \quad \text{via} \quad \pi_{\varphi}(a)([x]) = [ax]$$

for all $a, x \in A$.

Definition (Gelfand–Naimark–Segal construction)

For a state φ on a C*-algebra A, let \mathcal{H}_{φ} be the Hilbert space completion $\mathcal{H}_{\varphi} = \overline{H_{\varphi}}^{\|\cdot\|_{\varphi}}$. Then \mathcal{H}_{φ} carries a unique left A-module structure which extends the one on H_{φ} and is continuous in \mathcal{H}_{φ} . This gives us a representation

$$\pi_{\varphi}: A \to \mathcal{B}(\mathcal{H}_{\varphi})$$
 via $\pi_{\varphi}(a)([x]) = [ax]$

for all $a, x \in A$.

The only non-tautological part is that π_{φ} is compatible with adjoints. For this we observe

$$\langle [ax] \mid [y] \rangle_{\varphi} = \varphi(y^*ax) = \varphi\big((a^*y)^*x\big) = \langle [x] \mid [a^*y] \rangle_{\varphi},$$

which forces $\pi_{\varphi}(a)^* = \pi_{\varphi}(a^*).$

Definition (Gelfand–Naimark–Segal construction)

For a state φ on a C*-algebra A, let \mathcal{H}_{φ} be the Hilbert space completion $\mathcal{H}_{\varphi} = \overline{H_{\varphi}}^{\|\cdot\|_{\varphi}}$. Then \mathcal{H}_{φ} carries a unique left A-module structure which extends the one on H_{φ} and is continuous in \mathcal{H}_{φ} . This gives us a representation

$$\pi_{\varphi}: A \to \mathcal{B}(\mathcal{H}_{\varphi})$$
 via $\pi_{\varphi}(a)([x]) = [ax]$

for all $a, x \in A$.

The only non-tautological part is that π_{φ} is compatible with adjoints. For this we observe

$$\langle [ax] \mid [y] \rangle_{\varphi} = \varphi(y^*ax) = \varphi((a^*y)^*x) = \langle [x] \mid [a^*y] \rangle_{\varphi},$$

which forces $\pi_{\varphi}(a)^* = \pi_{\varphi}(a^*)$.

Definition

In the (unital) situation above, set $\xi_{\varphi} = [1] \in \mathcal{H}_{\varphi}$. Then $\|\xi_{\varphi}\| = 1$ as we have assumed φ to be a state.

Gábor Szabó (KU Leuven)

Theorem (GNS)

The assignment $\varphi \mapsto (\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ is a 1-1 correspondence between states on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that $(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ is cyclic. Indeed, $\pi_{\varphi}(A)\xi_{\varphi} = \pi_{\varphi}(A)([\mathbf{1}]) = [A] = H_{\varphi} \subseteq \mathcal{H}_{\varphi}$, which is dense by definition.

Theorem (GNS)

The assignment $\varphi \mapsto (\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ is a 1-1 correspondence between states on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that $(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ is cyclic. Indeed, $\pi_{\varphi}(A)\xi_{\varphi} = \pi_{\varphi}(A)([\mathbf{1}]) = [A] = H_{\varphi} \subseteq \mathcal{H}_{\varphi}$, which is dense by definition.

Theorem (Gelfand–Naimark)

Every abstract C^{*}-algebra A is a concrete C^{*}-algebra. In particular, there exists a faithful representation $\pi : A \to \mathcal{H}$ on some Hilbert space.⁵

Proof: For $x \in A$, find φ_x with $\|\varphi_x(x^*x)\| = \|x\|^2$. Then form the cyclic representation $(\pi_{\varphi_x}, \mathcal{H}_{\varphi_x}, \xi_{\varphi_x})$.

⁵ If A is separable, we may choose \mathcal{H} to be separable!

Theorem (GNS)

The assignment $\varphi \mapsto (\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ is a 1-1 correspondence between states on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that $(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ is cyclic. Indeed, $\pi_{\varphi}(A)\xi_{\varphi} = \pi_{\varphi}(A)([\mathbf{1}]) = [A] = H_{\varphi} \subseteq \mathcal{H}_{\varphi}$, which is dense by definition.

Theorem (Gelfand–Naimark)

Every abstract C^{*}-algebra A is a concrete C^{*}-algebra. In particular, there exists a faithful representation $\pi : A \to \mathcal{H}$ on some Hilbert space.⁵

Proof: For $x \in A$, find φ_x with $\|\varphi_x(x^*x)\| = \|x\|^2$. Then form the cyclic representation $(\pi_{\varphi_x}, \mathcal{H}_{\varphi_x}, \xi_{\varphi_x})$. We claim that the direct sum

$$\pi := \bigoplus_{x \in A} \pi_{\varphi_x} : A \to \mathcal{B}\Big(\bigoplus_{x \in A} \mathcal{H}_{\varphi_x}\Big)$$

does it. Indeed, given any $x \neq 0$ we have

$$\frac{\|\pi(x)\|^2}{2} \ge \|\pi(x)\xi_{\varphi_x}\|^2 = \langle [x] \mid [x] \rangle_{\varphi_x} = \varphi_x(x^*x) = \|x\|^2.$$

⁵ If A is separable, we may choose \mathcal{H} to be separable!

Let us now discuss noncommutative examples of C*-algebras:

Example

The set of \mathbb{C} -valued $n \times n$ matrices, denoted M_n , becomes a C^{*}-algebra. By linear algebra, $M_n \cong \mathcal{B}(\mathbb{C}^n)$. Let us now discuss noncommutative examples of C*-algebras:

Example

The set of \mathbb{C} -valued $n \times n$ matrices, denoted M_n , becomes a C*-algebra. By linear algebra, $M_n \cong \mathcal{B}(\mathbb{C}^n)$.

Example

For numbers $n_1, \ldots, n_k \geq 1$, the C*-algebra

$$A = M_{n_1} \oplus M_{n_2} \oplus \dots \oplus M_{n_k}$$

has finite (\mathbb{C} -linear) dimension.

Let us now discuss noncommutative examples of C*-algebras:

Example

The set of \mathbb{C} -valued $n \times n$ matrices, denoted M_n , becomes a C*-algebra. By linear algebra, $M_n \cong \mathcal{B}(\mathbb{C}^n)$.

Example

For numbers $n_1, \ldots, n_k \geq 1$, the C*-algebra

$$A = M_{n_1} \oplus M_{n_2} \oplus \dots \oplus M_{n_k}$$

has finite (\mathbb{C} -linear) dimension.

Theorem

Every finite-dimensional C*-algebras has this form.

Recall

A linear map between Banach spaces $T:A\to B$ is called compact, if $\overline{T\cdot A_{\|\cdot\|\leq 1}}\subseteq B$ is compact.

Recall

A linear map between Banach spaces $T:A\to B$ is called compact, if $\overline{T\cdot A_{\|\cdot\|\leq 1}}\subseteq B$ is compact.

Observation

Compact operators are bounded. The composition of a compact operator with a bounded operator is compact.

Recall

A linear map between Banach spaces $T:A\to B$ is called compact, if $\overline{T\cdot A_{\|\cdot\|\leq 1}}\subseteq B$ is compact.

Observation

Compact operators are bounded. The composition of a compact operator with a bounded operator is compact.

Example

For a Hilbert space \mathcal{H} , the set of compact operators $\mathcal{K}(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H})$ forms a norm-closed, *-closed, two-sided ideal. If $\dim(\mathcal{H}) = \infty$, then it is a proper ideal and a **non-unital** C*-algebra.

Notation (ad-hoc!)

Let \mathcal{G} be a countable set, and let \mathcal{P} be a family of (noncommutative) *-polynomials in finitely many variables in \mathcal{G} and coefficients in \mathbb{C} . We shall understand a relation \mathcal{R} as a collection of formulas of the form

$$||p(\mathcal{G})|| \le \lambda_p, \quad p \in \mathcal{P}, \quad \lambda_p \ge 0.$$

A representation of $(\mathcal{G} \mid \mathcal{R})$ is a map $\pi : \mathcal{G} \to A$ into a C*-algebra under which the relation becomes true.

Notation (ad-hoc!)

Let \mathcal{G} be a countable set, and let \mathcal{P} be a family of (noncommutative) *-polynomials in finitely many variables in \mathcal{G} and coefficients in \mathbb{C} . We shall understand a relation \mathcal{R} as a collection of formulas of the form

$$||p(\mathcal{G})|| \le \lambda_p, \quad p \in \mathcal{P}, \quad \lambda_p \ge 0.$$

A representation of $(\mathcal{G} \mid \mathcal{R})$ is a map $\pi : \mathcal{G} \to A$ into a C*-algebra under which the relation becomes true.

Example

The expression xyx^*-z^2 for $x,y,z\in \mathcal{G}$ is a noncommutative *-polynomial. The relation could mean

$$\|xyx^* - z^2\| \le 1.$$

A representation π_u of $(\mathcal{G} \mid \mathcal{R})$ into a $\mathrm{C}^*\text{-algebra }B$ is called universal, if

$$B = C^*(\pi_u(\mathcal{G})).$$

A representation π_u of $(\mathcal{G} \mid \mathcal{R})$ into a C*-algebra B is called universal, if

$$B = C^*(\pi_u(\mathcal{G})).$$

② whenever $\pi: \mathcal{G} \to A$ is a representation of $(\mathcal{G} \mid \mathcal{R})$ into another C*-algebra, there exists a *-homomorphism $\varphi: B \to A$ such that $\varphi \circ \pi_u = \pi$.

A representation π_u of $(\mathcal{G} \mid \mathcal{R})$ into a C*-algebra B is called universal, if

$$B = C^*(\pi_u(\mathcal{G})).$$

Observation

Up to isomorphism, a C*-algebra B as above is unique. One writes $B = C^*(\mathcal{G} \mid \mathcal{R})$ and calls it the universal C*-algebra for $(\mathcal{G} \mid \mathcal{R})$.

Given $n \ge 1$, one can express M_n as the universal C*-algebra generated by $\{e_{i,j}\}_{i,j=1}^n$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$

Given $n \ge 1$, one can express M_n as the universal C^{*}-algebra generated by $\{e_{i,j}\}_{i,j=1}^n$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$

Example

Let \mathcal{H} be a separable, infinite-dimensional Hilbert space. Then one can express $\mathcal{K}(\mathcal{H})$ as the universal C*-algebra generated by $\{e_{i,j}\}_{i,j\in\mathbb{N}}$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$

Given $n \ge 1$, one can express M_n as the universal C^{*}-algebra generated by $\{e_{i,j}\}_{i,j=1}^n$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$

Example

Let \mathcal{H} be a separable, infinite-dimensional Hilbert space. Then one can express $\mathcal{K}(\mathcal{H})$ as the universal C*-algebra generated by $\{e_{i,j}\}_{i,j\in\mathbb{N}}$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$

(Here e_{ij} represents a rank-one operator sending the *i*-th vector in an ONB to the *j*-th vector.)

A relation ${\mathcal R}$ on a set ${\mathcal G}$ is compact if for every $x\in {\mathcal G}$

 $\sup \{ \|\pi(x)\| \mid \pi: \mathcal{G} \to A \text{ representation of } (\mathcal{G} \mid \mathcal{R}) \} < \infty.$

A relation $\mathcal R$ on a set $\mathcal G$ is compact if for every $x \in \mathcal G$

 $\sup \{ \|\pi(x)\| \mid \pi: \mathcal{G} \to A \text{ representation of } (\mathcal{G} \mid \mathcal{R}) \} < \infty.$

Theorem

For a pair $(\mathcal{G} \mid \mathcal{R})$, the universal C^* -algebra $C^*(\mathcal{G} \mid \mathcal{R})$ exists if and only if \mathcal{R} is compact.

Proof: The "only if" part follows from the fact that *-homomorphisms are contractive.

A relation $\mathcal R$ on a set $\mathcal G$ is compact if for every $x \in \mathcal G$

 $\sup \left\{ \|\pi(x)\| \mid \pi: \mathcal{G} \to A \text{ representation of } (\mathcal{G} \mid \mathcal{R}) \right\} < \infty.$

Theorem

For a pair $(\mathcal{G} \mid \mathcal{R})$, the universal C^* -algebra $C^*(\mathcal{G} \mid \mathcal{R})$ exists if and only if \mathcal{R} is compact.

Proof: The "only if" part follows from the fact that *-homomorphisms are contractive.

"if" part: The isomorphism classes of separable C*-algebras form a set. There exist set-many representations $\pi : \mathcal{G} \to A_{\pi}$ of $(\mathcal{G} \mid \mathcal{R})$ on separable C*-algebras up to conjugacy. Denote this set by I, and consider

$$\mathfrak{A} = \prod_{\pi \in I} A_{\pi}$$
 and $\pi_u : \mathcal{G} \to \mathfrak{A}, \ \pi_u(x) = (\pi(x))_{\pi \in I}.$

By compactness, π_u is a well-defined representation of $(\mathcal{G} \mid \mathcal{R})$. Then check that $B = C^*(\pi_u(\mathcal{G})) \subseteq \mathfrak{A}$ is universal.

The universal C*-algebra for the relation $||xyx^* - z^2|| \le 1$ does not exist.

Proof: Suppose we have such $x, y, z \neq 0$ in a C*-algebra, e.g., all equal to the unit. For $\lambda > 0$, replace $y \to \lambda y$ and $x \to \lambda^{-1/2} x$, and let $\lambda \to \infty$.

The universal C*-algebra for the relation $||xyx^* - z^2|| \le 1$ does not exist.

Proof: Suppose we have such $x, y, z \neq 0$ in a C^{*}-algebra, e.g., all equal to the unit. For $\lambda > 0$, replace $y \to \lambda y$ and $x \to \lambda^{-1/2} x$, and let $\lambda \to \infty$.

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C*-algebra is zero! E.g., $C^*(x \mid x^*x = -xx^*) = 0$.

The universal C*-algebra for the relation $||xyx^* - z^2|| \le 1$ does not exist.

Proof: Suppose we have such $x, y, z \neq 0$ in a C*-algebra, e.g., all equal to the unit. For $\lambda > 0$, replace $y \to \lambda y$ and $x \to \lambda^{-1/2} x$, and let $\lambda \to \infty$.

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C*-algebra is zero! E.g., $C^*(x \mid x^*x = -xx^*) = 0$.

Example

$$\mathrm{C}^*(u\mid u^*u=uu^*=\mathbf{1})\cong \mathcal{C}(\mathbb{T})\quad\text{with }u\mapsto \mathrm{id}_{\mathbb{T}}\,.$$

Proof: Functional calculus.

The universal C*-algebra for the relation $||xyx^* - z^2|| \le 1$ does not exist.

Proof: Suppose we have such $x, y, z \neq 0$ in a C*-algebra, e.g., all equal to the unit. For $\lambda > 0$, replace $y \to \lambda y$ and $x \to \lambda^{-1/2} x$, and let $\lambda \to \infty$.

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C*-algebra is zero! E.g., $C^*(x \mid x^*x = -xx^*) = 0$.

Example

$$\mathrm{C}^*(u\mid u^*u=uu^*=\mathbf{1})\cong \mathcal{C}(\mathbb{T})\quad\text{with }u\mapsto \mathrm{id}_{\mathbb{T}}\,.$$

Proof: Functional calculus.

Remark

All of this generalizes to more general relations (including functional calculus etc.) and a more flexible notion of generating sets.

Proposition

Every separable C^* -algebra A is the universal C^* -algebra for a countable set of equations involving *-polynomials of degree at most 2.

Every separable C^* -algebra A is the universal C^* -algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proof: Start with some countable dense $\mathbb{Q}[i]$ -*-subalgebra $C \subset A$. By inductively enlarging C, we may enlarge it to another countable dense $\mathbb{Q}[i]$ -*-subalgebra $D \subset A$ with the additional property that if $x \in D$ is a contraction, then $y = \mathbf{1} - \sqrt{\mathbf{1} - x^* x} \in D$.

Every separable C^* -algebra A is the universal C^* -algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proof: Start with some countable dense $\mathbb{Q}[i]$ -*-subalgebra $C \subset A$. By inductively enlarging C, we may enlarge it to another countable dense $\mathbb{Q}[i]$ -*-subalgebra $D \subset A$ with the additional property that if $x \in D$ is a contraction, then $y = \mathbf{1} - \sqrt{\mathbf{1} - x^* x} \in D$.

Now let \mathcal{P} be the family of *-polynomials that encode all the *-algebra relations in D, so

$$X_a X_b - X_{ab}, \ \lambda X_a + X_b - X_{\lambda a+b}, \ X_a^* - X_{a^*},$$

for $\lambda \in \mathbb{Q}[i]$ and $a, b \in D$. Set $\mathcal{G} = D$, and let \mathcal{R} be the relation where these polynomials evaluate to zero. By construction, representations $(\mathcal{G} \mid \mathcal{R}) \rightarrow B$ are the same as *-homomorphisms $D \rightarrow B$.

Every separable C^* -algebra A is the universal C^* -algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proof: (continued) By construction, representations $(\mathcal{G} \mid \mathcal{R}) \rightarrow B$ are the same as *-homomorphisms $D \rightarrow B$.

We claim that the inclusion $D \subset A$ turns A into the universal C*-algebra for these relations. This means that every *-homomorphism from D extends to a *-homomorphism on A. This is certainly the case if every *-homomorphism $\varphi: D \to B$ is contractive.

Every separable C^* -algebra A is the universal C^* -algebra for a countable set of equations involving *-polynomials of degree at most 2.

Proof: (continued) By construction, representations $(\mathcal{G} \mid \mathcal{R}) \rightarrow B$ are the same as *-homomorphisms $D \rightarrow B$.

We claim that the inclusion $D \subset A$ turns A into the universal C*-algebra for these relations. This means that every *-homomorphism from D extends to a *-homomorphism on A. This is certainly the case if every *-homomorphism $\varphi: D \to B$ is contractive.

Indeed, if $x \in D$ is a contraction, then $y = 1 - \sqrt{1 - x^* x} \in D_{sa}$ satisfies

$$x^*x + y^2 - 2y = 0.$$

Thus also $\varphi(x)^*\varphi(x)+\varphi(y)^2-2\varphi(y)=0$ in B, which is equivalent to

$$\varphi(x)^*\varphi(x) + (\mathbf{1} - \varphi(y))^2 = \mathbf{1}.$$

Hence $\|\varphi(x)\| \leq 1$ for every contraction $x \in D$, which finishes the proof.

Let Γ be a countable discrete group. The universal group $C^{*}\mbox{-algebra}$ is defined as

$$C^*(\Gamma) = C^*(\{u_g\}_{g \in \Gamma} \mid u_1 = \mathbf{1}, \ u_{gh} = u_g u_h, \ u_g^* = u_{g^{-1}}).$$

Let Γ be a countable discrete group. The universal group $C^{*}\mbox{-algebra}$ is defined as

$$\mathrm{C}^*(\Gamma) = \mathrm{C}^*(\{u_g\}_{g\in\Gamma} \mid u_1 = \mathbf{1}, \ u_{gh} = u_g u_h, \ u_g^* = u_{g^{-1}}).$$

(There is a similar but less obvious construction for non-discrete groups.)

Let Γ be a countable discrete group. The universal group $C^{*}\mbox{-algebra}$ is defined as

$$\mathrm{C}^*(\Gamma) = \mathrm{C}^*(\{u_g\}_{g\in\Gamma} \mid u_1 = \mathbf{1}, \ u_{gh} = u_g u_h, \ u_g^* = u_{g^{-1}}).$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

 $\mathrm{C}^*(\mathbb{Z})\cong \mathcal{C}(\mathbb{T}).$

Let Γ be a countable discrete group. The universal group $C^{*}\mbox{-algebra}$ is defined as

$$C^*(\Gamma) = C^*(\{u_g\}_{g \in \Gamma} \mid u_1 = \mathbf{1}, \ u_{gh} = u_g u_h, \ u_g^* = u_{g^{-1}}).$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

 $\mathrm{C}^*(\mathbb{Z})\cong \mathcal{C}(\mathbb{T}).$

Example

The Toeplitz algebra is $\mathcal{T} = C^*(s \mid s^*s = 1)$.

Let Γ be a countable discrete group. The universal group $C^{*}\mbox{-algebra}$ is defined as

$$\mathrm{C}^*(\Gamma) = \mathrm{C}^*(\{u_g\}_{g\in\Gamma} \mid u_1 = \mathbf{1}, \ u_{gh} = u_g u_h, \ u_g^* = u_{g^{-1}}).$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

 $\mathrm{C}^*(\mathbb{Z})\cong \mathcal{C}(\mathbb{T}).$

Example

The Toeplitz algebra is
$$\mathcal{T} = C^*(s \mid s^*s = 1)$$
.

Fact

If $v \in B$ is any non-unitary isometry in a C^* -algebra, then $C^*(v) \cong \mathcal{T}$ in the obvious way. In other words, every proper isometry is universal.

Gábor Szabó (KU Leuven)

For $n \in \mathbb{N}$, one defines the Cuntz algebra in n generators as

$$\mathcal{O}_n = C^* \Big(s_1, \dots, s_n \mid s_j^* s_j = \mathbf{1}, \ \sum_{j=1}^n s_j s_j^* = \mathbf{1} \Big).$$

For $n \in \mathbb{N}$, one defines the Cuntz algebra in n generators as

$$\mathcal{O}_n = C^* \Big(s_1, \dots, s_n \mid s_j^* s_j = \mathbf{1}, \ \sum_{j=1}^n s_j s_j^* = \mathbf{1} \Big)$$

$$\mathcal{O}_3 = \mathrm{C}^*(s_1, s_2, s_3)$$

 $\mathcal{H}_j = s_j \mathcal{H} \subseteq \mathcal{H}$

For $n \in \mathbb{N}$, one defines the Cuntz algebra in n generators as

$$\mathcal{O}_n = C^* \Big(s_1, \dots, s_n \mid s_j^* s_j = \mathbf{1}, \ \sum_{j=1}^n s_j s_j^* = \mathbf{1} \Big)$$

Theorem (Cuntz)

 \mathcal{O}_n is **simple**! That is, every collection of isometries s_1, \ldots, s_n in any C^* -algebra as above is universal with this property.

Fact (Inductive limits)

lf

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$$

is a sequence of C*-algebra inclusions, then

$$A = \overline{\bigcup_{n \in \mathbb{N}} A_n}^{\|\cdot\|}$$

exists and is a C*-algebra.

Definition

In the above situation, if every A_n is finite-dimensional, we call A an AF algebra. (AF = approximately finite-dimensional)

Consider

$$A_1 = \mathbb{C}, \quad A_2 = M_2, \quad A_3 = M_4 \cong M_2 \otimes M_2, \quad A_4 = M_8 \cong M_2^{\otimes 3}, \quad \dots,$$

with inclusions of the form $x \mapsto x \otimes \mathbf{1}_2 = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}.$

Consider

$$\begin{array}{ll} A_1 = \mathbb{C}, & A_2 = M_2, & A_3 = M_4 \cong M_2 \otimes M_2, & A_4 = M_8 \cong M_2^{\otimes 3}, & \dots, \end{array}$$
with inclusions of the form $x \mapsto x \otimes \mathbf{1}_2 = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$.
The CAR algebra is the limit
$$M_{2^{\infty}} = M_2^{\otimes \infty} = \overline{\bigcup A_n}. \end{array}$$

Consider

$$A_1 = \mathbb{C}, \quad A_2 = M_2, \quad A_3 = M_4 \cong M_2 \otimes M_2, \quad A_4 = M_8 \cong M_2^{\otimes 3}, \quad \dots,$$

with inclusions of the form
$$x \mapsto x \otimes \mathbf{1}_2 = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$$
.

The CAR algebra is the limit

$$M_{2^{\infty}} = M_2^{\otimes \infty} = \overline{\bigcup A_n}.$$

This construction can of course be repeated with powers of any other number p instead of 2. $\rightsquigarrow M_{p^\infty}$

$\Lambda_{2^{\infty}}$					· .					

i andara da ante de la tradeción de la compania de la compania.

Let A be a (unital) $\mathrm{C}^*\text{-}\mathsf{algebra}$ and Γ a discrete group.

Definition

Given an action $\alpha : \Gamma \curvearrowright A$, define the crossed product $A \rtimes_{\alpha} \Gamma$ as the universal C^{*}-algebra containing a unital copy of A, and the image of a unitary representation $[g \mapsto u_g]$ of Γ , subject to the relation

$$u_g a u_g^* = \alpha_g(a), \quad a \in A, \ g \in \Gamma.$$

Let A be a (unital) $\mathrm{C}^*\text{-}\mathsf{algebra}$ and Γ a discrete group.

Definition

Given an action $\alpha : \Gamma \curvearrowright A$, define the crossed product $A \rtimes_{\alpha} \Gamma$ as the universal C^{*}-algebra containing a unital copy of A, and the image of a unitary representation $[g \mapsto u_g]$ of Γ , subject to the relation

$$u_g a u_g^* = \alpha_g(a), \quad a \in A, \ g \in \Gamma.$$

Example

Start from a homeomorphic action $\Gamma \frown X$ on a compact Hausdorff space. $\rightsquigarrow \mathcal{C}(X) \rtimes \Gamma$.

Observation

For two ${\rm C}^*\text{-}{\rm algebras}\;A,B,$ the algebraic tensor product $A\odot B$ becomes a *-algebra in the obvious way.

Question

Can this be turned into a C^* -algebra?

Observation

For two ${\rm C}^*\mbox{-algebras}\ A,B,$ the algebraic tensor product $A\odot B$ becomes a *-algebra in the obvious way.

Question

Can this be turned into a C^* -algebra?

Yes! However, not uniquely in general.

Observation

For two ${\rm C}^*\mbox{-algebras}\ A,B,$ the algebraic tensor product $A\odot B$ becomes a *-algebra in the obvious way.

Question

Can this be turned into a C^* -algebra?

Yes! However, not uniquely in general.

Definition

We say that a C*-algebra A is nuclear if the tensor product $A \odot B$ carries a unique C*-norm for every C*-algebra B. In this case we denote by $A \otimes B$ the C*-algebra arising as the completion.

Finite-dimensional or commutative C*-algebras are nuclear. One has $M_n \otimes A \cong M_n(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Finite-dimensional or commutative C*-algebras are nuclear. One has $M_n \otimes A \cong M_n(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Theorem

A discrete group Γ is **amenable** if and only if $C^*(\Gamma)$ is nuclear.

Finite-dimensional or commutative C*-algebras are nuclear. One has $M_n \otimes A \cong M_n(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Theorem

A discrete group Γ is **amenable** if and only if $C^*(\Gamma)$ is nuclear.

Example (free groups)

 $C^*(\mathbb{F}_n)$ is not nuclear for $n \geq 2$.

Finite-dimensional or commutative C*-algebras are nuclear. One has $M_n \otimes A \cong M_n(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Theorem

A discrete group Γ is **amenable** if and only if $C^*(\Gamma)$ is nuclear.

Example (free groups)

 $C^*(\mathbb{F}_n)$ is not nuclear for $n \geq 2$.

Theorem

If Γ is amenable and A is nuclear, then $A \rtimes \Gamma$ is nuclear for every possible action $\Gamma \curvearrowright A$. So in particular for A = C(X).

There is a functor

 $\{C^*\text{-algebras}\} \longrightarrow \{\text{abelian groups}\}, \quad A \mapsto K_*(A) = K_0(A) \oplus K_1(A),$

which extends the topological K-theory functor $X \mapsto K^*(X)$ for (locally) compact Hausdorff spaces.

There is a functor

 $\{C^*\text{-algebras}\} \longrightarrow \{\text{abelian groups}\}, \quad A \mapsto K_*(A) = K_0(A) \oplus K_1(A),$

which extends the topological K-theory functor $X \mapsto K^*(X)$ for (locally) compact Hausdorff spaces. It is **homotopy invariant** and **stable**, and has many other good properties for doing computations.

There is a functor

 $\{\mathbf{C}^*\text{-}\textit{algebras}\} \longrightarrow \{\textit{abelian groups}\}, \quad A \mapsto K_*(A) = K_0(A) \oplus K_1(A),$

which extends the topological K-theory functor $X \mapsto K^*(X)$ for (locally) compact Hausdorff spaces. It is **homotopy invariant** and **stable**, and has many other good properties for doing computations.

Fact

 $K_0(A)$ has a natural **positive part** $K_0(A)_+$, which induces an order relation on $K_0(A)$.

There is a functor

 $\{\mathbf{C}^*\text{-}\textit{algebras}\} \longrightarrow \{\textit{abelian groups}\}, \quad A \mapsto K_*(A) = K_0(A) \oplus K_1(A),$

which extends the topological K-theory functor $X \mapsto K^*(X)$ for (locally) compact Hausdorff spaces. It is **homotopy invariant** and **stable**, and has many other good properties for doing computations.

Fact

 $K_0(A)$ has a natural **positive part** $K_0(A)_+$, which induces an order relation on $K_0(A)$.

Theorem (Glimm, Bratteli, Elliott)

Let A and B be two (unital) AF algebras. Then

 $A \cong B \quad \Longleftrightarrow \quad (K_0(A), K_0(A)_+, [\mathbf{1}_A]) \cong (K_0(B), K_0(B)_+, [\mathbf{1}_B]).$

Definition (Elliott invariant)

For a (unital) simple C^* -algebra A, one considers

• its K-groups $K_0(A)$ and $K_1(A)$;

Definition (Elliott invariant)

For a (unital) simple C^* -algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;

Definition (Elliott invariant)

For a (unital) simple C^* -algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
- the distinguished element $[\mathbf{1}_A] \in K_0(A)_+$;

Definition (Elliott invariant)

For a (unital) simple C^* -algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
- the distinguished element $[\mathbf{1}_A] \in K_0(A)_+$;
- the Choquet simplex T(A) of tracial states, i.e., τ is tracial if $\tau(xx^*) = \tau(x^*x)$ for all $x \in A$;

Definition (Elliott invariant)

For a (unital) simple C^* -algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
- the distinguished element $[\mathbf{1}_A] \in K_0(A)_+$;
- the Choquet simplex T(A) of tracial states, i.e., τ is tracial if $\tau(xx^*) = \tau(x^*x)$ for all $x \in A$;
- a natural pairing map $\rho_A : T(A) \times K_0(A) \to \mathbb{R}$ which is an order homomorphism in the second variable.

Definition (Elliott invariant)

For a (unital) simple C^* -algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
- the distinguished element $[\mathbf{1}_A] \in K_0(A)_+$;
- the Choquet simplex T(A) of tracial states, i.e., τ is tracial if $\tau(xx^*) = \tau(x^*x)$ for all $x \in A$;
- a natural pairing map $\rho_A : T(A) \times K_0(A) \to \mathbb{R}$ which is an order homomorphism in the second variable.

The sextuple

$$Ell(A) = \left(K_0(A), K_0(A)_+, [\mathbf{1}_A], K_1(A), T(A), \rho_A\right)$$

is called the Elliott invariant and becomes functorial with respect to a suitable target category.

Fact

There is a separable unital simple nuclear infinite-dimensional C^{*}-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang–Su algebra, with $\text{Ell}(\mathcal{Z}) \cong \text{Ell}(\mathbb{C})$.

Fact

There is a separable unital simple nuclear infinite-dimensional C^{*}-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang–Su algebra, with $\operatorname{Ell}(\mathcal{Z}) \cong \operatorname{Ell}(\mathbb{C})$.

Rough idea: One considers the C^* -algebra

 $\mathcal{Z}_{2^{\infty},3^{\infty}} = \left\{ f \in \mathcal{C}([0,1], M_{2^{\infty}} \otimes M_{3^{\infty}}) \mid f(0) \in M_{2^{\infty}} \otimes \mathbf{1}, \ f(1) \in \mathbf{1} \otimes M_{3^{\infty}} \right\}$

which has the right K-theory but far too many ideals and traces.

Fact

There is a separable unital simple nuclear infinite-dimensional C^{*}-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang–Su algebra, with $\operatorname{Ell}(\mathcal{Z}) \cong \operatorname{Ell}(\mathbb{C})$.

Rough idea: One considers the $\mathrm{C}^*\text{-}\mathsf{algebra}$

 $\mathcal{Z}_{2^{\infty},3^{\infty}} = \left\{ f \in \mathcal{C}([0,1], M_{2^{\infty}} \otimes M_{3^{\infty}}) \mid f(0) \in M_{2^{\infty}} \otimes \mathbf{1}, \ f(1) \in \mathbf{1} \otimes M_{3^{\infty}} \right\}$

which has the right K-theory but far too many ideals and traces.

One constructs a **trace-collapsing** endomorphism on $\mathcal{Z}_{2^{\infty},3^{\infty}}$ and can define \mathcal{Z} as the

stationary inductive limit.

(Graphic created by Aaron Tikuisis.)

We say that a C*-algebra A is \mathbb{Z} -stable, if $A \cong A \otimes \mathbb{Z}$.

We say that a C*-algebra A is \mathbb{Z} -stable, if $A \cong A \otimes \mathbb{Z}$.

Fact

If A is simple and the order on $K_0(A)$ satisfies a mild condition, then $\operatorname{Ell}(A) \cong \operatorname{Ell}(A \otimes \mathcal{Z}).$

We say that a C*-algebra A is \mathbb{Z} -stable, if $A \cong A \otimes \mathbb{Z}$.

Fact

If A is simple and the order on $K_0(A)$ satisfies a mild condition, then $Ell(A) \cong Ell(A \otimes Z)$.

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear $\mathcal{Z}\text{-stable }\mathbf{C}^*\text{-algebras}.$ Then

$$A \cong B \iff \operatorname{Ell}(A) \cong \operatorname{Ell}(B).^6$$

⁶To the experts in the audience: No UCT discussion now!

We say that a C*-algebra A is \mathbb{Z} -stable, if $A \cong A \otimes \mathbb{Z}$.

Fact

If A is simple and the order on $K_0(A)$ satisfies a mild condition, then $Ell(A) \cong Ell(A \otimes Z)$.

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear $\mathcal{Z}\text{-stable }\mathbf{C}^*\text{-algebras}.$ Then

$$A \cong B \iff \operatorname{Ell}(A) \cong \operatorname{Ell}(B).^{6}$$

(There is a more general version not assuming unitality.)

⁶To the experts in the audience: No UCT discussion now!

We say that a C*-algebra A is \mathbb{Z} -stable, if $A \cong A \otimes \mathbb{Z}$.

Fact

If A is simple and the order on $K_0(A)$ satisfies a mild condition, then $Ell(A) \cong Ell(A \otimes Z)$.

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear $\mathcal{Z}\text{-stable }\mathbf{C}^*\text{-algebras}.$ Then

$$A \cong B \iff \operatorname{Ell}(A) \cong \operatorname{Ell}(B).^{6}$$

(There is a more general version not assuming unitality.)

Problem (difficult!)

Determine when $\Gamma \curvearrowright X$ gives rise to a Z-stable crossed product.

⁶To the experts in the audience: No UCT discussion now!

Gábor Szabó (KU Leuven)

Thank you for your attention!

