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Introduction Operators on Hilbert spaces

We will denote by H a complex Hilbert space with inner product 〈· | ·〉,
and B(H) the set of all bounded linear operators H → H. It becomes a
Banach algebra with the operator norm.

Recall
For a ∈ B(H), the adjoint operator a∗ ∈ B(H) is the unique operator
satisfying the formula

〈aξ1 | ξ2〉 = 〈ξ1 | a∗ξ2〉, ξ1, ξ2 ∈ H.

Then the adjoint operation a 7→ a∗ is an involution, i.e., it is anti-linear
and satisfies (ab)∗ = b∗a∗.

Observation
One always has ‖a∗a‖ = ‖a‖2.

Proof: Since ‖a∗‖ = ‖a‖ is rather immediate from the definition, “≤” is
clear. For “≥”, observe

‖aξ‖2 = 〈aξ | aξ〉 = 〈ξ | a∗aξ〉 ≤ ‖a∗aξ‖, ‖ξ‖ = 1.
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Introduction What is a C∗-algebra?

Definition
An (abstract) C∗-algebra is a complex Banach algebra A with an
involution a 7→ a∗ satisfying the C∗-identity

‖a∗a‖ = ‖a‖2, a ∈ A.

We say A is unital, if there exists a unit element 1 ∈ A.

Definition
A concrete C∗-algebra is a self-adjoint subalgebra A ⊆ B(H), for some
Hilbert space H, which is closed in the operator norm.

As the operator norm satisfies the C∗-identity, every concrete C∗-algebra is
an abstract C∗-algebra.
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Introduction What is a C∗-algebra?

Example
For some compact Hausdorff space X, we may consider

C(X) = {continuous functions X → C} .

With pointwise addition and multiplication, C(X) becomes a
commutative abstract C∗-algebra if we equip it with the adjoint operation

f∗(x) = f(x)

and the norm
‖f‖∞ = sup

x∈X
|f(x)|.

Fact (Spectral theory)
As an abstract C∗-algebra, C(X) remembers X.
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Introduction Goals

The goal for this lecture is to go over the spectral theory of Banach
algebras and C∗-algebras, culminating in:

Theorem (Gelfand–Naimark)
Every (unital) commutative C∗-algebra is isomorphic to C(X) for some
compact Hausdorff space X.

The goal for the next lecture is to showcase some applications, and
discuss the GNS construction, in particular:

Theorem (Gelfand–Naimark–Segal)
Every abstract C∗-algebra can be expressed as a concrete C∗-algebra.

The goal for tomorrow is to cover examples and advanced topics.
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Spectral theory Banach algebras

From now on, we will assume that A is a Banach algebra with unit. We
identify C ⊆ A as λ 7→ λ · 1.

Observation (Neumann series)
If x ∈ A with ‖1− x‖ < 1, then x is invertible. In fact

x−1 =
∞∑
n=0

(1− x)n.

Proof: x
∞∑
n=0

(1− x)n =
∞∑
n=0

(
(1− x)n − (1− x)n+1)

)
= 1.

Observation
The set of invertibles in A is open.

Proof: If z is invertible and x is any element with ‖z − x‖ < ‖z−1‖−1,
then ‖1− z−1x‖ < 1. By the above z−1x is invertible, but then x is also
invertible.
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Spectral theory Banach algebras

Definition
For an element x ∈ A, its spectrum is defined as

σ(x) = {λ ∈ C | λ− x is not invertible in A} ⊆ C.

Elements in the spectrum may be seen as generalized eigenvalues of an
operator.

Observation
The spectrum σ(x) is a compact subset of {λ | |λ| ≤ ‖x‖}. One defines
the spectral radius of x as r(x) = max

λ∈σ(x)
|λ| ≤ ‖x‖.

Theorem
The spectrum σ(x) of every element x ∈ A is non-empty.

(The proof involves a non-trivial application of complex analysis.)
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Spectral theory Banach algebras

Definition
A character on A is a non-zero multiplicative linear functional A→ C.

Observation
A character ϕ : A→ C is automatically continuous, in fact ‖ϕ‖ = 1.

Proof: As ϕ is non-zero, we have 0 6= ϕ(1) = ϕ(1)2, hence ϕ(1) = 1.
If x were to satisfy |ϕ(x)| > ‖x‖, then ϕ(x)− x is invertible by the
Neumann series trick. However, it lies in the kernel of ϕ, which yields a
contradiction.

Definition
For commutative A, we define its spectrum (aka character space) as

Â = {characters ϕ : A→ C} .

Due to the Banach-Alaoglu theorem, we see that the topology of pointwise
convergence turns Â into a compact Hausdorff space.
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Spectral theory Banach algebras

Observation
If J ⊂ A is a maximal ideal in a (unital) Banach algebra, then J is closed.
If A is commutative, then A/J ∼= C as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial
dense ideals in A. So J is a proper ideal, hence J = J by maximality.

Part 2: The quotient is a Banach algebra in which every non-zero element
is invertible. If it has a non-scalar element x ∈ A/J , then λ− x 6= 0 is
invertible for all λ ∈ C, which is a contradiction to σ(x) 6= ∅.

Observation
For commutative A, the assignment ϕ 7→ kerϕ is a 1-1 correspondence
between Â and maximal ideals in A.

Proof: Clearly the kernel of a character is a maximal ideal as it has
codimension 1 in A. Since we have ϕ(1) = 1 for every ϕ ∈ Â and
A = C1 + kerϕ, every character is uniquely determined by its kernel.
Conversely, if J ⊂ A is a maximal ideal, then A/J ∼= C, so the quotient
map gives us a character.
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Spectral theory Banach algebras

A is still commutative.

Theorem
Let x ∈ A. Then

σ(x) =
{
ϕ(x) | ϕ ∈ Â

}
.

Proof: Let λ ∈ C. If λ = ϕ(x), then λ− x ∈ ker(ϕ), so λ− x is not
invertible. Conversely, if λ− x is not invertible, then it is inside a (proper)
maximal ideal. By the previous observation, this means (λ− x) ∈ kerϕ for
some ϕ ∈ Â, or λ = ϕ(x).

Theorem (Spectral radius formula)
For any Banach algebra A and x ∈ A, one has

r(x) = lim
n→∞

n

√
‖xn‖.

Proof: The “≤” part follows easily from the above (for A commutative).
The “≥” part is another clever application of complex analysis.
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Spectral theory Banach algebras

For commutative A, consider the usual embedding

ι : A ↪−→ A∗∗, ι(x)(f) = f(x).

Since every element of A∗∗ is a continuous function on Â ⊂ A∗ in a
natural way, we have a restriction mapping A∗∗ → C(Â). The composition
of these two maps yields:

Definition (Gelfand transform)
The Gelfand transform is the unital homomorphism A→ C(Â), x 7→ x̂
given by x̂(ϕ) = ϕ(x).

Observation
The Gelfand transform is norm-contractive. In fact, for x ∈ A we have
x̂(Â) = σ(x) and hence ‖x̂‖ = r(x) ≤ ‖x‖ for all x ∈ A.
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Spectral theory C∗-algebras

Definition
Let A be a unital C∗-algebra. An element x ∈ A is

1 normal, if x∗x = xx∗.
2 self-adjoint, if x = x∗.
3 positive, if x = y∗y for some y ∈ A.

Write x ≥ 0.
4 a unitary, if x∗x = xx∗ = 1.

positive +3

#+

self-adjoint

s{
normal

unitary

KS

Observation
Any element x ∈ A can be written as x = x1 + ix2 for the self-adjoint
elements

x1 = x+ x∗

2 , x2 = x− x∗

2i .

Observation
If x ∈ A is self-adjoint, then it follows for all t ∈ R that

‖x+ it‖2 = ‖(x− it)(x+ it)‖ = ‖x2 + t2‖ ≤ ‖x‖2 + t2.
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Spectral theory C∗-algebras

Proposition
If x ∈ A is self-adjoint, then σ(x) ⊂ R.

Proof: Step 1: The spectrum of x inside A is the same as the spectrum of
x inside its bicommutant A ∩ {x}′′.1 As x is self-adjoint, this is a
commutative C∗-algebra. So assume A is commutative.

Step 2: For ϕ ∈ Â, we get
|ϕ(x) + it|2 = |ϕ(x+ it)2| ≤ ‖x‖2 + t2, t ∈ R.

But this is only possible for ϕ(x) ∈ R, as the left-hand expression will
otherwise outgrow the right one as t→ (±)∞.[frame]Notice: this works
for any ϕ ∈ A∗ with ‖ϕ‖ = ‖ϕ(1)‖ = 1!

1This holds in any Banach algebra.
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x inside its bicommutant A ∩ {x}′′.1 As x is self-adjoint, this is a
commutative C∗-algebra. So assume A is commutative.
Step 2: For ϕ ∈ Â, we get

|ϕ(x) + it|2 = |ϕ(x+ it)2| ≤ ‖x‖2 + t2, t ∈ R.

But this is only possible for ϕ(x) ∈ R, as the left-hand expression will
otherwise outgrow the right one as t→ (±)∞.2

1This holds in any Banach algebra.
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Spectral theory C∗-algebras

Proposition
Let A be a commutative C∗-algebra. Then every character ϕ ∈ Â is
∗-preserving, i.e., it satisfies ϕ(x∗) = ϕ(x) for all x ∈ A.

Proof: Write x = x1 + ix2 as before and use the above for

ϕ(x∗) = ϕ(x1 − ix2) = ϕ(x1)− iϕ(x2) = ϕ(x1) + iϕ(x2) = ϕ(x).

Corollary
For a commutative C∗-algebra A, the Gelfand transform

A→ C(Â), x̂(ϕ) = ϕ(x)

is a ∗-homomorphism.
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Spectral theory C∗-algebras

Let A be a C∗-algebra and B ⊆ A a C∗-subalgebra.

Observation
An element x ∈ A is invertible if and only if x∗x and xx∗ are invertible.

Observation
An element x ∈ B is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume x = x∗. We know σB(x) ⊂ R, so
xn = x+ i

n
n→∞−→ x is a sequence of invertibles in B. We know

‖xn − x‖ < ‖x−1
n ‖−1 implies that x is invertible in B. So if x is not

invertible in B, then ‖x−1
n ‖ → ∞. Since inversion is norm-continuous on

the invertibles in any Banach algebra, it follows that x cannot be invertible
in A.

Corollary
We have σB(x) = σA(x) for all x ∈ B.[frame]This often fails for inclusions
of Banach algebras!
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Spectral theory C∗-algebras

Let A be a C∗-algebra.

Observation
x ∈ A is normal if and only if C∗(x,1) ⊆ A is commutative. In this case
the spectrum of C∗(x,1) is homeomorphic to σ(x).

Proposition
For a normal element x ∈ A, we have r(x) = ‖x‖.

Proof: Observe from the C∗-identity that

‖x‖4 = ‖x∗x‖2 = ‖x∗xx∗x‖ = ‖(x2)∗x2‖ = ‖x2‖2.

By induction, we get ‖x2n‖ = ‖x‖2n . By the spectral radius formula, we
have

r(x) = lim
n→∞

2n
√
‖x2n‖ = ‖x‖.

Corollary
For all x ∈ A, we have ‖x‖ =

√
‖x∗x‖ =

√
r(x∗x).
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Spectral theory Gelfand-Naimark theorem

Theorem (Gelfand–Naimark)
For a commutative C∗-algebra A, the Gelfand transform

A→ C(Â), x̂(ϕ) = ϕ(x)

is an isometric ∗-isomorphism.

Proof: We have already seen that it is a ∗-homomorphism.

As every element x ∈ A is normal, we have ‖x‖ = r(x) = ‖x̂‖, hence the
Gelfand transform is isometric.
For surjectivity, observe that the image of A in C(Â) is a closed unital
self-adjoint subalgebra, and which separates points. By the
Stone–Weierstrass theorem, it follows that it is all of C(Â).
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self-adjoint subalgebra, and which separates points. By the
Stone–Weierstrass theorem, it follows that it is all of C(Â).
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Spectral theory Functional calculus

Observation
Let x ∈ A be a normal element in a C∗-algebra. Let Ax = C∗(x,1) be the
commutative C∗-subalgebra generated by x. Then Âx ∼= σ(x) by
observing that for every λ ∈ σ(x) there is a unique ϕ ∈ Âx with ϕ(x) = λ.
Under this identification x̂ ∈ C(Âx) becomes the identity map on σ(x).

Theorem (functional calculus)
Let x ∈ A be a normal element in a (unital) C∗-algebra. There exists a
unique (isometric) ∗-homomorphism

C(σ(x))→ A, f 7→ f(x)

that sends idσ(x) to x.

Proof: Take the inverse of the Gelfand transform

Ax → C(Âx) ∼= C(σ(x)).
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Spectral theory Applications

Theorem
An element x ∈ A is positive if and only if x is normal and σ(x) ⊆ R≥0.

Proof: If the latter is true, then y =
√
x satisfies y∗y = y2 = x. So x is

positive. The “only if” part is much trickier.

Observation
x = x∗ ∈ A is positive if and only if

∥∥r− x∥∥ ≤ r for some (or all) r ≥ ‖x‖.

Corollary
For a, b ∈ A positive, the sum a+ b is positive.

Proof: Apply the triangle inequality: We have ‖a+ b‖ ≤ ‖a‖+ ‖b‖ and∥∥(‖a‖+ ‖b‖)− (a+ b)
∥∥ ≤ ∥∥‖a‖ − a∥∥+

∥∥‖b‖ − b∥∥ ≤ ‖a‖+ ‖b‖.
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Spectral theory Applications

Theorem
Every algebraic (unital) ∗-homomorphism ψ : A→ B between (unital)
C∗-algebras is contractive, and hence continuous.4

Proof: It is clear that σ(ψ(x)) ⊆ σ(x) for all x ∈ A. By the spectral
characterization of the norm, it follows that

‖ψ(x)‖2 = r(ψ(x∗x)) ≤ r(x∗x) = ‖x‖2.

Observation
For x ∈ A normal and f ∈ C(σ(x)), we have ψ(f(x)) = f(ψ(x)).

Proof: Clear for f ∈ {*-polynomials}. The general case follows by
continuity of the assignments [f 7→ f(x)] and [f 7→ f(ψ(x))] and the
Weierstrass approximation theorem.

4This generalizes to the non-unital case as well!
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Spectral theory Applications

Theorem
Every injective ∗-homomorphism ψ : A→ B is isometric.

Proof: By the C∗-identity, it suffices to show ‖ψ(x)‖ = ‖x‖ for positive
x ∈ A. Suppose we have ‖ψ(x)‖ < ‖x‖. Choose a non-zero continuous
function f : σ(x)→ R≥0 with f(λ) = 0 for λ ≤ ‖ψ(x)‖.

‖ϕ(x)‖ ‖x‖

f

1 Then f(x) 6= 0, but

ψ(f(x)) = f(ψ(x)) = 0,

which means ψ is not injective.
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Representation theory

Definition
Let A be a C∗-algebra. A representation (on a Hilbert space H) is a
∗-homomorphism π : A→ B(H).

It is said to be

1 faithful, if it is injective.
2 non-degenerate if spanπ(A)H = H.
3 cyclic, if there exists a vector ξ ∈ H with π(A)ξ = H. For ‖ξ‖ = 1,

we say that (π,H, ξ) is a cyclic representation.
4 irreducible, if π(A)ξ = H for all 0 6= ξ ∈ H.
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Representation theory Positive functionals

Let A be a C∗-algebra.

Definition
A functional ϕ : A→ C is called positive, if ϕ(a) ≥ 0 whenever a ≥ 0.

Observation
Every positive functional ϕ : A→ C is continuous.

Proof: Suppose not. By functional calculus, every element x ∈ A can be
written as a linear combination of at most four positive elements

x = (x+
1 − x

−
1 ) + i(x+

2 − x
−
2 )

with norms ‖x+
1 ‖, ‖x

−
1 ‖, ‖x

+
2 ‖, ‖x

−
2 ‖ ≤ ‖x‖. So ϕ is unbounded on the

positive elements.
Given n ≥ 1, one may choose an ≥ 0 with ‖an‖ = 1 and ϕ(an) ≥ n2n.
Then a =

∑∞
n=1 2−nan is a positive element in A. By positivity of ϕ, we

have ϕ(a) ≥ ϕ(2−nan) ≥ n for all n, a contradiction.
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Representation theory Positive functionals

Observation
For a positive functional ϕ : A→ C, we have ϕ(x∗) = ϕ(x).

Corollary
For a positive functional ϕ, the assignment (x, y) 7→ ϕ(y∗x) defines a
positive semi-definite, anti-symmetric, sesqui-linear form. In particular, it is
subject to the Cauchy–Schwarz inequality

|ϕ(y∗x)|2 ≤ ϕ(x∗x)ϕ(y∗y).

Gábor Szabó (KU Leuven) C*-algebras November 2018 23 / 50



Representation theory Positive functionals

Observation
For a positive functional ϕ : A→ C, we have ϕ(x∗) = ϕ(x).

Corollary
For a positive functional ϕ, the assignment (x, y) 7→ ϕ(y∗x) defines a
positive semi-definite, anti-symmetric, sesqui-linear form. In particular, it is
subject to the Cauchy–Schwarz inequality

|ϕ(y∗x)|2 ≤ ϕ(x∗x)ϕ(y∗y).

Gábor Szabó (KU Leuven) C*-algebras November 2018 23 / 50



Representation theory Positive functionals

Theorem
Let A be a unital C∗-algebra. A linear functional ϕ : A→ C is positive if
and only if ‖ϕ‖ = ϕ(1).

Proof: For the “only if” part, observe for ‖y‖ ≤ 1 that

|ϕ(y)|2 = |ϕ(1y)|2 ≤ ϕ(1)ϕ(y∗y) ≤ ϕ(1)‖ϕ‖.

Taking the supremum over all such y yields ‖ϕ‖ = ϕ(1).

For the “if” part, suppose ϕ(1) = 1 = ‖ϕ‖. Let a ≥ 0. Repeating an
argument we have used for characters, we know ϕ(a) ∈ R. Suppose
ϕ(a) < 0. As σ(x) ⊆ R≥0, we observe

ϕ(a) /∈ {λ ∈ C | |λ0 − λ| ≤ ρ} ⊇ σ(a),

where λ0 = 1
2(max σ(a) + min σ(a)) and ρ = 1

2(max σ(a)−min σ(a)).
Then y = λ0 − a is self-adjoint, hence ‖y‖ = r(y) = ρ, but
ϕ(y) = λ0 − ϕ(a) > ρ, a contradiction to ‖ϕ‖ = 1.
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Representation theory Positive functionals

Corollary
For an inclusion of (unital) C∗-algebras B ⊆ A, every positive functional
on B extends to a positive functional on A.

Proof: Use Hahn–Banach and the previous slide.

Definition
A state on a C∗-algebra is a positive functional with norm one.

Observation
For x ∈ A normal, there is a state ϕ with ‖x‖ = |ϕ(x)|.

Proof: Pick λ0 ∈ σ(x) with |λ0| = ‖x‖. We know

Ax = C∗(x,1) ∼= C(σ(x))

so that x 7→ id. The evaluation map f 7→ f(λ0) corresponds to a state on
Ax with the desired property. Extend it to a state ϕ on A.
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Representation theory Interlude: Order on self-adjoints

Let A be a C∗-algebra.

Definition
For self-adjoint elements a, b ∈ A, write a ≤ b if b− a is positive.

Observation
The order “≤” is compatible with sums.
For all self-adjoint a ∈ A, we have a ≤ ‖a‖.
If a ≤ b and x ∈ A is any element, then x∗ax ≤ x∗bx.

For proving the last part, write b− a = c∗c. Then

x∗bx− x∗ax = x∗(b− a)x = x∗c∗cx = (cx)∗cx ≥ 0.
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Representation theory States and representations

Given a state ϕ on A, we have observed that (x, y) 7→ ϕ(y∗x) forms a
positive semi-definite, anti-symmetric, sesqui-linear form.

Observation
For all a, x ∈ A, we have ϕ(x∗a∗ax) ≤ ‖a‖2ϕ(x∗x). The null space
Nϕ = {x ∈ A | ϕ(x∗x) = 0} is a closed left ideal in A.

Observation
The quotient Hϕ = A/Nϕ carries the inner product

〈[x] | [y]〉ϕ = ϕ(y∗x),

and the left A-module structure satisfies ‖[ax]‖ϕ ≤ ‖a‖ · ‖[x]‖ϕ for all
a, x ∈ A.
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Representation theory GNS construction

Definition (Gelfand–Naimark–Segal construction)
For a state ϕ on a C∗-algebra A, let Hϕ be the Hilbert space completion
Hϕ = Hϕ

‖·‖ϕ . Then Hϕ carries a unique left A-module structure which
extends the one on Hϕ and is continuous in Hϕ. This gives us a
representation

πϕ : A→ B(Hϕ) via πϕ(a)([x]) = [ax]

for all a, x ∈ A.

The only non-tautological part is that πϕ is compatible with adjoints. For
this we observe

〈[ax] | [y]〉ϕ = ϕ(y∗ax) = ϕ
(
(a∗y)∗x

)
= 〈[x] | [a∗y]〉ϕ,

which forces πϕ(a)∗ = πϕ(a∗).

Definition
In the (unital) situation above, set ξϕ = [1] ∈ Hϕ. Then ‖ξϕ‖ = 1 as we
have assumed ϕ to be a state.
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Representation theory GNS construction

Theorem (GNS)
The assignment ϕ 7→ (πϕ,Hϕ, ξϕ) is a 1-1 correspondence between states
on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that (πϕ,Hϕ, ξϕ) is cyclic. Indeed,
πϕ(A)ξϕ = πϕ(A)([1]) = [A] = Hϕ ⊆ Hϕ, which is dense by definition.

Theorem (Gelfand–Naimark)
Every abstract C∗-algebra A is a concrete C∗-algebra. In particular,
there exists a faithful representation π : A→ H on some Hilbert
space.[frame]If A is separable, we may choose H to be separable!

Proof: For x ∈ A, find ϕx with ‖ϕx(x∗x)‖ = ‖x‖2. Then form the cyclic
representation (πϕx ,Hϕx , ξϕx). We claim that the direct sum

π :=
⊕
x∈A

πϕx : A→ B
(⊕
x∈A
Hϕx

)
does it. Indeed, given any x 6= 0 we have

‖π(x)‖2 ≥ ‖π(x)ξϕx‖2 = 〈[x] | [x]〉ϕx = ϕx(x∗x) = ‖x‖2.
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Examples

Let us now discuss noncommutative examples of C∗-algebras:

Example
The set of C-valued n× n matrices, denoted Mn, becomes a C∗-algebra.
By linear algebra, Mn

∼= B(Cn).

Example
For numbers n1, . . . , nk ≥ 1, the C∗-algebra

A = Mn1 ⊕Mn2 ⊕ · · · ⊕Mnk

has finite (C-linear) dimension.

Theorem
Every finite-dimensional C∗-algebras has this form.
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Examples

Recall
A linear map between Banach spaces T : A→ B is called compact, if
T ·A‖·‖≤1 ⊆ B is compact.

Observation
Compact operators are bounded. The composition of a compact operator
with a bounded operator is compact.

Example
For a Hilbert space H, the set of compact operators K(H) ⊆ B(H) forms
a norm-closed, ∗-closed, two-sided ideal. If dim(H) =∞, then it is a
proper ideal and a non-unital C∗-algebra.
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Examples Universal C∗-algebras

Notation (ad-hoc!)
Let G be a countable set, and let P be a family of (noncommutative)
∗-polynomials in finitely many variables in G and coefficients in C. We
shall understand a relation R as a collection of formulas of the form

‖p(G)‖ ≤ λp, p ∈ P, λp ≥ 0.

A representation of (G | R) is a map π : G → A into a C∗-algebra under
which the relation becomes true.

Example
The expression xyx∗ − z2 for x, y, z ∈ G is a noncommutative
∗-polynomial. The relation could mean

‖xyx∗ − z2‖ ≤ 1.
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Examples Universal C∗-algebras

Definition
A representation πu of (G | R) into a C∗-algebra B is called universal, if

1 B = C∗(πu(G)).

2 whenever π : G → A is a representation of (G | R) into another
C∗-algebra, there exists a ∗-homomorphism ϕ : B → A such that
ϕ ◦ πu = π.

Observation
Up to isomorphism, a C∗-algebra B as above is unique. One writes
B = C∗(G | R) and calls it the universal C∗-algebra for (G | R).
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Examples Universal C∗-algebras

Example
Given n ≥ 1, one can express Mn as the universal C∗-algebra generated by
{ei,j}ni,j=1 subject to the relations

eijekl = δjkeil, e∗ij = eji.

Example
Let H be a separable, infinite-dimensional Hilbert space. Then one can
express K(H) as the universal C∗-algebra generated by {ei,j}i,j∈N subject
to the relations

eijekl = δjkeil, e∗ij = eji.

(Here eij represents a rank-one operator sending the i-th vector in an
ONB to the j-th vector.)
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Examples Universal C∗-algebras

Definition
A relation R on a set G is compact if for every x ∈ G

sup {‖π(x)‖ | π : G → A representation of (G | R)} <∞.

Theorem
For a pair (G | R), the universal C∗-algebra C∗(G | R) exists if and only if
R is compact.

Proof: The “only if” part follows from the fact that ∗-homomorphisms are
contractive.
“if” part: The isomorphism classes of separable C∗-algebras form a set.
There exist set-many representations π : G → Aπ of (G | R) on separable
C∗-algebras up to conjugacy. Denote this set by I, and consider

A =
∏
π∈I

Aπ and πu : G → A, πu(x) =
(
π(x)

)
π∈I .

By compactness, πu is a well-defined representation of (G | R). Then
check that B = C∗(πu(G)) ⊆ A is universal.
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Examples Universal C∗-algebras

Example
The universal C∗-algebra for the relation ‖xyx∗ − z2‖ ≤ 1 does not exist.

Proof: Suppose we have such x, y, z 6= 0 in a C∗-algebra, e.g., all equal to
the unit. For λ > 0, replace y → λy and x→ λ−1/2x, and let λ→∞.

Remark (Warning!)
It can easily happen that a relation is compact and non-trivial, but the
universal C∗-algebra is zero! E.g., C∗(x | x∗x = −xx∗) = 0.

Example

C∗(u | u∗u = uu∗ = 1) ∼= C(T) with u 7→ idT .

Proof: Functional calculus.
Remark
All of this generalizes to more general relations (including functional
calculus etc.) and a more flexible notion of generating sets.
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Examples Universal C∗-algebras

Proposition
Every separable C∗-algebra A is the universal C∗-algebra for a countable
set of equations involving ∗-polynomials of degree at most 2.

Proof: Start with some countable dense Q[i]-∗-subalgebra C ⊂ A. By
inductively enlarging C, we may enlarge it to another countable dense
Q[i]-∗-subalgebra D ⊂ A with the additional property that if x ∈ D is a
contraction, then y = 1−

√
1− x∗x ∈ D.

Now let P be the family of ∗-polynomials that encode all the ∗-algebra
relations in D, so

XaXb −Xab, λXa +Xb −Xλa+b, X
∗
a −Xa∗ ,

for λ ∈ Q[i] and a, b ∈ D. Set G = D, and let R be the relation where
these polynomials evaluate to zero. By construction, representations
(G | R)→ B are the same as ∗-homomorphisms D → B.
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Examples Universal C∗-algebras

Proposition
Every separable C∗-algebra A is the universal C∗-algebra for a countable
set of equations involving ∗-polynomials of degree at most 2.

Proof: (continued) By construction, representations (G | R)→ B are
the same as ∗-homomorphisms D → B.
We claim that the inclusion D ⊂ A turns A into the universal C∗-algebra
for these relations. This means that every ∗-homomorphism from D
extends to a ∗-homomorphism on A. This is certainly the case if every
∗-homomorphism ϕ : D → B is contractive.

Indeed, if x ∈ D is a contraction, then y = 1−
√

1− x∗x ∈ Dsa satisfies

x∗x+ y2 − 2y = 0.

Thus also ϕ(x)∗ϕ(x) + ϕ(y)2 − 2ϕ(y) = 0 in B, which is equivalent to

ϕ(x)∗ϕ(x) + (1− ϕ(y))2 = 1.

Hence ‖ϕ(x)‖ ≤ 1 for every contraction x ∈ D, which finishes the proof.
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Examples Universal C∗-algebras

Definition
Let Γ be a countable discrete group. The universal group C∗-algebra is
defined as

C∗(Γ) = C∗
(
{ug}g∈Γ | u1 = 1, ugh = uguh, u

∗
g = ug−1

)
.

(There is a similar but less obvious construction for non-discrete groups.)

Example
C∗(Z) ∼= C(T).

Example
The Toeplitz algebra is T = C∗

(
s | s∗s = 1

)
.

Fact
If v ∈ B is any non-unitary isometry in a C∗-algebra, then C∗(v) ∼= T in
the obvious way. In other words, every proper isometry is universal.
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Examples Universal C∗-algebras

Example
For n ∈ N, one defines the Cuntz algebra in n generators as

On = C∗
(
s1, . . . , sn | s∗jsj = 1,

n∑
j=1

sjs
∗
j = 1

)
.

O3 = C∗(s1, s2, s3)

Hj = sjH ⊆ H

H

H1 H2 H3

Theorem (Cuntz)
On is simple! That is, every collection of isometries s1, . . . , sn in any
C∗-algebra as above is universal with this property.
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Examples Limits

Fact (Inductive limits)
If

A1 ⊆ A2 ⊆ A3 ⊆ · · ·

is a sequence of C∗-algebra inclusions, then

A =
⋃
n∈N

An
‖·‖

exists and is a C∗-algebra.

Definition
In the above situation, if every An is finite-dimensional, we call A an AF
algebra. (AF = approximately finite-dimensional)
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Examples Limits

Example
Consider

A1 = C, A2 = M2, A3 = M4 ∼= M2 ⊗M2, A4 = M8 ∼= M⊗3
2 , . . . ,

with inclusions of the form x 7→ x⊗ 12 =
(
x 0
0 x

)
.

The CAR algebra is the limit

M2∞ = M⊗∞2 =
⋃
An.

This construction can of course be repeated with powers of any other
number p instead of 2.  Mp∞
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Examples Limits

M2( )
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Examples Limits

M4( )
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Examples Limits

M8( )
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Examples Limits
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Examples Crossed products

Let A be a (unital) C∗-algebra and Γ a discrete group.

Definition
Given an action α : Γ y A, define the crossed product Aoα Γ as the
universal C∗-algebra containing a unital copy of A, and the image of a
unitary representation [g 7→ ug] of Γ, subject to the relation

ugau
∗
g = αg(a), a ∈ A, g ∈ Γ.

Example
Start from a homeomorphic action Γ y X on a compact Hausdorff space.
 C(X) o Γ.
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Examples Tensor products

Observation
For two C∗-algebras A,B, the algebraic tensor product A�B becomes a
∗-algebra in the obvious way.

Question
Can this be turned into a C∗-algebra?

Yes! However, not uniquely in general.

Definition
We say that a C∗-algebra A is nuclear if the tensor product A�B carries
a unique C∗-norm for every C∗-algebra B. In this case we denote by
A⊗B the C∗-algebra arising as the completion.
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Examples Tensor products

Example
Finite-dimensional or commutative C∗-algebras are nuclear. One has
Mn ⊗A ∼= Mn(A) and C(X)⊗A ∼= C(X,A).

Theorem
A discrete group Γ is amenable if and only if C∗(Γ) is nuclear.

Example (free groups)
C∗(Fn) is not nuclear for n ≥ 2.

Theorem
If Γ is amenable and A is nuclear, then Ao Γ is nuclear for every possible
action Γ y A. So in particular for A = C(X).
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Elliott program

Fact (K-theory)
There is a functor

{C∗-algebras} −→ {abelian groups} , A 7→ K∗(A) = K0(A)⊕K1(A),

which extends the topological K-theory functor X 7→ K∗(X) for (locally)
compact Hausdorff spaces.

It is homotopy invariant and stable, and has
many other good properties for doing computations.

Fact
K0(A) has a natural positive part K0(A)+, which induces an order
relation on K0(A).

Theorem (Glimm, Bratteli, Elliott)
Let A and B be two (unital) AF algebras. Then

A ∼= B ⇐⇒ (K0(A),K0(A)+, [1A]) ∼= (K0(B),K0(B)+, [1B]).
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Elliott program

Definition (Elliott invariant)
For a (unital) simple C∗-algebra A, one considers

its K-groups K0(A) and K1(A);

the positive part K0(A)+ in K0(A);
the distinguished element [1A] ∈ K0(A)+;
the Choquet simplex T (A) of tracial states, i.e., τ is tracial if
τ(xx∗) = τ(x∗x) for all x ∈ A;
a natural pairing map ρA : T (A)×K0(A)→ R which is an order
homomorphism in the second variable.

The sextuple

Ell(A) =
(
K0(A),K0(A)+, [1A],K1(A), T (A), ρA

)
is called the Elliott invariant and becomes functorial with respect to a
suitable target category.
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Elliott program

Fact
There is a separable unital simple nuclear infinite-dimensional C∗-algebra
Z with Z ∼= Z ⊗ Z, the Jiang–Su algebra, with Ell(Z) ∼= Ell(C).

Rough idea: One considers the C∗-algebra

Z2∞,3∞ =
{
f ∈ C

(
[0, 1],M2∞ ⊗M3∞

)
| f(0) ∈M2∞ ⊗ 1, f(1) ∈ 1⊗M3∞

}
,

which has the right K-theory but far too many ideals and traces.

One constructs a
trace-collapsing
endomorphism on Z2∞,3∞

and can define Z as the
stationary inductive limit.

(Graphic created by Aaron
Tikuisis.)
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Elliott program

Definition
We say that a C∗-algebra A is Z-stable, if A ∼= A⊗Z.

Fact
If A is simple and the order on K0(A) satisfies a mild condition, then
Ell(A) ∼= Ell(A⊗Z).

Conjecture (Elliott conjecture; modern version)
Let A and B be two separable unital simple nuclear Z-stable C∗-algebras.
Then

A ∼= B ⇐⇒ Ell(A) ∼= Ell(B).[frame]Totheexpertsintheaudience : NoUCTdiscussionnow!

(There is a more general version not assuming unitality.)

Problem (difficult!)
Determine when Γ y X gives rise to a Z-stable crossed product.
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Thank you for your attention!
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