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Introduction Operators on Hilbert spaces

We will denote by H a complex Hilbert space with inner product (- | -),
and B(#H) the set of all bounded linear operators # — . It becomes a
Banach algebra with the operator norm.

Gébor Szabé (KU Leuven) C*-algebras November 2018 1/50



Introduction Operators on Hilbert spaces

We will denote by H a complex Hilbert space with inner product (- | -),
and B(H) the set of all bounded linear operators H — H. It becomes a
Banach algebra with the operator norm.

Recall
For a € B(H), the adjoint operator a* € B(#H) is the unique operator
satisfying the formula

(a1 | &) = (&1 ]1a*&), &,& € H.

Then the adjoint operation a + a* is an involution, i.e., it is anti-linear
and satisfies (ab)* = b*a™.
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Introduction Operators on Hilbert spaces

We will denote by H a complex Hilbert space with inner product (- | -),
and B(H) the set of all bounded linear operators H — H. It becomes a
Banach algebra with the operator norm.

Recall

For a € B(H), the adjoint operator a* € B(#H) is the unique operator
satisfying the formula

(a1 | &) = (&1 ]1a*&), &,& € H.

Then the adjoint operation a + a* is an involution, i.e., it is anti-linear
and satisfies (ab)* = b*a™.

Observation

One always has ||a*a| = ||a||*.

Proof: Since ||a*|| = ||a|| is rather immediate from the definition, “<" is
clear. For “>", observe

aé||® = (a€ | a&) = (¢ | a*a&) < ||la*ag], ||€]| = 1.
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[ Med e What is a C*-algebra?

An (abstract) C*-algebra is a complex Banach algebra A with an
involution a — a* satisfying the C*-identity

la*all = [lall?, a€ A.

We say A is unital, if there exists a unit element 1 € A.
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[ e What is a C™*-algebra?

An (abstract) C*-algebra is a complex Banach algebra A with an
involution a — a* satisfying the C*-identity

la*all = [lall?, a€ A.

We say A is unital, if there exists a unit element 1 € A.

v

A concrete C*-algebra is a self-adjoint subalgebra A C B(H), for some
Hilbert space H, which is closed in the operator norm.
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[ e What is a C™*-algebra?

An (abstract) C*-algebra is a complex Banach algebra A with an
involution a — a* satisfying the C*-identity

la*all = [lall?, a€ A.

We say A is unital, if there exists a unit element 1 € A.

Definition

| A

A concrete C*-algebra is a self-adjoint subalgebra A C B(H), for some
Hilbert space H, which is closed in the operator norm.

4

As the operator norm satisfies the C*-identity, every concrete C*-algebra is
an abstract C*-algebra.
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aerlsaen s What is a C*-algebra?

Example

For some compact Hausdorff space X, we may consider
C(X) = {continuous functions X — C}.

With pointwise addition and multiplication, C(X) becomes a
commutative abstract C*-algebra if we equip it with the adjoint operation

f(x) = f(=)

and the norm

[ lloc = sup | f ()]
zeX
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Example

For some compact Hausdorff space X, we may consider
C(X) = {continuous functions X — C}.

With pointwise addition and multiplication, C(X) becomes a
commutative abstract C*-algebra if we equip it with the adjoint operation

f(x) = f(=)

and the norm

[ lloc = sup | f ()]
zeX

Fact (Spectral theory)

As an abstract C*-algebra, C(X) remembers X .
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Introduction NE(E(ES

The goal for this lecture is to go over the spectral theory of Banach
algebras and C*-algebras, culminating in:

Theorem (Gelfand—Naimark)

Every (unital) commutative C*-algebra is isomorphic to C(X) for some
compact Hausdorff space X.
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Introduction NE(E(ES

The goal for this lecture is to go over the spectral theory of Banach
algebras and C*-algebras, culminating in:

Theorem (Gelfand—Naimark)

Every (unital) commutative C*-algebra is isomorphic to C(X) for some
compact Hausdorff space X .

The goal for the next lecture is to showcase some applications, and
discuss the GNS construction, in particular:

Theorem (Gelfand—Naimark—Segal)

Every abstract C*-algebra can be expressed as a concrete C*-algebra.
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Introduction NE(E(ES

The goal for this lecture is to go over the spectral theory of Banach
algebras and C*-algebras, culminating in:

Theorem (Gelfand—Naimark)

Every (unital) commutative C*-algebra is isomorphic to C(X) for some
compact Hausdorff space X .

The goal for the next lecture is to showcase some applications, and
discuss the GNS construction, in particular:

Theorem (Gelfand—Naimark—Segal)

Every abstract C*-algebra can be expressed as a concrete C*-algebra.

The goal for tomorrow is to cover examples and advanced topics.
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Spectral theory Banach algebras

From now on, we will assume that A is a Banach algebra with unit. We
identify CC Aas A— A- 1.

Observation (Neumann series)

If z € A with ||1 — || < 1, then z is invertible. In fact

oo

zl= Z(l —x)".

n=0
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Spectral theory Banach algebras

From now on, we will assume that A is a Banach algebra with unit. We
identify CC Aas A— A- 1.

Observation (Neumann series)

If z € A with ||1 — || < 1, then z is invertible. In fact

zl= i(l —x)".
n=0
Proof: x i(l — )" = i (1—2)" -1 —2)") =1.
n=0 n=0
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Spectral theory Banach algebras

From now on, we will assume that A is a Banach algebra with unit. We
identify CC Aas A— A- 1.

Observation (Neumann series)

If z € A with ||1 — || < 1, then z is invertible. In fact

zl= i(l —xz)".
n=0
Proof: x i(l — )" = i (1—2)"— (1 —2z)") =1.
n=0 n=0

Observation

The set of invertibles in A is open.

Proof: If z is invertible and x is any element with ||z — z|| < ||z 7},
then |1 — z71z|| < 1. By the above z !z is invertible, but then z is also

invertible.
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Spectral theory Banach algebras

Definition

For an element x € A, its spectrum is defined as

o(x) ={A € C| X —zis not invertible in A} C C.
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Spectral theory Banach algebras

Definition

For an element z € A, its spectrum is defined as

o(x) ={A € C| X —zis not invertible in A} C C.

Elements in the spectrum may be seen as generalized eigenvalues of an
operator.
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Spectral theory Banach algebras

Definition
For an element z € A, its spectrum is defined as

o(x) ={A € C| X —zis not invertible in A} C C.

Elements in the spectrum may be seen as generalized eigenvalues of an
operator.

Observation

The spectrum o(z) is a compact subset of {X | |A| < [|z||}. One defines
the spectral radius of z as r(z) = )\ma(x) Al < ||zl
€o(x
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Spectral theory Banach algebras

Definition
For an element z € A, its spectrum is defined as

o(x) ={A € C| X —zis not invertible in A} C C.

Elements in the spectrum may be seen as generalized eigenvalues of an
operator.

Observation

The spectrum o(z) is a compact subset of {X | |A| < [|z||}. One defines
the spectral radius of z as r(z) = )\ma(x) Al < ||zl
€o(x

The spectrum o(z) of every element x € A is non-empty.

(The proof involves a non-trivial application of complex analysis.)
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Spectral theory Banach algebras

Definition

A character on A is a non-zero multiplicative linear functional A — C.
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Spectral theory Banach algebras

Definition

A character on A is a non-zero multiplicative linear functional A — C.

Observation

A character ¢ : A — C is automatically continuous, in fact [|¢|| = 1.

Proof: As ¢ is non-zero, we have 0 # (1) = (1), hence (1) = 1.
If = were to satisfy |@(x)| > ||z||, then ¢(x) — = is invertible by the
Neumann series trick. However, it lies in the kernel of o, which yields a
contradiction.
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Spectral theory Banach algebras

Definition

A character on A is a non-zero multiplicative linear functional A — C.

Observation

A character ¢ : A — C is automatically continuous, in fact [|¢|| = 1.

Proof: As ¢ is non-zero, we have 0 # (1) = (1), hence (1) = 1.
If = were to satisfy |@(x)| > ||z||, then ¢(x) — = is invertible by the
Neumann series trick. However, it lies in the kernel of o, which yields a
contradiction.

Definition

For commutative A, we define its spectrum (aka character space) as

A = {characters ¢ : A — C}.

Due to the Banach-Alaoglu theorem, we see that the topology of pointwise
convergence turns A into a compact Hausdorff space.
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Spectral theory Banach algebras

Observation

If J C Ais a maximal ideal in a (unital) Banach algebra, then .J is closed.
If A is commutative, then A/J = C as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial
dense ideals in A. So .J is a proper ideal, hence J = .J by maximality.
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Spectral theory Banach algebras

Observation

If J C Ais a maximal ideal in a (unital) Banach algebra, then .J is closed.
If A is commutative, then A/J = C as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial
dense ideals in A. So .J is a proper ideal, hence J = .J by maximality.
Part 2: The quotient is a Banach algebra in which every non-zero element
is invertible. If it has a non-scalar element x € A/J, then A —x # 0 is
invertible for all A € C, which is a contradiction to o(z) # (.
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Spectral theory Banach algebras

Observation

If J C Ais a maximal ideal in a (unital) Banach algebra, then .J is closed.
If A is commutative, then A/J = C as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial
dense ideals in A. So .J is a proper ideal, hence J = .J by maximality.
Part 2: The quotient is a Banach algebra in which every non-zero element
is invertible. If it has a non-scalar element x € A/J, then A —x # 0 is
invertible for all A € C, which is a contradiction to o(z) # 0.

Observation

For commutative A, the assignment ¢ — ker ¢ is a 1-1 correspondence
between A and maximal ideals in A.

Proof: Clearly the kernel of a character is a maximal ideal as it has
codimension 1 in A. Since we have ¢(1) = 1 for every ¢ € A and

A = C1 + ker @, every character is uniquely determined by its kernel.
Conversely, if J C A is a maximal ideal, then A/J = C, so the quotient

map gives us a character.
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Spectral theory Banach algebras

A is still commutative.

Let x € A. Then

o) = {p@) | o € A}.

Proof: Let A € C. If A = p(z), then A — = € ker(p), so A — z is not
invertible. Conversely, if A\ — z is not invertible, then it is inside a (proper)
maximal ideal. By the previous observation, this means (A — z) € ker ¢ for
some p € A, or A = p(z).
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Spectral theory Banach algebras

A is still commutative.

Let x € A. Then

o) = {p@) | o € A}.

Proof: Let A € C. If A = p(x), then A — x € ker(p), so A — z is not
invertible. Conversely, if A\ — z is not invertible, then it is inside a (proper)
maximal ideal. By the previous observation, this means (A — z) € ker ¢ for
some p € A, or A = p(z).

Theorem (Spectral radius formula)

For any Banach algebra A and x € A, one has

r(@) = lim {/Ja"].

Proof: The “<" part follows easily from the above (for A commutative).
The “>" part is another clever application of complex analysis.
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Spectral theory Banach algebras

For commutative A, consider the usual embedding
L A— A u(x)(f) = f(x).

Since every element of A™ is a continuous function on A C A* in a

natural way, we have a restriction mapping A** — C(A). The composition
of these two maps yields:
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Spectral theory Banach algebras

For commutative A, consider the usual embedding
L A— A u(x)(f) = f(x).

Since every element of A™ is a continuous function on A C A* in a

A

natural way, we have a restriction mapping A** — C(A). The composition
of these two maps yields:

Definition (Gelfand transform)

A

The Gelfand transform is the unital homomorphism A — C(A), z — &
given by Z(p) = p(z).

Gébor Szabé (KU Leuven) C*-algebras November 2018 10 /50



Spectral theory Banach algebras

For commutative A, consider the usual embedding
L A— A u(x)(f) = f(x).

Since every element of A™ is a continuous function on A C A* in a

natural way, we have a restriction mapping A** — C(A). The composition
of these two maps yields:

Definition (Gelfand transform)

The Gelfand transform is the unital homomorphism A — C(A), z — &
given by Z(p) = p(z).

| A\

Observation

The Gelfand transform is norm-contractive. In fact, for x € A we have
Z(A) = o(z) and hence ||z|| = r(z) < ||z|| for all x € A.
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il
Let A be a unital C*-algebra. An element z € A is
@ normal, if z*x = zx*.

Q self-adjoint, if z = z*.

© positive, if z = y*y for some y € A.
Write x > 0.

Q a unitary, if 2™z = za* = 1.
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Definition
Let A be a unital C*-algebra. An element z € A is

Q normal, if 2*x = zz*.
positive ——— self-adjoint

Q self-adjoint, if z = z*. \ /

@ positive, if z = y*y for some y € A. o
Write > 0. ﬂ
Q a unitary, if 2™z = za* = 1. Ty
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Definition

Let A be a unital C*-algebra. An element z € A is

@ normal, if 2*x = zx™.
positive ——— self-adjoint

Q self-adjoint, if z = z*. \ /

@ positive, if x = y*y for some y € A. o
Write > 0. ﬂ
@ a unitary, if ¥z = za* = 1. Ty

Observation
Any element = € A can be written as © = x1 + iz9 for the self-adjoint
elements z+x* _z—I

r=—7—, T2= ;
2 2

| A
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Definition
Let A be a unital C*-algebra. An element z € A is

@ normal, if 2*x = zx™.
positive ——— self-adjoint

Q self-adjoint, if z = x*. \ /

@ positive, if x = y*y for some y € A. o
Write > 0. ﬂ
@ a unitary, if ¥z = za* = 1. Ty

Any element = € A can be written as © = x1 + iz9 for the self-adjoint
elements T+ x* _z—I

xr1 = To =
1 2 ; 2 2% )

If z € A is self-adjoint, then it follows for all t € R that
lz +atl|* = ||(z — it)(z +it)| = [|a® + ¢ < ]| + 2%,

Gébor Szabé (KU Leuven) November 2018 11 /50



Spectral theory C*-algebras

Proposition

If z € A is self-adjoint, then o(z) C R.

Proof: Step 1: The spectrum of z inside A is the same as the spectrum of
x inside its bicommutant AN {x}".! As x is self-adjoint, this is a
commutative C*-algebra. So assume A is commutative.

1This holds in any Banach algebra.
Gébor Szabé (KU Leuven) C*-algebras November 2018 12 /50



Spectral theory C*-algebras

Proposition

If © € A is self-adjoint, then o(z) C R.

Proof: Step 1: The spectrum of x inside A is the same as the spectrum of
x inside its bicommutant AN {z}"”.1 As z is self-adjoint, this is a
commutative C*-algebra. So assume A is commutative.

Step 2: For ¢ € A, we get
(@) +it]* = oz +it)?| < 2>+, teR.

But this is only possible for ¢(x) € R, as the left-hand expression will
otherwise outgrow the right one as t — (£)oc.?

This holds in any Banach algebra.
Notice: this works for any ¢ € A* with ||¢| = |lo(1)] = 1!
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Spectral theory C*-algebras

Proposition

Let A be a commutative C*-algebra. Then every character ¢ € Ais
x-preserving, i.e., it satisfies p(z*) = ¢(z) for all x € A.

Proof: Write x = x1 + ixo as before and use the above for

p(x*) = p(z1 —ize) = p(1) —iv(r2) = P(71) + ip(z2) = P(T).
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Spectral theory C*-algebras

Proposition

Let A be a commutative C*-algebra. Then every character ¢ € A is
x-preserving, i.e., it satisfies p(z*) = ¢(z) for all x € A.

Proof: Write x = x1 + ixo as before and use the above for

p(x*) = p(z1 —ize) = p(1) —iv(r2) = P(71) + ip(z2) = P(T).

For a commutative C*-algebra A, the Gelfand transform

A= C(A), #(e) = ()

is a x-homomorphism.
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Let A be a C*-algebra and B C A a C*-subalgebra.

Observation

An element z € A is invertible if and only if z*x and xx* are invertible.
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Let A be a C*-algebra and B C A a C*-subalgebra.

Observation

An element x € A is invertible if and only if z*x and zx* are invertible.

Observation

An element = € B is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume = = 2*. We know op(z) C R, so
Tp =2+ "% r is a sequence of invertibles in B. We know
llzn — || < ||z, 1|7t implies that z is invertible in B.
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Let A be a C*-algebra and B C A a C*-subalgebra.

Observation

An element x € A is invertible if and only if z*x and zx* are invertible.

Observation

An element = € B is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume = = 2*. We know op(z) C R, so
Ty =2+ % ¥ risa sequence of invertibles in B. We know

llzn — || < ||z;;}]|~F implies that z is invertible in B. So if x is not
invertible in B, then ||z, !|| — oco. Since inversion is norm-continuous on

the invertibles in any Banach algebra, it follows that x cannot be invertible
in A.
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Let A be a C*-algebra and B C A a C*-subalgebra.

Observation

An element x € A is invertible if and only if z*x and zx* are invertible.

Observation

An element = € B is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume z = 2*. We know op(z) C R, so
Tn =2+ % ¥ risa sequence of invertibles in B. We know

llzn — || < ||z;;1]|~F implies that z is invertible in B. So if x is not
invertible in B, then ||z, !|| — oco. Since inversion is norm-continuous on

the invertibles in any Banach algebra, it follows that x cannot be invertible
in A.

We have op(x) = oa(x) for all x € B.3

3This often fails for inclusions of Banach algebras!
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Spectral theory C*-algebras

Let A be a C*-algebra.

Observation

x € Ais normal if and only if C*(x,1) C A is commutative. In this case
the spectrum of C*(z, 1) is homeomorphic to o(x).
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Let A be a C*-algebra.

Observation

x € Ais normal if and only if C*(z,1) C A is commutative. In this case
the spectrum of C*(z, 1) is homeomorphic to o(x).

Proposition

For a normal element x € A, we have r(z) = ||z||.

Proof: Observe from the C*-identity that
| = llz*z))? = |o*za*z]| = || (@?) 2| = ||l2?|*.

By induction, we get ||22"|| = ||z||*". By the spectral radius formula, we

have -
. n
r@) = lim 4/[le?"| = |l2].
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Let A be a C*-algebra.

Observation

x € Ais normal if and only if C*(z,1) C A is commutative. In this case
the spectrum of C*(z, 1) is homeomorphic to o(x).

Proposition

For a normal element x € A, we have r(z) = ||z||.

Proof: Observe from the C*-identity that
| = llz*z))? = |o*za*z]| = || (@?) 2| = ||l2?|*.

By induction, we get ||22"|| = ||z||*". By the spectral radius formula, we

have -
. n
r@) = lim 4/[le?"| = |l2].

For all z € A, we have |z|| = /||z*z] = /r(z*z). I
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Sleldeiel et Gelfand-Naimark theorem

Theorem (Gelfand—Naimark)

For a commutative C*-algebra A, the Gelfand transform
A= C(A), #(p) = ¢l(x)

is an isometric x-isomorphism.

Proof: We have already seen that it is a *-homomorphism.
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Sl ede s s - Gelfand-Naimark theorem

Theorem (Gelfand—Naimark)

For a commutative C*-algebra A, the Gelfand transform
A= C(A), #(p) = ¢l(x)

is an isometric x-isomorphism.

Proof: We have already seen that it is a *-homomorphism.

As every element z € A is normal, we have ||z|| = r(z) = ||Z||, hence the
Gelfand transform is isometric.
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Sl ede s s - Gelfand-Naimark theorem

Theorem (Gelfand—Naimark)

For a commutative C*-algebra A, the Gelfand transform

A= C(4), () = p(x)

is an isometric x-isomorphism.

Proof: We have already seen that it is a *-homomorphism.

As every element z € A is normal, we have ||z|| = r(z) = ||Z||, hence the
Gelfand transform is isometric.

A

For surjectivity, observe that the image of A in C(A) is a closed unital
self-adjoint subalgebra, and which separates points. By the
Stone—Weierstrass theorem, it follows that it is all of C(A).
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Spectral theory Functional calculus

Observation

Let z € A be a normal element in a C*-algebra. Let A, = C*(x, 1) be the
commutative C*-subalgebra generated by . Then A, = o(x) by
observing that for every A € o(x) there is a unique ¢ € A, with p(z) = .

A

Under this identification & € C(A;) becomes the identity map on o(z).
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Spectral theory Functional calculus

Observation

Let z € A be a normal element in a C*-algebra. Let A, = C*(x, 1) be the
commutative C*-subalgebra generated by . Then A, = o(x) by
observing that for every A € o(x) there is a unique ¢ € A, with p(z) = .

A

Under this identification & € C(A;) becomes the identity map on o(z).

Theorem (functional calculus)

Let x € A be a normal element in a (unital) C*-algebra. There exists a
unique (isometric) x-homomorphism

Clo(x) = A, [r fla)

that sends id, ;) to x.

Proof: Take the inverse of the Gelfand transform
Ay — C(Ay) = C(o(x)).
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Sl A  Applications

An element = € A is positive if and only if x is normal and o(z) C R=0.

Proof: If the latter is true, then y = /7 satisfies y*y = y?> = x. So x is
positive. The “only if” part is much trickier.
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Sl A  Applications

An element = € A is positive if and only if x is normal and o(z) C R=0.

Proof: If the latter is true, then y = /7 satisfies y*y = y?> = x. So x is
positive. The “only if” part is much trickier.

Observation

x = x* € Ais positive if and only if ||r — z|| < r for some (or all) 7 > ||z|.
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Spectral theory Applications

An element = € A is positive if and only if x is normal and o(z) C R=0.

Proof: If the latter is true, then y = /7 satisfies y*y = y?> = x. So x is
positive. The “only if” part is much trickier.

Observation

z = z* € Ais positive if and only if ||r — z|| < r for some (or all) r > ||z

For a,b € A positive, the sum a + b is positive. I

Proof: Apply the triangle inequality: We have |la + b|| < ||a|| + ||b] and

[Cllall + 1181 = (a + B)[| < [Hall = al| + [[Ioll = B[} < flall + [1B]]
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Sl A  Applications

Every algebraic (unital) x-homomorphism 1) : A — B between (unital)

C*-algebras is contractive, and hence continuous.*

Proof: It is clear that o(¢)(z)) C o(z) for all z € A. By the spectral
characterization of the norm, it follows that

[ (@)I* = r(¥(a2)) < r(*z) = [l

*This generalizes to the non-unital case as welll
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Spectral theory Applications

Every algebraic (unital) x-homomorphism 1) : A — B between (unital)

C*-algebras is contractive, and hence continuous.*

Proof: It is clear that o(¢)(x)) C o(x) for all x € A. By the spectral
characterization of the norm, it follows that

[ (@)I* = r(¥(a2)) < r(*z) = [l

Observation
For z € A normal and f € C(o(z)), we have ¥(f(z)) = f(¥(x)).

Proof: Clear for f € {*-polynomials}. The general case follows by
continuity of the assignments [f — f(z)] and [f — f(¥(x))] and the
Weierstrass approximation theorem.

*This generalizes to the non-unital case as welll
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Sl A  Applications

Every injective x-homomorphism i : A — B is isometric. I

Proof: By the C*-identity, it suffices to show |[¢)(x)| = ||z|| for positive
x € A. Suppose we have [[1(z)|| < ||z]|. Choose a non-zero continuous
function f : o(x) — R0 with f(A\) =0 for A < [j3(2)].
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Sl A  Applications

Every injective x-homomorphism i : A — B is isometric. I

Proof: By the C*-identity, it suffices to show |[¢)(x)| = ||z|| for positive
x € A. Suppose we have [[1(z)|| < ||z]|. Choose a non-zero continuous
function f : o(x) — R0 with f(A\) =0 for A < [j3(2)].

@ el
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Sl A  Applications

Every injective x-homomorphism i : A — B is isometric. I

Proof: By the C*-identity, it suffices to show |[¢)(x)| = ||z|| for positive
x € A. Suppose we have [[1(z)|| < ||z]|. Choose a non-zero continuous
function f : o(x) — R0 with f(A\) =0 for A < [j3(2)].

Then f(x) # 0, but

which means 1) is not injective.

@ el
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Representation theory

Let A be a C*-algebra. A representation (on a Hilbert space #) is a

x-homomorphism 7 : A — B(H).

Gébor Szabé (KU Leuven)

C*-algebras

November 2018

21/50



Representation theory

Let A be a C*-algebra. A representation (on a Hilbert space #) is a

s-homomorphism 7 : A — B(#). It is said to be
@ faithful, if it is injective.
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Representation theory

Let A be a C*-algebra. A representation (on a Hilbert space #) is a

s-homomorphism 7 : A — B(#). It is said to be
@ faithful, if it is injective.
@ non-degenerate if spanw(A)H = H.
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Representation theory

Let A be a C*-algebra. A representation (on a Hilbert space #) is a
s-homomorphism 7 : A — B(#). It is said to be

@ faithful, if it is injective.

@ non-degenerate if spanw(A)H = H.

@ cyclic, if there exists a vector £ € H with m(A){ = H. For ||£]| =1,
we say that (7, H, &) is a cyclic representation.
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Representation theory

Let A be a C*-algebra. A representation (on a Hilbert space #) is a
s-homomorphism 7 : A — B(#). It is said to be
@ faithful, if it is injective.
@ non-degenerate if spanw(A)H = H.
@ cyclic, if there exists a vector £ € H with 7(A)é = H. For ||¢]| =1,
we say that (7, H, &) is a cyclic representation.

Q irreducible, if 7(A)¢ =H for all 0 # & € H.

Gébor Szabé (KU Leuven) C*-algebras November 2018 21/50



Let A be a C*-algebra.

Definition

A functional ¢ : A — C is called positive, if ¢p(a) > 0 whenever a > 0.
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Representation theory Positive functionals

Let A be a C*-algebra.

Definition
A functional ¢ : A — C is called positive, if p(a) > 0 whenever a > 0.

Observation

Every positive functional ¢ : A — C is continuous.

Proof: Suppose not. By functional calculus, every element x € A can be
written as a linear combination of at most four positive elements

w=(zf —ay) +i(zy —x3)

with norms |lz7 ||, |=7 [l [|#3 ||, |25 || < ||z||. So ¢ is unbounded on the
positive elements.
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Let A be a C*-algebra.

Definition

A functional ¢ : A — C is called positive, if p(a) > 0 whenever a > 0.

Observation
Every positive functional ¢ : A — C is continuous.

Proof: Suppose not. By functional calculus, every element x € A can be
written as a linear combination of at most four positive elements

w=(zf —ay) +i(zy —x3)

with norms |lz7 ||, |=7 [l [|#3 ||, |25 || < ||z||. So ¢ is unbounded on the
positive elements.

Given n > 1, one may choose a,, > 0 with ||a,|| =1 and ¢(a,) > n2".
Then a =73 72,2 "a, is a positive element in A. By positivity of ¢, we
have ¢(a) > ¢(27"a,) > n for all n, a contradiction.
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Representation theory Positive functionals

Observation

For a positive functional ¢ : A — C, we have p(z*) = p(z).
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Representation theory Positive functionals

For a positive functional ¢ : A — C, we have ¢(z*) = ().

v
Corollary

For a positive functional o, the assignment (z,y) — ¢(y*x) defines a
positive semi-definite, anti-symmetric, sesqui-linear form. In particular, it is
subject to the Cauchy—Schwarz inequality

lo(y*z))* < p(z*z)p(y*y).
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Representation theory Positive functionals

Let A be a unital C*-algebra. A linear functional ¢ : A — C is positive if
and only if ||| = ¢(1).

Proof: For the “only if” part, observe for ||y|| < 1 that

o) ? = [e(1y)]> < ooy y) < e(1)[|¢]-

Taking the supremum over all such y yields ||¢|| = ¢(1).
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Representation theory Positive functionals

Let A be a unital C*-algebra. A linear functional ¢ : A — C is positive if
and only if ||| = ¢(1).

Proof: For the “only if” part, observe for ||y|| < 1 that

o) ? = [e(1y)]> < ooy y) < e(1)[|¢]-

Taking the supremum over all such y yields ||¢|| = ¢(1).

For the “if" part, suppose ¢(1) =1 = ||¢||. Let a > 0. Repeating an
argument we have used for characters, we know ¢(a) € R.
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Representation theory Positive functionals

Let A be a unital C*-algebra. A linear functional ¢ : A — C is positive if
and only if ||| = ¢(1).

Proof: For the “only if” part, observe for ||y|| < 1 that

o) ? = [e(1y)]> < ooy y) < e(1)[|¢]-

Taking the supremum over all such y yields ||¢|| = ¢(1).

For the “if" part, suppose ¢(1) =1 = ||¢||. Let a > 0. Repeating an
argument we have used for characters, we know ¢(a) € R. Suppose
¢(a) < 0. As o(z) C R=Y, we observe

pla) ¢{A e C|[ho— Al <p} 20(a),

where \g = & (max o(a) + mino(a)) and p = 1(maxo(a) — mino(a)).
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Representation theory Positive functionals

Let A be a unital C*-algebra. A linear functional ¢ : A — C is positive if
and only if ||| = ¢(1).

Proof: For the “only if” part, observe for ||y|| < 1 that

o) ? = [e(1y)]> < ooy y) < e(1)[|¢]-

Taking the supremum over all such y yields ||| = ¢(1).
For the “if" part, suppose ¢(1) =1 = ||¢||. Let a > 0. Repeating an
argument we have used for characters, we know ¢(a) € R. Suppose
¢(a) < 0. As o(z) C R=Y, we observe

pla) ¢{A e C|[ho— Al <p} 20(a),
where \g = & (max o(a) + mino(a)) and p = 1(maxo(a) — mino(a)).
Then y = Ao — a is self-adjoint, hence ||y|| = r(y) = p, but
©(y) = Mo — ¢(a) > p, a contradiction to ||¢|| = 1.
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Representation theory Positive functionals

For an inclusion of (unital) C*-algebras B C A, every positive functional
on B extends to a positive functional on A.

Proof: Use Hahn—Banach and the previous slide.
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Representation theory Positive functionals

For an inclusion of (unital) C*-algebras B C A, every positive functional
on B extends to a positive functional on A.

Proof: Use Hahn—Banach and the previous slide.

Definition

A state on a C*-algebra is a positive functional with norm one.
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Representation theory Positive functionals

For an inclusion of (unital) C*-algebras B C A, every positive functional
on B extends to a positive functional on A.

Proof: Use Hahn—Banach and the previous slide.

Definition
A state on a C*-algebra is a positive functional with norm one.

Observation

For x € A normal, there is a state ¢ with ||z| = |¢(x)].

Proof: Pick \g € o(x) with [\g| = ||z]. We know

so that x +— id. The evaluation map f — f()\g) corresponds to a state on
A, with the desired property. Extend it to a state ¢ on A.
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Representation theory Interlude: Order on self-adjoints

Let A be a C*-algebra.

Definition

For self-adjoint elements a,b € A, write a < b if b — a is positive.
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Representation theory Interlude: Order on self-adjoints

Let A be a C*-algebra.

Definition

For self-adjoint elements a,b € A, write a < b if b — a is positive.

Observation

@ The order “<" is compatible with sums.
o For all self-adjoint a € A, we have a < ||a]|.

o Ifa<bandx € Ais any element, then z*ax < x*bx.
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Representation theory Interlude: Order on self-adjoints

Let A be a C*-algebra.

Definition

For self-adjoint elements a,b € A, write a < b if b — a is positive.

Observation

@ The order “<" is compatible with sums.
o For all self-adjoint a € A, we have a < ||a]|.

o Ifa<bandx € Ais any element, then z*ax < x*bx.

For proving the last part, write b — a = ¢*c. Then

x¥br — x¥ax = 2% (b — a)r = 2" c*ex = (cx)*cx > 0.
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Representation theory States and representations

Given a state ¢ on A, we have observed that (z,y) — ¢(y*x) forms a
positive semi-definite, anti-symmetric, sesqui-linear form.

Observation

For all a,z € A, we have p(z*a*ar) < ||al|?*p(x*x). The null space
N, ={x € A| ¢(z*x) = 0} is a closed left ideal in A.
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Representation theory States and representations

Given a state ¢ on A, we have observed that (z,y) — ¢(y*x) forms a
positive semi-definite, anti-symmetric, sesqui-linear form.

Observation

For all a,z € A, we have p(z*a*ar) < ||al|?*p(x*x). The null space
N, ={x € A| ¢(z*x) = 0} is a closed left ideal in A.

Observation

| A\

The quotient H, = A/N,, carries the inner product

([=] | [Whe = ¢(y™2),

and the left A-module structure satisfies ||[az]||, < ||| - ||[x]]|, for all
a,r € A.
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FELEENERLRG A GNS construction

Definition (Gelfand—Naimark—Segal construction)

For a state ¢ on a C*-algebra A, let H, be the Hilbert space completion

Ty = H_@”'”‘P. Then H,, carries a unique left A-module structure which
extends the one on H, and is continuous in H,. This gives us a
representation

o A— B(H,) via wy(a)([z]) = [az]
for all a,x € A.
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FELEENERLRG A GNS construction

Definition (Gelfand—Naimark—Segal construction)
For a state ¢ on a C*-algebra A, let H, be the Hilbert space completion

Ty = H_@”'”“’. Then H,, carries a unique left A-module structure which
extends the one on H, and is continuous in H,. This gives us a
representation

o A— B(H,) via wy(a)([z]) = [az]
for all a,x € A.

The only non-tautological part is that 7, is compatible with adjoints. For
this we observe

(laz] | W)y = e(y"ax) = ¢((a"y)*x) = ([2] | [a"y])y,

which forces 7, (a)* = 7 (a*).
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FELEENERLRG A GNS construction

Definition (Gelfand—Naimark-Segal construction)

For a state ¢ on a C*-algebra A, let H, be the Hilbert space completion

Ty = H_@”'”‘P. Then H,, carries a unique left A-module structure which
extends the one on H, and is continuous in H,. This gives us a
representation

ot A— B(H,) via my(a)(z]) = [az]
for all a,x € A.

The only non-tautological part is that 7, is compatible with adjoints. For
this we observe

(laz] | W)y = e(y"ax) = ¢((a"y)*x) = ([2] | [a"y])y,

which forces 7, (a)* = 7 (a*).

Definition

In the (unital) situation above, set £, = [1] € H,. Then ||| =1 as we
have assumed ¢ to be a state.
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FELEENERLRG A GNS construction

The assignment ¢ — (7, Hy, &) is a 1-1 correspondence between states
on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that (7, H,, &) is cyclic. Indeed,
To(A)ép = mo(A)([1]) = [A] = H, € H,, which is dense by definition.
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FELEENERLRG A GNS construction

The assignment ¢ — (74, H,, &) is a 1-1 correspondence between states
on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that (7, H,, &) is cyclic. Indeed,
o (A)E, = my(A)([1]) = [A] = H, € H,,, which is dense by definition.

Theorem (Gelfand—Naimark)

Every abstract C*-algebra A is a concrete C*-algebra. In particular,
there exists a faithful representation 7 : A — H on some Hilbert space.®

Proof: For z € A, find o, with ||p.(z*z)|| = ||=||>. Then form the cyclic
representation (7, , Hy.,, o, )-

®If A is separable, we may choose # to be separable!
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FELEENERLRG A GNS construction

The assignment ¢ — (74, H,, &) is a 1-1 correspondence between states
on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that (7, H,, &) is cyclic. Indeed,
o (A)E, = my(A)([1]) = [A] = H, € H,,, which is dense by definition.

Theorem (Gelfand—Naimark)

Every abstract C*-algebra A is a concrete C*-algebra. In particular,
there exists a faithful representation 7 : A — H on some Hilbert space.®

Proof: For z € A, find o, with ||p.(z*z)|| = ||=||>. Then form the cyclic
representation (7, He,,&p, ). We claim that the direct sum

does it. Indeed, given any x # 0 we have

I (@)[1* = lIm(2)ép, 1* = (2] | [2])p, = @ala™z) = [|z]*.

®If A is separable, we may choose # to be separable!
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Let us now discuss noncommutative examples of C*-algebras:

The set of C-valued n x n matrices, denoted M,,, becomes a C*-algebra.
By linear algebra, M,, = B(C").
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Let us now discuss noncommutative examples of C*-algebras:

The set of C-valued n x n matrices, denoted M,,, becomes a C*-algebra.
By linear algebra, M,, = B(C").

For numbers ny,...,n; > 1, the C*-algebra

A:Mnl EBMTLQ@EBMT%

has finite (C-linear) dimension.
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Let us now discuss noncommutative examples of C*-algebras:

The set of C-valued n x n matrices, denoted M,,, becomes a C*-algebra.
By linear algebra, M,, = B(C").

For numbers ny,...,n; > 1, the C*-algebra

A:Mnl EBMTLQ@EBMT%

has finite (C-linear) dimension.

Every finite-dimensional C*-algebras has this form. I
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Examples

A linear map between Banach spaces T': A — B is called compact, if
T- A||.||§1 C B is compact.
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Recall

A linear map between Banach spaces T': A — B is called compact, if
T- A||-||§1 C B is compact.

Compact operators are bounded. The composition of a compact operator
with a bounded operator is compact.
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Examples

Recall

A linear map between Banach spaces T : A — B is called compact, if
T- A||~||§1 C B is compact.

Observation

| A\

Compact operators are bounded. The composition of a compact operator
with a bounded operator is compact.

Example

For a Hilbert space #, the set of compact operators K(H) C B(H) forms
a norm-closed, *-closed, two-sided ideal. If dim(#H) = oo, then it is a
proper ideal and a non-unital C*-algebra.

| A\
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Notation (ad-hoc!)

Let G be a countable set, and let P be a family of (noncommutative)
*-polynomials in finitely many variables in G and coefficients in C. We
shall understand a relation R as a collection of formulas of the form

@) <Xp, PEP, A >0

A representation of (G | R) is a map m: G — A into a C*-algebra under
which the relation becomes true. )
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Notation (ad-hoc!)

Let G be a countable set, and let P be a family of (noncommutative)
*-polynomials in finitely many variables in G and coefficients in C. We
shall understand a relation R as a collection of formulas of the form

PG <Xy PEP, X 20.

A representation of (G | R) is a map m: G — A into a C*-algebra under
which the relation becomes true.

| A

Example

The expression zyz* — 22 for z,y,z € G is a noncommutative
x-polynomial. The relation could mean

lzyz™ — 22 < 1.
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A representation , of (G | R) into a C*-algebra B is called universal, if

Q B = C*(my(9)).
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A representation , of (G | R) into a C*-algebra B is called universal, if
Q@ B = C*(m,(9)).
@ whenever m: G — A is a representation of (G | R) into another

C*-algebra, there exists a x-homomorphism ¢ : B — A such that
Yom, =T.
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A representation , of (G | R) into a C*-algebra B is called universal, if
Q@ B = C*(mu(9)).
@ whenever m: G — A is a representation of (G | R) into another

C*-algebra, there exists a x-homomorphism ¢ : B — A such that
POy =T.

v

Up to isomorphism, a C*-algebra B as above is unique. One writes
B =C*(G | R) and calls it the universal C*-algebra for (G | R).
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Given n > 1, one can express M,, as the universal C*-algebra generated by
{ei;}i j=1 subject to the relations

*
eijekt = Ojk€il, €;; = Eji.
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Given n > 1, one can express M,, as the universal C*-algebra generated by
{ei;}i j=1 subject to the relations

*
€ijekl = 0jkCil, € = €ji-

| A

Example

Let H be a separable, infinite-dimensional Hilbert space. Then one can
express K(H) as the universal C*-algebra generated by {e;;}, ;- subject
to the relations

*
€ijekl = 0jk€il, €;; = €ji-
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Given n > 1, one can express M,, as the universal C*-algebra generated by
{ei;}i j=1 subject to the relations

*
€ijekl = 0jkCil, € = €ji-

| A

Example
Let H be a separable, infinite-dimensional Hilbert space. Then one can
express K(H) as the universal C*-algebra generated by {e;;}, ;- subject
to the relations

eijerl = Ojkeil, €5 = €ji

A

(Here e;; represents a rank-one operator sending the i-th vector in an
ONB to the j-th vector.)
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Definition

A relation R on a set G is compact if for every x € G

sup {||w(z)| | 7 : G — A representation of (G | R)} < oc.
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Definition

A relation R on a set G is compact if for every z € G

sup {||w(z)| | 7 : G — A representation of (G | R)} < oc.

For a pair (G | R), the universal C*-algebra C*(G | R) exists if and only if
R is compact.

v

Proof: The “only if" part follows from the fact that x-homomorphisms are
contractive.
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Definition

A relation R on a set G is compact if for every z € G

sup {||w(z)| | 7 : G — A representation of (G | R)} < oc.

Theorem

For a pair (G | R), the universal C*-algebra C*(G | R) exists if and only if
R is compact.

| A\

v

Proof: The “only if" part follows from the fact that x-homomorphisms are
contractive.
“if" part: The isomorphism classes of separable C*-algebras form a set.
There exist set-many representations 7 : G — A of (G | R) on separable
C*-algebras up to conjugacy. Denote this set by I, and consider
A=[[Ar and 7w, :G = A my(z) = (m(2)) er-
el

By compactness, , is a well-defined representation of (G | R). Then
check that B = C*(m,(G)) C 2 is universal.
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The universal C*-algebra for the relation ||zyz* — 22|| < 1 does not exist.

Proof: Suppose we have such z,y, z # 0 in a C*-algebra, e.g., all equal to
the unit. For A > 0, replace y — Ay and 2 — A\~Y2z, and let A — .

Gébor Szabé (KU Leuven) November 2018 36 /50



The universal C*-algebra for the relation ||zyz* — 22|| < 1 does not exist.

Proof: Suppose we have such z,y, z # 0 in a C*-algebra, e.g., all equal to
the unit. For A > 0, replace y — Ay and 2 — A\~Y2z, and let A — .

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the
universal C*-algebra is zero! E.g., C*(x | 2*x = —zz*) = 0.
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The universal C*-algebra for the relation ||zyz* — 22|| < 1 does not exist.

Proof: Suppose we have such z,y, z # 0 in a C*-algebra, e.g., all equal to
the unit. For A > 0, replace y — Ay and z — A~ Y2z, and let A\ — .

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the
universal C*-algebra is zero! E.g., C*(x | 2*x = —zz*) = 0.

C'u vy =wu*=1)=C(T) with u— idp.

Proof: Functional calculus.
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The universal C*-algebra for the relation ||zyz* — 22|| < 1 does not exist.

Proof: Suppose we have such z,y, z # 0 in a C*-algebra, e.g., all equal to
the unit. For A > 0, replace y — Ay and z — A~ Y2z, and let A\ — .

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the
universal C*-algebra is zero! E.g., C*(x | 2*x = —zz*) = 0.

| A\

Example

C'u vy =wu*=1)=C(T) with u— idp.

Proof: Functional calculus.

All of this generalizes to more general relations (including functional
calculus etc.) and a more flexible notion of generating sets.
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Proposition

Every separable C*-algebra A is the universal C*-algebra for a countable
set of equations involving x-polynomials of degree at most 2.

Gébor Szabé (KU Leuven) C*-algebras November 2018 37/50



Proposition
Every separable C*-algebra A is the universal C*-algebra for a countable
set of equations involving x-polynomials of degree at most 2.

Proof: Start with some countable dense Q[i]-*-subalgebra C' C A. By
inductively enlarging C', we may enlarge it to another countable dense
Q[é]-*-subalgebra D C A with the additional property that if x € D is a
contraction, then y =1 — /1 —z*z € D.
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Proposition

Every separable C*-algebra A is the universal C*-algebra for a countable
set of equations involving x-polynomials of degree at most 2.

Proof: Start with some countable dense Q[i]-*-subalgebra C' C A. By
inductively enlarging C', we may enlarge it to another countable dense
Q[é]-*-subalgebra D C A with the additional property that if x € D is a
contraction, then y =1 — /1 —z*z € D.

Now let P be the family of x-polynomials that encode all the x-algebra
relations in D, so

XaXp — Xap, AXo + Xp — Xogpp, X; — Xox,

for A € Q[i] and a,b € D. Set G = D, and let R be the relation where
these polynomials evaluate to zero. By construction, representations
(G | R) — B are the same as *-homomorphisms D — B.
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Proposition
Every separable C*-algebra A is the universal C*-algebra for a countable
set of equations involving x-polynomials of degree at most 2.

Proof: (continued) By construction, representations (G | R) — B are
the same as x-homomorphisms D — B.

We claim that the inclusion D C A turns A into the universal C*-algebra
for these relations. This means that every x-homomorphism from D
extends to a x-homomorphism on A. This is certainly the case if every
*-homomorphism ¢ : D — B is contractive.
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Proposition

Every separable C*-algebra A is the universal C*-algebra for a countable
set of equations involving x-polynomials of degree at most 2.

Proof: (continued) By construction, representations (G | R) — B are
the same as x-homomorphisms D — B.

We claim that the inclusion D C A turns A into the universal C*-algebra
for these relations. This means that every x-homomorphism from D
extends to a x-homomorphism on A. This is certainly the case if every
x-homomorphism ¢ : D — B is contractive.

Indeed, if £ € D is a contraction, then y = 1 — /1 — z*x € Dy, satisfies
z*r+y? -2y =0.
Thus also p(z)*¢(z) + ¢(y)? — 2¢(y) = 0 in B, which is equivalent to
p(z) () + (1 - p(y)* = 1.

Hence ||¢(x)|| < 1 for every contraction x € D, which finishes the proof.
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Definition

Let I' be a countable discrete group. The universal group C*-algebra is
defined as

C*([) = C* ({uglyer | w1 =1, ugn = ugun, ug = ug-1).
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Definition

Let I' be a countable discrete group. The universal group C*-algebra is
defined as
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(There is a similar but less obvious construction for non-discrete groups.)
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Definition

Let I' be a countable discrete group. The universal group C*-algebra is
defined as

C*(I') = C*({ug}yer | w1 =1, ugh = ugun, ug = ug-1).

(There is a similar but less obvious construction for non-discrete groups.)

The Toeplitz algebra is T = C*(s | s*s = 1).
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Definition
Let I' be a countable discrete group. The universal group C*-algebra is
defined as

C*(I') = C*({ug}yer | w1 =1, ugh = ugun, ug = ug-1).

(There is a similar but less obvious construction for non-discrete groups.)

The Toeplitz algebra is T = C*(s | s*s = 1).

If v € B is any non-unitary isometry in a C*-algebra, then C*(v) = T in
the obvious way. In other words, every proper isometry is universal.

4
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For n € N, one defines the Cuntz algebra in n generators as

n
*k * *
0, =C (51,...,5n|sjsj:1, E sjsjzl).
Jj=1
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For n € N, one defines the Cuntz algebra in n generators as

n
*k * *
0, =C (51,...,Sn|5j5j:1, E sjsjzl).
i=1

03 = C*(Sl, S92, S’;;)

M =s;HCH
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For n € N, one defines the Cuntz algebra in n generators as

n
*k * *
0, =C (51,...,sn|sjsj:1, E sjsjzl).
Jj=1

RRENNEEEEE -- Ho - SR
1 ~ Seo _-" e 1
h N ~ s , '
4

03 = C*(Sl, S92, S‘;;) ! AN /’, . ) !
1 ‘\ /' ‘\ . '
1 v, v 1
Hi=sHCH | |

! '
| Hy ! Ho ' Hs :

Theorem (Cuntz)

O,, is simple! That is, every collection of isometries s1,. .., Sy in any
C*-algebra as above is universal with this property.
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Fact (Inductive limits)
If
A1 CA; CA3C -

is a sequence of C*-algebra inclusions, then

A= A

neN

exists and is a C*-algebra.

| A\

Definition
In the above situation, if every A,, is finite-dimensional, we call A an AF
algebra. (AF = approximately finite-dimensional)
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Examples Limits

Example
Consider

A1 =C, Ay=M,, As;=Mi=My®My, Ag= Mg M

with inclusions of the form z — z ® 15 = ( g 0

)
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Examples Limits

Example
Consider

A1 =C, Ay=M,, As=Mi=My®My, Ag=Mg= M ...,

with inclusions of the form x +— x ® 15 = ( g 2 )

The CAR algebra is the limit

Moo = MP® = J An.
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Examples Limits

Example

Consider

A1 =C, Ay=M,, As=Mi=My®My, Ag=Mg= M ...,

with inclusions of the form x +— x ® 15 = ( g 2 )

The CAR algebra is the limit

Moo = MP® = J An.

This construction can of course be repeated with powers of any other
number p instead of 2. ~» M

Gébor Szabé (KU Leuven) November 2018 42 /50



Gébor Szabé (KU Leuven) November 2018 43 /50



Gébor Szabé (KU Leuven) November 2018 43 /50



Gébor Szabé (KU Leuven) November 2018 43 /50



Gébor Szabé (KU Leuven) November 2018 43 /50



Let A be a (unital) C*-algebra and I" a discrete group.

Definition

Given an action «: I' ~ A, define the crossed product A x, I' as the
universal C*-algebra containing a unital copy of A, and the image of a
unitary representation [g — u,] of I', subject to the relation

ugauy = agla), a€ A, geT.
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Let A be a (unital) C*-algebra and I" a discrete group.

Definition

Given an action «: I' ~ A, define the crossed product A x, I' as the
universal C*-algebra containing a unital copy of A, and the image of a
unitary representation [g — u,] of I', subject to the relation

ugauy = agla), a€ A, geT.

| A

Example

Start from a homeomorphic action I' ~ X on a compact Hausdorff space.
s C(X) x I
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Observation

For two C*-algebras A, B, the algebraic tensor product A ©® B becomes a
x-algebra in the obvious way.

Can this be turned into a C*-algebra?
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x-algebra in the obvious way.

Can this be turned into a C*-algebra?

Yes! However, not uniquely in general.
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Observation
For two C*-algebras A, B, the algebraic tensor product A ©® B becomes a
x-algebra in the obvious way.

Can this be turned into a C*-algebra? I

Yes! However, not uniquely in general.

Definition

We say that a C*-algebra A is nuclear if the tensor product A ® B carries
a unique C*-norm for every C*-algebra B. In this case we denote by
A ® B the C*-algebra arising as the completion.
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Finite-dimensional or commutative C*-algebras are nuclear. One has
M,® A= M,(A) and C(X)® A= C(X,A).
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A discrete group I' is amenable if and only if C*(I") is nuclear.
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Finite-dimensional or commutative C*-algebras are nuclear. One has
M,® A= M,(A) and C(X)® A= C(X,A).

A discrete group T' is amenable if and only if C*(T") is nuclear.

Example (free groups)

C*(F,,) is not nuclear for n > 2.
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Finite-dimensional or commutative C*-algebras are nuclear. One has
M,® A= M,(A) and C(X)® A= C(X,A).

A discrete group T' is amenable if and only if C*(T") is nuclear.

Example (free groups)

C*(F,,) is not nuclear for n > 2.

If T is amenable and A is nuclear, then A x I" is nuclear for every possible
action ' ~ A. So in particular for A = C(X).
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Fact (K-theory)

There is a functor

{C*-algebras} — {abelian groups}, A— K.(A)= Ko(A)® K;1(A),

which extends the topological K -theory functor X — K*(X) for (locally)
compact Hausdorff spaces.
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Elliott program

Fact (K-theory)

There is a functor

{C*-algebras} — {abelian groups}, A— K.(A)= Ko(A)® K;1(A),

which extends the topological K -theory functor X — K*(X) for (locally)
compact Hausdorff spaces. It is homotopy invariant and stable, and has
many other good properties for doing computations.
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Fact (K-theory)

There is a functor

{C*-algebras} — {abelian groups}, A— K.(A)= Ko(A)® K;1(A),

which extends the topological K -theory functor X — K*(X) for (locally)
compact Hausdorff spaces. It is homotopy invariant and stable, and has
many other good properties for doing computations.

Fact

Ky(A) has a natural positive part Ky(A),, which induces an order
relation on K(A).

| A
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Fact (K-theory)

There is a functor

{C*-algebras} — {abelian groups}, A— K.(A)= Ko(A)® K;1(A),

which extends the topological K -theory functor X — K*(X) for (locally)
compact Hausdorff spaces. It is homotopy invariant and stable, and has
many other good properties for doing computations.

| A

Fact

Ky(A) has a natural positive part Ky(A),, which induces an order
relation on K(A).

Theorem (Glimm, Bratteli, Elliott)
Let A and B be two (unital) AF algebras. Then

A=B <= (Ko(A),Ko(A)+,[14]) = (Ko(B), Ko(B)+, [15])-
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Elliott program

Definition (Elliott invariant)

For a (unital) simple C*-algebra A, one considers
o its K-groups Ky(A) and K;(A);

v
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Definition (Elliott invariant)

For a (unital) simple C*-algebra A, one considers
o its K-groups Ky(A) and K;(A);
o the positive part Ko(A) in Ko(A);
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Elliott program

Definition (Elliott invariant)

For a (unital) simple C*-algebra A, one considers
o its K-groups Ky(A) and K1(A);
o the positive part Ko(A) in Ko(A);
o the distinguished element [14] € Ko(A)+;

V.
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Elliott program

Definition (Elliott invariant)

For a (unital) simple C*-algebra A, one considers
o its K-groups Ky(A) and K1(A);
o the positive part Ko(A) in Ko(A);
o the distinguished element [14] € Ko(A)+;

o the Choquet simplex T'(A) of tracial states, i.e., T is tracial if
T(xzx*) = 7(z*x) for all z € A;
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Elliott program

Definition (Elliott invariant)

For a (unital) simple C*-algebra A, one considers
o its K-groups Ky(A) and K1(A);
o the positive part Ko(A) in Ko(A);
o the distinguished element [14] € Ko(A)+;
o the Choquet simplex T'(A) of tracial states, i.e., T is tracial if
T(zz*) = 7(x*z) for all x € A;

@ a natural pairing map p4 : T(A) x Ko(A) — R which is an order
homomorphism in the second variable.

V.
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Elliott program

Definition (Elliott invariant)

For a (unital) simple C*-algebra A, one considers
o its K-groups Ky(A) and K1(A);
o the positive part Ko(A) in Ko(A);
o the distinguished element [14] € Ko(A)+;
o the Choquet simplex T'(A) of tracial states, i.e., T is tracial if
T(zz*) = 7(x*z) for all x € A;

@ a natural pairing map p4 : T(A) x Ko(A) — R which is an order
homomorphism in the second variable.

The sextuple

EII(A) = (Ko(A), Ko(A)1,[1a], K1(A4), T(A), pa)

is called the Elliott invariant and becomes functorial with respect to a
suitable target category.

V.
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Elliott program

There is a separable unital simple nuclear infinite-dimensional C*-algebra
Z with Z = Z ® Z, the Jiang-Su algebra, with Ell(Z) = Ell(C).
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Elliott program

There is a separable unital simple nuclear infinite-dimensional C*-algebra
Z with Z = Z ® Z, the Jiang-Su algebra, with Ell(Z) = Ell(C).

Rough idea: One considers the C*-algebra
Zgoo’goo = {f € C([O, 1],M200 & Mgoo) | f(O) S Mgoo ®1, f(l) e1® Mgoo}

which has the right K-theory but far too many ideals and traces.
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Elliott program

There is a separable unital simple nuclear infinite-dimensional C*-algebra
Z with Z2 = Z ® Z, the Jiang—Su algebra, with Ell(Z) = El(C).

Rough idea: One considers the C*-algebra
Zooo 300 = {f € C([0,1], Mo ® Ms) | f(0) € Mo ®1, f(1) €1 ® Mz

which has the right K-theory but far too many ideals and traces.

One constructs a
trace-collapsing
endomorphism on Zse 30
and can define Z as the
stationary inductive limit.

(Graphic created by Aaron
Tikuisis.)
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Elliott program

Definition

We say that a C*-algebra A is Z-stable, if AZ AR Z.
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Definition
We say that a C*-algebra A is Z-stable, if AZ AR Z.

If A is simple and the order on K(A) satisfies a mild condition, then
Ell(A) = Ell(A ® 2).
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Definition
We say that a C*-algebra A is Z-stable, if A= A® Z.

Fact

If A is simple and the order on K((A) satisfies a mild condition, then
Ell(A) ZEll(A ® Z).

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear Z-stable C*-algebras.
Then

A~ B <+ EIl(A)2EI(B).°

To the experts in the audience: No UCT discussion now!
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We say that a C*-algebra A is Z-stable, if A= A® Z.

Fact

If A is simple and the order on K((A) satisfies a mild condition, then
Ell(A) ZEll(A ® Z).

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear Z-stable C*-algebras.
Then
A~ B <+ EIl(A)2EI(B).°

(There is a more general version not assuming unitality.)
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Elliott program

Definition
We say that a C*-algebra A is Z-stable, if A= A® Z.

Fact

If A is simple and the order on K((A) satisfies a mild condition, then
Ell(A) ZEll(A ® Z).

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear Z-stable C*-algebras.
Then

A~ B <+ EIl(A)2EI(B).°

(There is a more general version not assuming unitality.)

Problem (difficult!)

Determine when I' ~ X gives rise to a Z-stable crossed product.

To the experts in the audience: No UCT discussion now!
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Thank you for your attention!
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