Background	Catalog	Classification	Ramsey theory	Problems

The classification of homogeneous finite-dimensional permutation structures

Samuel Braunfeld (Joint with Pierre Simon)

University of Maryland, College Park

BIRS, Unifying Themes in Ramsey Theory November 21, 2018

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Background	Catalog	Classification	Ramsey theory	Problems
Overview				

Background

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background	Catalog	Classification	Ramsey theory	Problems
PERMUT	ATIONS			

- A *permutation* of size *n* is a rearrangement of the numbers {1, ..., *n*}.
- These may be viewed as structures in a language of 2 linear orders.

HOMOGENEOUS PERMUTATIONS

Theorem (Cameron, 2002)

Up to interdefinability, there are 3 homogeneous permutations.

- \mathbf{O} \mathbb{Q} equipped with its standard order twice.
- The fully generic permutation, i.e. the Fraïssé limit of the class of all finite permutations
- Q² equipped with the equivalence relation of agreement in the first coordinate, and the lexicographic order
 - The first two structures are primitive, i.e. have no \emptyset -definable equivalence relation.
 - The last is imprimitive, equipped with a convex linear order.

Problem (Cameron)

Classify, for each n, the homogeneous n-dimensional permutation structures.

Background	Catalog	Classification	Ramsey theory	Problems
REPLACING	Eouivale	NCE RELATIC	NS	

- Consider a structure *M* equipped with an equivalence relation *E* and an *E*-convex linear order <.
- *E* can be interdefinably replaced with the linear order <* defined as follows.

Definition

- If *xEy*, then $x <^* y \iff x < y$.
- Otherwise, $x <^* y \iff y < x$.
- There are more efficient ways of doing this for several equivalence relations.

Background	Catalog	Classification	Ramsey theory	Problems
CAMERON'S	5 Problem			

- The first step in such a classification problem is the production of a catalog of examples, which will later serve to guide the classification procedure.
- Cameron's classification yields a satisfactory catalog of the primitive finite-dimensional permutation structures.

Theorem (Primitivity Theorem, Simon)

Let M be a primitive homogeneous n-dimensional permutation structure, in which no orders are equal up to reversal. Then M is the fully generic n-dimensional permutation structure.

- What about imprimitive structures?
 - Start with a homogeneous skeleton of equivalence relations.
 - Expand by convex linear orders.
 - Seplace the equivalence relations with more linear orders.

Background	Catalog	Classification	Ramsey theory	Problems
				J

Λ -Ultrametric Spaces

- In an ω -categorical structure, the \emptyset -definable equivalence relations form a lattice.
- In a structure equipped with a lattice Λ of equivalence relations, passing to a substructure, e.g. a single point, may collapse Λ.
- In order to keep Λ fixed as we pass to substructures, we change the language to Λ -*ultrametric spaces*.

Definition

Let Λ be a lattice. Then (M, d) is a Λ -*ultrametric space* if d is a metric taking values in Λ , with the triangle inequality

$$d(x,y) \le d(x,z) \lor d(z,y)$$

To go from a structure equipped with a lattice Λ of equivalence relations to a Λ-ultrametric space, take *d*(*x*, *y*) to be the finest equivalence relation between *x* and *y*.

Background	Catalog	Classification	Ramsey theory	Problems

Homogeneous Λ -Ultrametric Spaces

• Shortest-path completion provides a standard amalgamation strategy for metric spaces.

• We adapt this to Λ-ultrametric spaces in the obvious way to prove the following.

Theorem

Let Λ be a distributive lattice. Then the class of all finite Λ -ultrametric spaces is an amalgamation class.

GENERATING A CATALOG (FIRST TRY)

- Let Λ be a finite distributive lattice, and M_{Λ} the fully generic Λ -ultrametric space.
- Expand M_Λ by enough linear orders, generic modulo convexity conditions, so that every meet-irreducible equivalence relation is convex with respect to at least one order.
- Interdefinably replace the equivalence relations with linear orders as before.
 - One problem: "generic modulo convexity conditions" is too restrictive a requirement to capture all examples.

Background	Catalog	Classification	Ramsey theory	Problems
SUBOUOT	tient Ord	ERS		

- An *E*-convex linear order may be split into pieces; one within *E*-classes, and one on the quotient.
- Pieces of distinct linear orders may be interdefinable, even if the orders are not, killing genericity.
- Our solution: if < is an *E*-convex linear order, then break it into two partial orders; one giving encoding the order within *E*-classes, and one between *E*-classes.

Definition

Let *X* be a structure, and $E \le F$ equivalence relations on *X*. A *subquotient order from E* to *F* is a partial order on *X*/*E* in which two *E*-classes are comparable iff they lie in the same *F*-class.

GENERATING A CATALOG (FINAL VERSION)

- Let Λ be a finite distributive lattice, and M_{Λ} the fully generic Λ -ultrametric space.
- For each meet-irreducible $E \in \Lambda$, expand M_{Λ} by at least one generic subquotient order between *E*-classes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• The resulting structure is interdefinable with a finite-dimensional permutation structure.

Background	Catalog	Classification	Ramsey theory	Problems
Minimal I	INEAR ORD.	ERS		
• The fo work of	llowing definition NIP ω -catego	ions and results co orical structures.	ome from Simon's	

- Idea: Certain linear orders can interact in only a few prescribed ways.
- Let M be ω -categorical.
- Let $(V, \leq, ...)$ be \emptyset -definable, with \leq distinguished.

Definition

 $(V, \leq, ...)$ has *topological rank* 1 if it has no parameter-definable convex equivalence relation with infinitely many infinite classes.

Definition

 $(V, \leq, ...)$ is *minimal* if it has topological rank 1, and further conditions implied by transitivity.

Background	Catalog	Classification	Ramsey theory	Problems

A TRICHOTOMY

- Given $(V, \leq_V, ...)$, $(W, \leq_W, ...)$ both minimal, one of the following holds.
- \leq_V and \leq_W in monotone bijection.
- \leq_V and \leq_W are *intertwined*, i.e. there is a monotone \emptyset -definable function from \leq_V to the parameter-definable cuts of \leq_W .
- \leq_V and \leq_W are *independent*, i.e. none of the above.

Theorem (Product Theorem)

A closed \emptyset -definable set in a product of independent orders is a finite union of products of closed \emptyset -definable sets.

Background	Catalog	Classification	Ramsey theory	Problems
APPLYING [*]	THE TR	ІСНОТОМҮ		

- Let *M* be a primitive homogeneous *n*-dimensional permutation structure.
- Prove every order has topological rank 1.
- Rule out the possibility of intertwined orders.
- Consider the diagonal in $(M, \leq_1) \times \cdots \times (M, \leq_n)$.
 - By the Product Theorem, its closure is M^n .
 - So the diagonal is dense, i.e. the structure is fully generic.
 - We have thus proven the Primitivity Theorem.
 - For *n* = 2, 3 this was done by increasingly lengthy amalgamation arguments.

Background	Catalog	Classification	Ramsey theory	Problems
THE IMPRIM	IITIVE CAS	F		

- Let *M* be a homogeneous finite-dimensional permutation structure, with lattice of \emptyset -definable equivalence relations Λ .
- Proceed by induction. The restriction to any *E*-class is understood, and we wish to understand the quotients.
- Let E_i be the maximal \leq_i -convex equivalence relation. Then the $(M/E_i, \leq_i)$ are minimal and independent.
- The maximal equivalence relations are cross-cutting.
- Λ is distributive, and thus the reduct to the language of equivalence relations is fully generic.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Background	Catalog	Classification	Ramsey theory	Problems
RAMSEY TH	EORY			

- Let Λ be a finite distributive lattice, and M_{Λ} be the generic Λ -ultrametric space.
- The catalog essentially adds linear orders to M_{Λ} making every \emptyset -definable equivalence relation convex. This looks suspiciously like a Ramsey expansion.
- The minimal Ramsey expansion adds a generic subquotient order to each meet-irreducible in Λ.
- Thus every homogeneous finite-dimensional permutation structure is Ramsey.
- The proof uses the Hubička-Nešetřil local finiteness machinery.
- A special case of the semigroup-valued metric spaces from Konečný's talk.

THE NUMBER OF ORDERS NEEDED

• The catalog is not given in the language of linear orders.

Problem

Given a structure in the catalog, what is the minimum number of orders needed to represent it?

Problem

Given a finite distributive lattice Λ , what is the minimum number of orders (d_{Λ}) needed to represent it?

• We may encode chains with maximal efficiency.

Proposition

Let Λ be a finite distributive lattice, Λ_0 the poset of meet-irreducibles of $\Lambda \setminus \{0, 1\}$, \mathcal{L} a set of chains covering Λ_0 , and ℓ the minimum size of any such \mathcal{L} . Then $2\ell \leq d_{\Lambda} \leq |\mathcal{L}| + \sum_{L \in \mathcal{L}} \lceil \log_2(|L|+1) \rceil$.

HOMOGENEOUS ORDERED STRUCTURES

- The homogeneous ordered graphs are expansions of homogeneous proper reducts (graphs, tournaments, or partial orders) by a linear order.
- In the primitive case, this linear order is generic.

Question

Is this true in general for homogeneous ordered structures?

- Homogeneous finite-dimensional permutation structures are a natural test case. Here it is true.
- False for intertwined orders (with an intertwining relation).

Problem

Find an appropriate modification of the question above. I suppose resolve it as well.

• One option is to also allow expansion by intertwined orders.

Background	Catalog	Classification	Ramsey theory	Problems
Referen	ICES			

- Samuel Braunfeld, Infinite Limits of Finite-Dimensional Permutation Structures, and their Automorphism Groups: Between Model Theory and Combinatorics, https://arxiv.org/abs/1805.04219
- Samuel Braunfeld, Pierre Simon, *The classification of homogeneous finite-dimensional permutation structures*, https://arxiv.org/abs/1807.07110
- Peter Cameron, *Homogeneous permutations*, The Electronic Journal of Combinatorics **9** (2002), no. 2, Research Paper 2.
- Pierre Simon, NIP ω-categorical structures: the rank 1 case, https://arxiv.org/abs/1807.07102